N

N

A UML Profile to Couple the Production Code
Generator TargetLink with UML Design Tools
Malte Falk, Stefan Walter, Achim Rettberg

» To cite this version:

Malte Falk, Stefan Walter, Achim Rettberg. A UML Profile to Couple the Production Code Generator
TargetLink with UML Design Tools. 5th International Embedded Systems Symposium (IESS), Nov
2015, Foz do Iguacu, Brazil. pp.185-196, 10.1007/978-3-319-90023-0__15 . hal-01854153

HAL Id: hal-01854153
https://inria.hal.science/hal-01854153
Submitted on 6 Aug 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01854153
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A UML profile to couple the production code
generator TargetLink with UML design tools

Malte Falk, Stefan Walter, and Achim Rettberg

1 Carl von Ossietzky University Oldenburg
malte-falk@gmx.de
> dSPACE GmbH
swalter@dspace.de
3 Hella Electronics & Carl von Ossietzky University Oldenburg
achim.rettbergiess.org

Abstract. When modelling architecture of complex embedded systems
proper architecture languages and tools are necessary. UML [1] has be-
come a proven and well accepted design language to express system
as well as software architecture. For definition of internal behavior of
components composed and specified during software design, Simulink is
commonly used, especially for automotive and aerospace applications. As
common practise, code is generated directly from such behavior models.
Therefore, code generators such as TargetLink [2] are used. In this paper
we propose a UML profile to describe specific properties necessary to
adapt UML models to the code generator TargetLink.

1 DMotivation

To cope with today’s growing complexity of requirements in embedded systems
development adequate development methods are crucial to develop high quality
systems. Todays embedded systems often consists of distributed functionalities
where software components could run on the same or on a different hardware
platform within the distributed system. To define such complex system struc-
tures an architectural design phase in the development process is essential. As
a de-facto standard language to be used in software and system architecture
modelling the Unified Modelling Language (UML) [1] and the System Modelling
Language (SysML) [3] is widely used in different fields. At a certain step during
development of embedded systems, one have to model and implement the behav-
ior of the defined software components. A common tool for behaviour modelling
is Simulink from The Mathworks [4]. Especially in the automotive industry but
also for development of airborne software both modeling environments UML and
Simulink are used extensively. After modelling the behavior of a software compo-
nent, in best case the embedded code to be integrated on the electronic control
unit is directly generated from the behavior model, in this paper from Simulink.
Generating code from Simulink software specifications which is then directly
used on electronic control units is de-facto standard in state of the art develop-
ment processes especially in the automotive industry. The technique of autocode

2 Malte Falk, Stefan Walter, and Achim Rettberg

generation is well accepted and widely used especially in safety critical projects.
One of the major tools used by the industry is TargetLink from dSPACE GmbH
[2]. In this paper we propose a mapping between UML component architecture
models and TargetLink models.

2 Related Work

Various research work deal with mapping of MATLAB/Simulink models to UML
like [5]. In contrast to this paper, [5] discusses a possibility to illustrate the
MATLAB/Simulink models and the behaviour of it in UML and replaces Simulink
hereby.

Other publications discuss a possibility to describe systems with UML and
redescribe it in MATLAB/Simulink. In [6] it is discussed how software architec-
tures which are described in UML could be transformed to simulation models
which are described with MATLAB/Simulink. These publications describe a sim-
ilar approach compared to this paper. In contrast to other publications this
paper describes a possibility to map a TargetLink model, which is based on
MaTLAB/Simulink, to UML. The benefit is to reuse properties such as interface
description, etc. from an architecture model and annotate it to a TargetLink
model, which is later used for automatic code generation.

3 TargetLink

TargetLink is a Toolbox for MATLAB/Simulink in order to generate series pro-
duction code by a push of a button from a Simulink model. Beside generation of
regular ANSI-C code for fixed point or floating point processors it is also possi-
ble to generate code for certain processor/compiler combinations. To enhance a
Simulink model to a TargetLink model used for code generation, certain param-
eters need to be set, to describe how the code generated by TargetLink looks
like. To maintain all parameters for all blocks within the TargetLink model the
TargetLink Data Dictionary is used. The TargetLink Data Dictionary represents
a data container in order to describe all elements. These elements represent in-
formation for the model design, the code generation and the implementation
of a model on an electronic control unit. TargetLink elements are described by
various properties and can be referenced by TargetLink models. In the following
section we will introduce and discuss the relevant TargetLink elements used for
UML mapping.

3.1 TargetLink Data Dictionary elements

The TargetLink Data Dictionary is used to parameterize and describe all ele-
ments used in TargetLink models. Below all elements which are relevant to be
mapped to UML are specified. A more in-depth and formal description of the
various element properties can be found in [7] and [8].

Pool The TargetLink Data Dictionary is divided into three areas Config, Pool,
and Subsystem. In this paper only the Pool-area is considered. This area contains
all data elements which are required for code generation. Examples of elements
in the Pool area are scaling values of fixpoint variables the or type definition of
variables.

Blocks Blocks are the main elements in TargetLink Data Dictionary and there-
fore essential for the code generation. Based on the Block description, Simulink
Blocks could be generated directly from the TargetLink Data Dictionary. Even
though various types of Blocks are available inside the TargetLink Data Dic-
tionary, this paper focusses only on Blocks of type TL_Function. Those Blocks
represent the base architecture of the software component to be developed.

Signature and SignaturePort A Signature contains Signature-Ports, whereas
Signature-Ports are divided in in-, out-, and user-ports. Signatures are used to
describe which in- and out-ports are available at the TL_Function Block. In
contrast to in- and out-ports, user-ports are freely configurable for different use
cases, e.g. calibration-ports.With ports it is possible to connect TL_Function
Blocks with Variables, either incoming or outgoing.

Variable Variables are used to exchange information between different TL_Function
Blocks. The properties of variables define the appearance within the generated
code. The actual type of Variable is defined by a Typedef element as described

in the following paragraphs . A min, max range can be set by a reference to a
Scaling element as described in the following paragraphs.

Typedef The Typedef element specifies the datatype of a Variable element. In
the TargetLink Data Dictionary Typedefs are referenced by Variables.

Scaling A Scaling is used to define the value range of a Variable. This is neces-
sary in case of fixed-point code generation. Furthermore, it is possible to define
values for Least Significant Bit (LSB), Offset, and , physical unit within the
Scaling properties.

Module The characteristics of the code modules in the generated code are
specified by Module elements, e.g. the memory location. Properties of these
elements are TargetLink specific and do not have any implication on architecture
level. Due to this fact it is not considered in scope of this paper.

FunctionClass FunctionClass properties define how the generated code for
a referenced TL_Function Block would look like. Because FunctionClasses are
usually predefined, they are not considered in the further course of this paper.

4 Malte Falk, Stefan Walter, and Achim Rettberg

VariableClass VariableClasses are similar elements compared to Function-
Classes. The difference is that VariableClasses specify Variables in the generated
code. Because VariableClasses are usually predefined, they are not considered in
the further course of this paper.

TargetLink Data Dictionary model In the context of this paper a Tar-
getLink Data Dictionary model is a finite set of all above described elements. In
section 4 of this paper a mapping of TargetLink Data Dictionary model to UML
is described.

3.2 Relationship between TargetLink elements

This section describes the relationship between the TargetLink Data Dictionary
elements as specified in section 3.1. This description could be later used to de-
rive the connection between the different UML elements in an UML profile. An
analysis of the dependencies could be realised by a tree structure diagram with
breadth-first search.

Pool
[‘ 1
TL_Function Block Variable
I l 1 [l T 1
Signature FunctionClass Module VariableClass ||{Typedefinition| | Scaling
T T

| e e

Signature-Port | Module | | Scaling |

,,,,,, I |

Fig. 1. Tree structure diagram of the Pool area

Figure 1 shows the Pool area with all defined elements of the TargetLink
Data Dictionary. The figure clearly shows the dependencies between all elements.
It is obviously depicted in figure 1 that Variables are independent from other
TargetLink Data Dictionary elements. This means a Variable could exist without
a TL_Function Block, e.g. global Variables. Figure 1 also indicates that Variables
and TL_Function Blocks are split into different branches. This implies that those
two elements need to be considered differently when defining the UML profile.

Another fact of the tree structure shows that a TL_Function Block is linked
to Variables over a Signature and Signature-Port, whereas one Signature-Port
of a Signature is linked to exactly one Variable. On the other hand a Variable
could be linked to different Signature-Ports.

4 Prototype TargetLink model in UML

Based on the previous definitions, in this section a prototype for describing
TargetLink models in UML is suggested. The section is subdivided into two
subsections. The first subsection explains the UML diagram type selected to be
used for expressing the TargetLink model elements. In the second subsection it
is described which element of the selected UML diagram type is mapped to a
specific element of the TargetLink Data Dictionary.

4.1 Composite structure diagram

With composite structure diagrams it is possible to describe the internal struc-
ture of a class or the collaboration between different classes. It is similar to the
component diagram and therefore as described in [9] on page 93 it could be
combined with such diagram types. In addition, a composite structure diagram
provides two different views on a system. The first view is the structural-dynamic
view which focusses on the function of the system and which parts are needed
for the functions. The second view is shown in figure 2 as a class diagram.

Subsystem_1 ’ Subsystem_2 ‘

Pl

Component_1 ‘ ’ Component_2 ‘
Class_1 Class_2 Class_3 Class_4
Attribute_1 Attribute_2 Attribute_3| | Attribute_4

Fig. 2. Structural static view [8, p. 194]

In a first step the system is partitioned into various subsystems. In the fol-
lowing these different subsystems are divided into various components. Each
component comprises several classes with attributes. This way to describe sys-
tems can be found on system level (Hardware) or on software level (GUI split
into application, windows, etc.) [8, p. 194].

The metaclasses of the composite structure diagram are classes, parts, ports,
interfaces and connectors. In the following all relevant elements are shortly de-
scribed. A class is a kind of construction plan for an object. Parts are used to split
a class into subsets. Parts could be extended by ports in order to implement in-
teraction points for communication between elements. To connect different ports

6 Malte Falk, Stefan Walter, and Achim Rettberg

of parts connectors are used. In the following section a possible prototype which
describes how TargetLink Data Dictionary elements are mapped to UML ele-
ments is presented [9, p. 125ff].

4.2 Prototype

The prototype differentiates between a system and variable level. The distinction
was made based on results of the previously described tree structure diagram
analysis. On system level it is possible to describe TL_Function Blocks, Signa-
tures and Signature-Ports. Whereas on variable level Variables, Typedefs and
Scalings are described. In figure 3 and 4 both, the system level and variable level
is depicted.

< <Part>> <<Part>>
Sensor correction and Airflow calculation
Fault Redundancy
‘ throttle ‘ ‘throttle(estimated) H throttle(estimated) ‘ ‘ est_air_flow
| | |
‘ speed ‘ ‘ speed (estimated) H speed (estimated) ‘
| | |
‘ EGO ‘ ‘ EGO(estimated) H EGO(estimated) ‘
| | |
‘ fail THROT ‘ ‘ MAP (estimated) H MAP (estimated) ‘ ‘feedback,correction‘

Fig. 3. System level in UML

UML Parts are used to separate a system into different subsystems whereas
one Part contains the specification of a subsystem as a piece of the entire sys-
tem. A TL_Function Block is an element that encloses all other elements except
the global Variables with its Typedefs, Scalings, etc. A TargetLink model can
consist of several TL_Function Blocks. Therefore, a TL_Function Block contains
a certain aspect of the specification of a model. Thus, in figure 3 TL_Function
Blocks are depicted as Parts. The formal description as defined in [8, p. 23f]
summarizes TL_Function Blocks and Signatures. For this reason Parts include
the description of Signatures as well.

Signature-Ports are mapped to UML Ports in the concept described in this
paper. Parts could use UML Ports for communication with other UML Parts.
Signature-Ports enable communication between TL_Function Blocks using Vari-
ables, as shown in figure 1. On Variable level all variables a TL_Function Block
could contain are specified.

As shown in figure 1, on Variable level it is possible to describe Variables
and its dependencies. Furthermore, specification of variable types (Typedefs)

< <Interface>> < <Class>> < <Class>>

throttle uint8 VOID_SCALING

Fig. 4. Variable level in UML

and scalings are done on Variable level. Figure 4 shows an excerpt from a speci-
fication of Variable, Typedef and Scaling elements on Variable level used for com-
munication between different TL_Function Blocks via Ports. In the TargetLink
context Variables specify the interface of TL_Function Blocks. Therefore, in this
concept Variable elements are mapped to UML interfaces.

Typedefs and Scalings represent a construction plan for Variables in Tar-
getLink Data Dictionary. These elements describe the appearance of Variables
in the production code. In UML classes have a similar functionality. They influ-
ence objects and provide so some kind of construction plan by attributes and
operations [9, S.32]. For this reason Scaling and Typedef elements are represented
by classes.

With mapping UML Parts to Signatures and TL_Function Blocks, UML In-
terfaces to Scalings and Typedefs, UML Class to Variables and UML Ports to
Signature-Ports all profile relevant TargetLink elements are described in the
UML profile. These elements are a subset of all TargetLink elements.

5 Definition of the TargetLink UML Profile

In the previous section a possibility on how to specify TargetLink Data Dic-
tionary elements in UML was described. To enable specifying TargetLink Data
Dictionary relevant elements in UML composite structure diagrams, the seman-
tics of those diagrams need to be extended. In UML such kind of extensions are
defined in UML profiles, mainly consisting of stereotypes, tagged values and con-
straints. Stereotypes expand the UML metaclasses and represent the extended
elements. Tagged values expand stereotypes by properties as name-value pairs.
Constraints define additional constraints for the stereotypes and enable users to
check a model by the specified constraints. In the further course of this paper
first the structure of different packages of the TargetLink Data Dictionary UML
profile is described. In a second step the structure of the profile is illustrated. A
more in-depth description of the UML profile can be found in [8].

5.1 Package structure

This subsection describes the structure of the various packages of the TargetLink
Data Dictionary UML profile. Different UML packages partition the various re-

8 Malte Falk, Stefan Walter, and Achim Rettberg

quired elements of the UML profile. Figure 5 shows the structure of the Tar-
getLink Data Dictionary profile with different packages.

<<reference>> | <<import>>
| |

<<profile>> —‘
TL-DD-Profill Fuelsys

-4 = - —
<<apply>>

Fig. 5. Package structure

The figure shows a subdivision of the structure in four different UML pack-
ages. The package UML 2.x provides all metaclasses of the UML version 2.x.
Because the TargetLink Data Dictionary profile expands the semantics of a com-
posite structure diagram it is essential to use UML 2 or higher [10].

The UML 2 metaclasses used by the package TL-DD-Profil are provided via
<<reference>>-connection to the package UML 2.x. This connection enables
to expand metaclasses, such as ports or classes, with stereotypes. This kind of
connection is called metamodel-reference because all metaclasses of UML 2.x
which are provided with the <<metamodel>>-package are referenced by the
profile package.

The definition of the profile itself can be found in the package TL-DD-Profil.
The stereotype <<profile>> is used to declare that the package contains UML
profiles. The TL-DD-Profil represents the key package within the package dia-
gram. It contains all required metaclass extensions such as stereotypes, tagged
values representing the TargetLink Data Dictionary properties and additional
constraints. Using the <<import>>-connection the TL-DD-Profil package im-
ports different predefined elements from the Definition-package.

As mentioned above, the Definition-package describes different elements to
be used in the TL-DD-Profil. Among others, basic data types of the TargetLink
Data Dictionary are determined in this package. For example, predefined ele-
ments such as VariableClasses are defined in this package. The Fuelsys-package
represents the actual application model which is described by applying the Tar-
getLink UML profile.

5.2 Profile structure

The following section explains the internal structure of the profile package TL-
DD-Profil based on the previous prototype. The different metaclasses in the
profile package are extended by stereotypes. The different metaclasses are pro-
vided by the <<reference>>-connection between profile package and UML 2.X
package which is illustrated in figure 5. The different extensions of metaclasses
by stereotypes are depicted in figure 6. This paper concentrates on the structure
and the dependencies between the different stereotypes. A precise description of
the UML profile is given in [8].

<<metaclass>> <<metaclass>> <<metaclass>>
Part Connector Port
A |

<<use>> — — — — — — — R ‘

| I 1
FunctionBlock <>‘ ’FBConnection <>‘ i | TLInport <>‘ ’ SLInport <>‘ ’ User () ‘ :
/\ T | T T T |
: S ‘ : ’TLOutport(){ : ’SLOutport <>‘ : :

| | T | T |
e - - - <<use>> — — — — — L B S Sy :
<<metaclass>> < <metaclass>> :
Class Interface |
|
A ‘
[1 |
Scaling <)‘ ’ Typedef <>‘ ’ Variable () :

T T T

e - = = = J7<<usc>>—————‘ e == <<usc>>*******‘

Fig. 6. Profile structure

The different <<wuse>>-connections, as depicted in figure 5, represent the as-
sociations between the different stereotypes. Furthermore, the connection shows
which elements are in communication. For example the figure obviously shows
the connection between TL_Function Blocks and different ports (e.g. TLInport,
SLInport,).

Moreover, figure 5 shows which metaclass is extended by which stereotype.
The prototype in 4.2 defines Scaling elements as a UML class. Therefore, the
metaclass Class is extended by the stereotype Scaling. Another example is the
stereotype Typedef which extends the metaclass Class as well. The Scaling ele-
ment and the Typedef element will be provided by both extensions in the UML
profile. Another element that is provided by the UML profile is the stereotype
Variable. In 4.2 Variable elements are defined as interchangeable elements that
carries information. These elements are mapped to UML interfaces. Therefore,
the UML metaclass interface is extended by the stereotype Variable. The so
called variable level that is described in section 4 only contains those three ele-
ment types.

10 Malte Falk, Stefan Walter, and Achim Rettberg

TL_Function Blocks, Signatures, and all kinds of Signature-Ports are applied
on system level. Each TL_Function Block specifies a part of the entire system in
the prototype and are therefore mapped to UML Parts. Thus, in figure 6 it is
depicted that the metaclass Part is extended by stereotyp TL_Function Block.

Various stereotypes, representing different kind of communication ports, ex-
tend the metaclass Port. In UML, ports specify interaction points of parts
and its environment. In the profile ports are used to represent the different
Signature-Ports. Signature-Ports are interaction points of TL_Function Blocks
used to consume and provide Variables. Signature-Ports can represent in-, out-,
or user-ports. This is the reason why the metaclass Port is extended by different
stereotypes. In detail the stereotypes differentiate only by its names. With the
various Signature-Port stereotypes a user can directly recognize the kind of the
Signature-Port.

The stereotype FBConnection extends the metaclass Connector. Signature-
Ports can be connected to each other via FBConnection. These connections
can not be mapped to the TargetLink Data Dictionary but in UML it shows
the connection between all elements via ports. A user could easily recognize
the interconnection between different TL_Function Blocks. Those connections
represent the information flow within a system. A more detailed description of
the UML profile can be found in [8]. The following section gives an overview
on how to couple UML tools and the TargetLink Data Dictionary to exchange
information.

6 Information exchange UML - TargetLink Data
Dictionary

With the UML profile defined in this paper it is possible to already add Tar-
getLink Data Dictionary properties which will be used in a later step for pro-
duction code generation to UML elements during system design. However an
automatic exchange of those properties between the UML model specified dur-
ing design phase and the TargetLink Data Dictionary is not yet possible. A
common format to exchange information between programs and software tools
is XML. Also the TargetLink Data Dictionary is able to import XML files con-
taining a specific data structure. By importing XML files into the TargetLink
Data Dictionary it is possible to either expand or overwrite available elements.

A standard for exchanging models between UML tools is the XML Meta-
data Interchange (XMI) which is published by the Object Management Group
(OMG). The import and export of this XML based data format is supported
by all major UML tools. XMI files describe complete UML diagrams in textual
form. Even if XMI is a standard data format, each UML tool implements its own
interpretation of this standard, which slightly differs in structure of properties
and used XMI vocabulary. In other words although XMI is a standard, each
XMlI-file exported from a different UML tool looks different. For this reason it
is difficult to design a generic compiler for the transformation between XMI and
TargetLink Data Dictionary XML.

11

In the following section we briefly describe the steps undertaken to design
a transformation between UML XMI and TargetLink Data Dictionary XML.
Due to the variations in the XMI standard as mentioned in the previous section,
we focussed our analysis on the two most commonly used tools in the industry,
Enterprise Architect [11] and Rational Rhapsody [12]. As a first step we have
implemented the previously described UML profile in both tools. Based on this
profile we design a demo system that includes all in section 5 defined elements.
In the second step the demo model was exported to XMI, using the standard
export mechanism of the UML tools. Based on the exported XMI files we have
to analyse the structure and the different vocabularies of both files. On the basis
of analysis results a grammar is developed which describes the relevant items of
the XMI export of both UML tools.

After the gramatic was derived from the XMI export, now the TargetLink
Data Dictionary XML file is analysed. For each export, the structure and the
vocabulary of this file is always the same. Therefore, it is sufficient to consider
all in section 3.1 defined TargetLink Data Dictionary elements. Also for the
TargetLink Data Dictionary export a grammar is defined, which is similar to
the one developed for the XMI export. By specifying transformation rules the
XMI grammar is mapped to the XML grammar of the TargetLink Data Dictio-
nary. The transformation rules describe an unambiguous mapping between the
information of the TargetLink Data Dictionary and the XMI file.

As a last step an algorithm was implemented that is able to compile the
XMI grammar in the XML grammar. If the grammar is expressed in an ade-
quate language, e.g. antlr [13], a parser generator could be used to generate this
algorithm automatically. The definition of the grammar and the transformation
rules is not focus of this paper. A detailed declaration of these grammars can be
found in [8].

7 Conclusion and future work

This paper summarizes a possibility to describe TargetLink Data Dictionary el-
ements in UML to provide a smoother transition between software architecture
definition and functional component design. Therefore, a UML profile was de-
fined which provides various TargetLink Data Dictionary elements to be used in
UML diagrams. The specified UML profile extends semantics of the composite
structure diagram. Using this UML profile it is possible to connect UML tools to
the production code generator TargetLink. This coupling is an important step in
development of complex software architectures where software design tools such
as UML as well as automatic code generators such as TargetLink became a de-
facto standard. The smooth transition between UML tools and TargetLink sup-
ports the consistent exchange of software components and its interfaces between
different engineering teams, responsible for software architecture and software
component design.. Following this approach, each development team could im-
port their subsystems from the entire software architecture description automat-

12 Malte Falk, Stefan Walter, and Achim Rettberg

ically into the TargetLink Data Dictionary to describe the functional behaviour
with MATLAB / Simulink and generate production code with TargetLink.

With the concept described in this paper we could not solve the problem
that every UML tool needs its own compiler due to the ambiguous definition
of XMI structure and vocabulary. A generic methodology of transforming UML
XMI files to TargetLink Data Dictionary readable XML files is subject to future
work.

This paper is a rough overview about the topic. More in-depth information
on different aspects e.g. details on grammar specification and complete definition
of the UML profile can be found in [8].

References

1. Unified Modeling Language (UML) Resource Page, http://www.uml.org

2. dSPACE TargetLink - Automatische Seriencode-Generierung, https://wuw.
dspace.com/de/gmb/home/products/sw/pcgs/targetli.cfm

3. OMG Systems Modeling Language, http://www.omgsysml.org

4. MathWorks, http://de.mathworks.com/

5. Carl-Johan Sjostedt, Jianlin Shi, Martin Torngren, DavidServat, DeJiu Chen, Vik-
tor Ahlsten, Henrik Lhn: Mapping Simulink to UML in the design of embedded
systems: Investigating scenarios and transformations

6. Walter, S: Ubersetzung von UML-Software-Spezifikation in Simulationsmodelle,
Fern Universitdt in Hagen, 2014

7. TargetLink Help Desk for Releases 2014-A

8. Falk, M.: Definition eines Profils zur Kopplung des Seriencode-Generators Tar-
getLink an UML-Werkzeuge, Carl von Ossietzky University Oldenburg, 2015

9. Grady Booch, James Rumbaugh, Ivar Jacobson: The Unified Modeling Language
User Guide. Shanklin, J. Carter. Addison -Wesley, 2005. ISBN: 0-321-26797-4.

10. Chris Rupp, Dr. Stefan Queins: UML 2 glasklar - Praxiswissen fr die UML-
Modellierung. 4. Auflage. Hanser Verlag, 2012. ISBN: 978-3-446-43057-0.

11. Enterprise Architect - Model Driven UML Tools, http://www.sparxsystems.de/
start/startseite/

12. Rational Rhapsody family, http://www-03.ibm.com/software/products/de/
ratirhapfami

13. ANTLR http://wuw.antlr.org

14. OMG Systems Modeling Language - The official OMG SysML site http://wuw.

omgsysml.org

