
HAL Id: hal-01854163
https://inria.hal.science/hal-01854163

Submitted on 6 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Hierarchical Multicore-Scheduling for Virtualization of
Dependent Real-Time Systems

Jan Jatzkowski, Marcio Kreutz, Achim Rettberg

To cite this version:
Jan Jatzkowski, Marcio Kreutz, Achim Rettberg. Hierarchical Multicore-Scheduling for Virtualization
of Dependent Real-Time Systems. 5th International Embedded Systems Symposium (IESS), Nov 2015,
Foz do Iguaçu, Brazil. pp.103-115, �10.1007/978-3-319-90023-0_9�. �hal-01854163�

https://inria.hal.science/hal-01854163
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Hierarchical Multicore-Scheduling for
Virtualization of Dependent Real-Time Systems

Jan Jatzkowski1, Marcio Kreutz2, and Achim Rettberg3

1 C-LAB, University of Paderborn, 33102 Paderborn, Germany,
jan.jatzkowski@c-lab.de

2 UFRN - Department of Informatics and Applied Mathematics, Natal, Brazil
kreutz@dimap.ufrn.br

3 Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany,
achim.rettberg@iess.org

Abstract. Hypervisor-based virtualization is a promising technology to
concurrently run various embedded real-time applications on a single
multicore hardware. It provides spatial as well as temporal separation of
different applications allocated to one hardware platform. In this paper,
we propose a concept for hierarchical scheduling of dependent real-time
software on multicore systems using hypervisor-based virualization. For
this purpose, we decompose offline schedules of singlecore systems based
on their release times, deadlines, and precedence constraints. Resulting
schedule fragments are allocated to time partitions such that task dead-
lines as well as precedence constraints are met while local scheduling
order of tasks is preserved. This concept, e.g., enables consolidation of
various dependent singlecore applications on a multicore platform using
full virtualization. Finally, we demonstrate functionality of our concept
by an automotive use case from literature.

Keywords: Embedded Systems, Dependent Real-time Systems, Real-
time Virtualization, Multicore Scheduling, Hierarchical Scheduling

1 Introduction

Nowadays, there is a raising interest in multicore technology for embedded real-
time systems. Using multicore hardware promises not only more computational
power but also reduced system size, weight, and power consumptions. However,
many embedded applications require sequential interaction between different
components. Increasing system performance is not reached by parallelization of
dedicated software but rather by running various applications on one multicore
platform concurrently [12]. Virtualization provides means to separate various
applications. Multicore architectures and virtualization are therefore known as
symbiotic technologies [9].

1.1 Hypervisor-based Virtualization

In this paper we focus on type-1 hypervisor-based virtualization, i.e. an addi-
tional software layer – the hypervisor – is placed between hardware and oper-

2 Jan Jatzkowski, Marcio Kreutz, and Achim Rettberg

ating system (OS) respectively application software. As type-1 hypervisor run
bare-metal, they must provide, e.g., device drivers either by their own (mono-
lithic) or by means of some special guest system (console-guest). Hypervisor
provide virtual machines (VM) that represent duplicates of the real hardware.
These VMs allow to run various systems spatial and temporal separated on a
single hardware platform. Literature distinguishes full and para-virtualization
[9]. While guest systems running at full virtualization are not aware of the hy-
pervisor, para-virtualized systems are adapted to run in VMs. Consequently,
para-virtualization allows information exchange between guest system and hy-
pervisor, but full virtualization does not.

1.2 Problem Statement

Temporal isolation is an important property of hypervisor-based virtualization
for embedded real-time systems. Current real-time hypervisor ensure tempo-
ral isolation of various VMs by some cyclic scheduling on hypervisor-level (cf.
Sect. 2.2). These approaches provide each VM a guaranteed share of processing
time during a predefined period, but dependencies between VMs remain an open
issue.

Dependencies between tasks hosted by the same VM must be solved by its
local scheduler. But dependencies between VMs must be solved by hypervisor
scheduler. Using para-virtualization, local schedulers could notify the hypervisor
when tasks are finished. This may enable solutions based on servers to schedule
VMs with precedence constraints. In contrast, full virtualization implies that
local and hypervisor scheduler cannot actively exchange information. Hence, a-
priori knowledge of local schedules and VM-dependencies are required to get an
appropriate global scheduling.

1.3 Contribution

In this paper, we focus on hierarchical real-time scheduling of dependent VMs to
enable full virtualization of singlecore systems deployed to multicore hardware.
Here, dedendencies are given by precedence constraints. The challenge is to share
execution time of p > 1 cores to m > p VMs such that deadlines as well as prece-
dence constraints are met. Each VM encapsulates a periodic real-time system
driven by its separate local singlecore schedule. Time sharing shall be realized by
a fixed cyclic scheduling that guarantees holding task deadlines and precedence
constraints. We consider task sets with acyclic dependencies, because cyclic task
dependencies imply non-deterministic behavior. Nevertheless, resulting VM de-
pendency graph may contain cycles. To meet deadlines as well as precedence
constraints of the overall system, hypervisor scheduler has to preempt execution
of VMs. For this purpose, first we decompose local schedules and then allocate
time partitions of various length to those parts of VM schedules. The result of
our approach is an offline multicore schedule for VMs that provides not only
sufficient execution time for each VM but also considers precedence constraints.

Hierarchical Multicore-Scheduling for Virtualization 3

2 Related Work

In this paper, we address hierarchical scheduling of periodic tasks with prece-
dence constraints on a multicore platform. We therefore divide related work into
approaches related to multicore scheduling and hierarchical scheduling.

2.1 Multicore Scheduling

Multicore scheduling approaches are classified as partitioned or global [1]. Davis
and Burns [5] state that i) most published research addresses independent tasks
and ii) main advantage of partitioned multicore scheduling is reuse of results from
singlecore scheduling theory after allocation of tasks to cores has been achieved.
Considering periodic task sets with precedence constraints, partitioned schedul-
ing allows to apply, e.g., adapted Earliest Deadline First (EDF*) presented by
Chetto et al. [2] or Deadline Monotonic (DM) based scheduling proposed by For-
get et al. [6]. Both approaches adapt deadlines to solve dependencies between
tasks allocated to a singlecore and thus enable deadline-based scheduling as for
independent task sets. But dependencies between tasks allocated to different
cores are not considered. For global multicore scheduling, e.g., some scheduling
policies from singlecore scheduling were adapted. For independent tasks, global
EDF schedules p tasks with earliest absolute deadline at each time, where p is
number of cores. Lee [11] extended global EDF to Earliest Deadline Zero Laxity
(EDZL) that was proven to dominate global EDF [1]. Cho et al. [3] presented
Largest Local Remaining Execution time First (LLREF). It is an optimal of-
fline real-time scheduling approach for independent periodic tasks with implicit
deadlines (d = T) and it performs non-work-conserving scheduling, i.e. cores can
be idle even in case of ready tasks. Rönngren and Shirazi [15] proposed static
scheduling of periodic tasks with precedence constraints for multiprocessor sys-
tems connected by a time division multiple access (TDMA) bus network. They
adapt task deadlines – similar to [2], [6] – and apply a heuristic that schedules
tasks w.r.t. earliest starting time, laxity, etc. In contrast to these approaches,
our work aims at global offline scheduling that does not adapt local schedules,
i.e. task parameters as well as local execution order keep untouched.

2.2 Hierarchical Scheduling

Most approaches for hierarchical scheduling at virtualization focus on indepen-
dent sub-systems, while our work allows dependencies between those systems. In
[7], Grösbrink and Almeida present hierarchical scheduling for hypervisor-based
real-time virtualization of mixed-criticality systems. They address independent
periodic VMs and apply partitioned hierarchical scheduling, i.e. VMs are allo-
cated as periodic servers to cores and each core schedules its servers according
to Rate Monotonic (RM). Masmano et al. [13] present the monolithic hypervisor
XtratuM that provides para-virtualization. It schedules VMs – called partitions
– globally by a static cyclic schedule and locally by a preemptive fixed priority-
based policy [4]. Xi et al. [16] present the console-guest hypervisor RT-Xen. It

4 Jan Jatzkowski, Marcio Kreutz, and Achim Rettberg

enables scheduling VMs as periodic or deferrable servers by EDF or DM priority
schemes. Masrur et al. [14] proposed the priority-based scheduling plus simple
EDF (PSEDF) to apply XEN hypervisor for mixed-criticality systems in auto-
motive domain. But in contrast to our work, none of these approaches allows
precedence constraints between VMs.

3 System Model

This paper focuses on hierarchical scheduling of periodic dependent real-time
systems on a multicore platform. Usually, periodic embedded real-time systems
get input from some sensors and compute output to control some acutators. But
resources are limited to get input respectively set output via direct I/O access or
network interfaces. To take this into account, we consider a periodic task model
that allows asynchronous release of tasks:

Γ = {τi = (Ci, Ti, Di, Oi) | 1 ≤ i ≤ n}. (1)

Each task τi ∈ Γ is characterized by its worst case execution time (WCET) Ci,
period Ti, constrained deadline Di ≤ Ti, and offset Oi. By means of constrained
deadlines and offsets, we are able to cover systems where the multicore platform
is connected to a time-triggered network. We denote jth instance of task τi by
τij and its absolute deadline by dij . Task dependencies are given by precedence
constraints τi ≺ τj meaning that τi must finish before τj can start execution. This
corresponds to implicit communication between tasks, i.e. tasks require input
just when they start and provide output when finished. To keep software behavior
deterministic, we assume acylic task graphs. Consequently, task dependencies
can be described by directed acyclic graphs (DAG). We define the set of source
respectively sink nodes as

source = {τi ∈ Γ | 6 ∃τj ∈ Γ : τj ≺ τi}, (2)

sink = {τi ∈ Γ | 6 ∃τj ∈ Γ : τi ≺ τj}. (3)

While tasks τi ∈ source make progress as soon as they are scheduled, tasks with
predecessors (τ ∈ Γ\source) can only progress when required input has been
delivered. Using hypervisor-based virtualization, task set Γ is mapped to a set
of virtual machines (VM)

Υ = {υk = (γk, σk) | 1 ≤ j ≤ m} (4)

where VM υk is given by a task set γk ⊂ Γ and a scheduling σk. In general, σk
can be an online or offline scheduling. In this paper, however, we assume offline
singlecore scheduler running within VMs, i.e. σk represents a fix order how tasks
τi ∈ γk are scheduled. We denote worst case start time of task instance τij
scheduled by σk with σsk(τij) and its worst case finishing time with σfk (τij).

The hypervisor scheduler is a fix cyclic schedule, i.e. VMs are scheduled
by means of time partitions to keep temporal isolation. Each time partition

Hierarchical Multicore-Scheduling for Virtualization 5

represents a time interval Ih = [ah, ah + lh[defined by its start time ah and
length (duration) lh. A VM υk mapped to a time partition Ih will be scheduled
at time ah for lh time units. During this time, VM υk can progress according to
its schedule σk. The hypervisor schedule finally provides for each core a set of
time partitions where each partition Ih is associated to a dedicated VM υk. We
note this association by Iυkh .

4 Hierarchical Scheduling with Precedence Constraints

Hierarchical scheduling comprises scheduling of schedules and thus introduces
different levels of scheduling. We consider hierarchical scheduling for hypervisor-
based virtualization that implies two levels: Global scheduling of VMs by hyper-
visor and local scheduling of tasks within each VM. We restrict local schedulers
to offline singlecore schedules, i.e. execution order of tasks is fix within each VM.
This restriction simplifies handling a-priori knowledge of local schedules that we
require to cover full virtualization.

The main idea of our approach is to combine knowledge of local schedulers’
task execution order with a-priori knowledge of tasks’ WCETs and dependencies
to compute worst case time partitions (WCTP) for VMs. That is, we calculate
worst case VM execution time required to guarantee that a dedicated task τ has
finished (cf. Sect. 4.2). In Section 4.3, we schedule these time partitions, which
represent activation slots of the corresponding VMs, on a multicore system.
In case of success, assigning execution time to VMs according to the resulting
schedule ensures that task dependencies as well as tasks’ deadlines are met.

4.1 Necessary Condition for Schedulability

To our best knowledge, literature provides no schedulability test that is necces-
sary as well as sufficient for periodic tasks with precedence constraints on mul-
ticore systems. For multicore scheduling, there are also no approaches known
that convert precedence constraints to real-time constraints – as proposed by
Chetto et al. [2] for singlecore scheduling. This makes transferring results of
multicore scheduling theory from independent to dependent task sets challeng-
ing. However, some results from multicore scheduling theory of independent tasks
can be transferred to task sets with precedence contraints at least as necessary
conditions. For instance, a trivial fact from scheduling theory is that a task set
Γ with computation demand higher than computation supply provided by some
hardware with p cores is not schedulable. Consequently, for multicore hardware
with p identical cores, utilization of feasible task set Γ cannot be higher than
available number of cores, i.e.

n∑
i=1

Ci
Ti
≤ p (5)

Although Eq. 5 is just a necessary condition, it allows to exclude at least some
non-feasible task sets.

6 Jan Jatzkowski, Marcio Kreutz, and Achim Rettberg

4.2 Decomposition of Local Schedules

Here, we consider local schedules that result from offline singlecore scheduling.
Precedence constraints of tasks which are mapped to the same VM are solved
by the corresponding local scheduler:

∀ τi, τj ∈ υk : τi ≺ τj =⇒ σfk (τil) ≤ σsk(τjl) ∀l ∈ N (6)

Hence, two challenges remain to be solved by hypervisor during VM scheduling:
it has to schedule VMs such that (i) deadlines of tasks running within VMs are
met and (ii) dependencies between tasks hosted by different VMs are taken into
account. For this purpose, we decompose local schedules of VMs based on

1. deadlines of tasks that are sink nodes of dependency graphs (τ ∈ sink)
2. release times of tasks that are source nodes of dependency graphs

(τ ∈ source)
3. dependencies between tasks that are hosted by different VMs

A first step towards enabling hypervisor to keep deadlines of tasks is done by
splitting local schedules at worst case finishing time of sink nodes τ ∈ sink. This
eases handling of different periods within task set Γ . Since execution order of
tasks is static within a local schedule σ, fulfilling an absolute deadline d requires
to run each local schedule until all task instances with absolute deadline d are
finished. Therefore, we split local schedule σ at worst case finishing time of a sink
node that is scheduled by σ last amongst all other sink nodes of equal absolute
deadline:

max
{
σf (τij) | τi ∈ sink, dij

}
j ∈ N (7)

Note, that each resulting fragment of a local schedule is associated with the
earliest absolute deadline d of all its tasks.

Hypervisor must also consider release time of task instances because VMs
with offline schedules cannot progress as long as the currently scheduled task is
not ready. To avoid that hypervisor schedules VMs that cannot progress because
of unrelased tasks, we apply another decomposition step onto local schedules
based on release times. We split local schedule σ at the beginning of a source
node that is scheduled first amongst all other source nodes of equal release time
by σ:

min {σs(τij) | τi ∈ source, rij} j ∈ N (8)

Our last decomposition step is based on precedence constraints of tasks
hosted by different VMs. As tasks with precedence constraints are just released
when all predecessors have finished execution, we split local schedules based on
inter-VM dependencies as follows: if a task τ allocated to VM υk has predeces-
sors hosted by another VM υl, l 6= k, we just split schedule σk at beginning of
τ .

The result of the described decomposition is a totally ordered set Φk of
scheduling fragments ϕh for each VM υk. The order within Φk is such that
composing all scheduling fragments ϕh ∈ Φk w.r.t. this order results in the orig-
inal local singlecore schedule σk. Finally, we compute worst case time partitions

Hierarchical Multicore-Scheduling for Virtualization 7

(WCTP) based on these scheduling fragments and WCETs. For each local sched-
ule fragment ϕh, we sum up WCET of task instances covered by this fragment
and define a time partition Ih of this length. As this time partition is associated
with the VM that hosts these task instances, we note:

lυkh =
∑

τij∈ϕh

Ci ∀ϕh ∈ Φk. (9)

4.3 Multicore Scheduling of Time Partitions

Our approach for hierarchical multicore scheduling is based on time partitions Ih
that were introduced in Sect. 3. While length of time partitions is set according
to the WCTP resulting from decomposition of local schedules (cf. Eq. 9), starting
time ah of time partitions as well as a core must be determined by hypervisor
scheduler. So, the challenge addressed by our multicore scheduling approach is
to allocate time partitions Iυkh to cores Cj and set their starting time aυkh such
that all precedence constraints are met and tasks finish before their deadlines
even in worst case.

We have to make scheduling decisions each time that a scheduling fragment
is released or finished. As we decomposed local schedules based on precedence
constraints, finishing one scheduling fragment usually implies that one or more
other scheduling fragments were released during this execution. Therefore, we
also make scheduling decisions when worst case finishing of a task τi ∈ γl with
successor task τj hosted by another VM is passed. However, we just need to
consider worst case finishing of the task τi ∈ γl that is scheduled by υl last
amongst all other predecessors of τ . Keeping order of local schedules guarantees
that all other predecessors hosted by VM υl are then finished, too.

As multicore decisions are not only based on deadlines but have to consider
dependencies as well, we define two sets of scheduling fragments that are updated
at each scheduling decision:

R ⊂
m⋃
k=1

Φk, N ⊂
m⋃
k=1

Φk (10)

R covers those scheduling fragments ϕVMk

h that are ready, i.e. predecessors re-

quired to execute ϕVMk

h are finished and ϕVMk

h is due according to local schedule
σk. In fact, R is similar to a ready queue known from common task scheduling.
Analogous, N covers those scheduling fragments ϕVMk

h that are next to become
ready w.r.t. order of local schedule. Both,R and N , contain at most one schedul-
ing fragment ϕυkh of a VM υk. Scheduling decisions are based on the following
rules with decreasing priority:

1. Schedule the fragment ϕh ∈ R with earliest deadline (EDF)
Note: Here, we use deadlines associated to scheduling fragments during first
decomposition step (cf. 4.2)

2. Schedule the fragment that has most successor fragments ϕ ∈ N
While first scheduling rule aims at keeping deadlines, second rule addresses de-
pendencies between different VMs.

8 Jan Jatzkowski, Marcio Kreutz, and Achim Rettberg

EPS ACC TC

τ1

τ3τ4

τ5τ6

τ2 τ9

τ11

τ13

τ7

τ10

τ12

τ8

τ14

τ15

τ20

τ22

τ16τ17τ18

τ19

τ23 τ24

τ21

Fig. 1. Three application examples from automotive domain [8]: electric power steering
(EPS), adaptive cruise control (ACC), and traction control (TC).

5 Application Example

We will use an application example to demonstrate how our approach presented
in Sect. 4 works. Based on the problem definition given in Sect. 1.2, we apply our
approach to a minimal system that consists of p = 2 cores and m = 3 VMs. The
task set Γ deployed to VMs is taken from Kandasamy et al. [8]. It covers three
applications from automotive domain: Adaptive cruise control (ACC), traction
control (TC), and electric power steering (EPS). Figure 1 shows the correspond-
ing direct acyclic task dependency graphs. In Table 1, we provide original task
parameters of these applications given in [8]. In addition, we adapted WCETs of
tasks by some reduction. This represents a scenario where singlecore applications
are consolidated on a multicore hardware with increased computational power
related to original singlecore hardware.

Table 1. Task parameters (original WCET COi , adapted WCET Ci, period Ti, and
relative deadline Di) of example applications shown in Fig. 1, cf. [8].

EPS System ACC System

Task τi τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13 τ14
COi 150 175 300 250 150 100 300 150 175 300 250 200 150 200

Ci 75 90 150 125 75 50 150 75 90 150 125 100 75 100

Ti = Di 1500 1500 1500 1500 1500 1500 3000 3000 3000 3000 3000 3000 3000 3000

TC System

Task τi τ15 τ16 τ17 τ18 τ19 τ20 τ21 τ22 τ23 τ24
COi 200 200 200 200 150 300 175 400 150 200

Ci 100 100 100 100 75 150 90 200 75 100

Ti = Di 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000

Hierarchical Multicore-Scheduling for Virtualization 9

0 500 1000 1500 2000 2500
Time

σ1

σ2

σ3

τ1 τ3 τ5 τ7 τ9 τ12 τ14 τ1 τ3 τ14 τ5

τ2 τ4 τ6 τ18 τ19 τ20 τ22 τ2 τ22 τ4 τ6

τ15 τ16 τ17 τ8 τ21 τ10 τ11 τ13 τ23 τ24

Fig. 2. Local schedules resulting from deployment of example applications to three
separate singlecore schedules σi, 1 ≤ i ≤ 3.

Task set Γ is deployed to VMs according to an approach presented by Klobe-
danz et al.([10], “Algorithm 1: Initial Mapping”). This deployment originally
addresses singlecore ECU-networks and thus fits to the indicated scenario of
consolidating singlecore systems on a multicore platform. Figure 2 shows the
resulting local offline schedules based on original WCETs. These local schedules
define execution order of tasks within VMs.

5.1 Decomposition of Local Schedules

Now, we use schedule σ2 to demonstrate decomposition of local schedules. VM
υ2 hosts tasks of two example applications: EPS and TC. Tasks of EPS have
deadline D = 1500 while deadline of TC-tasks is D = 3000. Our first decom-
position step – splitting based on deadlines – therefore splits schedule σ2 after
finishing of τ6,1 and associates first fragment with absolute deadline d = 1500
and second fragment with d = 3000.

Next decomposition step – splitting based on release times – is driven by
second release of EPS system at host time t = 1500. According to our description
in Sect. 4.2, we split σ2 before beginning of τ2,2. Thus, second fragment resulting
from first step is splitted again. Note, that both fragments resulting from this
step keep associated with absolute deadline d = 3000.

Last decomposition step – splitting based on precedence constraints – requires
to consider dependencies to other VMs. In particular, we split σ2 at the beginning
of tasks that require input from other VMs. In case of σ2, this results in splits
at the beginning of τ4,1, τ20,1, and τ22,1.

Applying these decomposition steps to the other local schedules of our ap-
plication scenario results in the scheduling fragments depicted in Fig. 3. Rect-
angles clustering tasks correspond to the results of our decomposition steps:
outmost rectangles result from deadline-based decomposition, middle rectangles
from splitting based on release times, and innermost rectangles result from split-
ting based on dependencies.

Next, we compute length of these scheduling fragments using Eq. 9. Due
to adaptation of tasks’ WCETs, handling of preemptions – e.g., task τ14,1 in
schedule VMschedule1 – is challenging. Here, we just split WCET to execution

10 Jan Jatzkowski, Marcio Kreutz, and Achim Rettberg

d=1500

r=0

φ1υ1

d=3000

r=0

φ2υ1 φ3υ1

r=1500

φ4υ1

d=1500

r=0

φ1υ2 φ2υ2

d=3000

r=0

φ3υ2 φ4υ2 φ5υ2

r=1500

φ6υ2 φ7υ2

d=3000

r=0

φ1υ3 φ2υ3 φ3υ3 φ4υ3

τ1,1 τ3,1 τ5,1 τ7,1 τ9,1 τ12,1 τ14,1 τ1,2 τ3,2 τ14,1 τ5,2

τ2,1 τ4,1 τ6,1 τ18,1 τ19,1 τ20,1 τ22,1 τ2,2 τ22,1 τ4,2 τ6,2

τ15,1 τ16,1 τ17,1 τ8,1 τ21,1 τ10,1 τ11,1 τ13,1 τ23,1 τ24,1

Fig. 3. Scheduling fragments resulting from decomposition of local schedules
σi, 1 ≤ i ≤ 3.

Table 2. Worst case time partition length for local scheduling fragments.

ϕυ11 ϕυ12 ϕυ13 ϕυ14 ϕυ21 ϕυ22 ϕυ23 ϕυ24 ϕυ25 ϕυ26 ϕυ27 ϕυ31 ϕυ32 ϕυ33 ϕυ34
l
υk
h 300 240 125 375 90 175 175 150 160 130 175 465 150 200 175

parts of τ14,1 in the same proportion as it was in case of original WCET. Results
are summerized in Tab. 2.

5.2 Multicore Scheduling by Time Partitions

Having local schedules decomposed into fragments, we now can allocate time
partitions to dedicated cores of a multicore platform. In this example, we consider
m = 3 VMs given by example applications introduced in this Section and p = 2
cores. Table 3 shows for each point in time – when the hypervisor can make
scheduling decisions – why scheduling point occurs, what the current host time
of hypervisor system is, which scheduling fragments are within sets R and N ,
and which scheduling fragments are scheduled next on cores C1 and C2. For
instance, applying rules defined in Sect. 4.3, hypervisor scheduling makes first
decision based on deadlines of scheduling fragments. That is, ϕυ11 and ϕυ21 get
higher priority than ϕυ31 .

Another interesting circumstance for making scheduling decision is at line 7
where “reason for scheduling” is ϕυ12 . This is the first time, R does not contain
scheduling fragments of all VMs because ϕυ13 ∈ N requires input from ϕυ32 that
in worst case has not finished yet. Therefore, ϕυ13 ∈ N is not passed to R and
thus is not considered by hypervisor. Finally, mapping of scheduling fragments
to cores is used to define time partitions Ih resulting, e.g., for core C1 in

Iυ11 = [0, 540[(11)

Hierarchical Multicore-Scheduling for Virtualization 11

Table 3. Offline multicore scheduling of time partitions (scheduling fragments).

Reason for
scheduling

Host time R N Core C1 Core C2

0 ϕυ11 , ϕυ21 , ϕυ31 ϕυ12 , ϕυ22 , ϕυ32 ϕυ11 ϕυ21
σf1 (τ1,1) 75 ϕυ11 , ϕυ21 , ϕυ31 ϕυ12 , ϕυ22 , ϕυ32 ϕυ11 ϕυ21
ϕυ21 90 ϕυ11 , ϕυ22 , ϕυ31 ϕυ12 , ϕυ23 , ϕυ32 ϕυ11 ϕυ22
ϕυ22 265 ϕυ11 , ϕυ23 , ϕυ31 ϕυ12 , ϕυ24 , ϕυ32 ϕυ11 ϕυ31
ϕυ11 300 ϕυ12 , ϕυ23 , ϕυ31 ϕυ13 , ϕυ24 , ϕυ32 ϕυ12 ϕυ31
σf1 (τ7,1) 450 ϕυ12 , ϕυ23 , ϕυ31 ϕυ13 , ϕυ24 , ϕυ32 ϕυ12 ϕυ31
ϕυ12 540 ϕυ23 , ϕυ31 ϕυ13 , ϕυ24 , ϕυ32 ϕυ23 ϕυ31
σf3 (τ17,1) 565 ϕυ23 , ϕυ31 ϕυ13 , ϕυ24 , ϕυ32 ϕυ23 ϕυ31
ϕυ23 715 ϕυ24 , ϕυ31 ϕυ13 , ϕυ25 , ϕυ32 ϕυ24 ϕυ31
ϕυ31 730 ϕυ24 , ϕυ32 ϕυ13 , ϕυ25 , ϕυ33 ϕυ24 ϕυ32
ϕυ24 865 ϕυ25 , ϕυ32 ϕυ13 , ϕυ33 ϕυ25 ϕυ32
ϕυ32 880 ϕυ13 , ϕυ25 , ϕυ33 ϕυ34 ϕυ25 ϕυ33
ϕυ25 1025 ϕυ13 , ϕυ33 ϕυ34 ϕυ13 ϕυ33
ϕυ33 1080 ϕυ13 , ϕυ34 ϕυ13 ϕυ34
ϕυ13 1150 ϕυ34 ϕυ34
ϕυ34 1255

σs1(τ1,2) 1500 ϕυ14 , ϕυ26 ϕυ27 ϕυ14 ϕυ26
σf1 (τ1,2) 1575 ϕυ14 , ϕυ26 ϕυ27 ϕυ14 ϕυ26
ϕυ26 1630 ϕυ14 , ϕυ27 ϕυ14 ϕυ27
ϕυ27 1805 ϕυ14 ϕυ14
ϕυ14 1875

6 Conclusion

In this paper, we presented an approach for hierarchical scheduling of periodic
dependent singelcore real-time systems on a multicore hardware. We introduced
a system model that covers tasks with precedence constraints as well as VMs that
host subsets of these tasks. To schedule the set of VMs on a multicore hardware
with full hypervisor-based virtualization, we first proposed a concept to decom-
pose local singlecore schedules into fragments based on deadlines, release times
and inter-VM dependencies. Afterwards, we presented our approach for offline
scheduling of these fragments on a multicore platform. Finally, we applied our
approach to an automotive use case from literature to demonstrate functional-
ity of the proposed concept. Future work aims at taking overhead induced by
virualization as well as communication costs between VMs into account.

Acknowledgment

This work was partly funded by German Ministry of Education and Research
(BMBF) through project “it’s OWL Intelligente Technische Systeme OstWest-
falenLippe” (02PQ1021) and ITEA2 project AMALTHEA4public (01IS14029J).

12 Jan Jatzkowski, Marcio Kreutz, and Achim Rettberg

References

1. Baruah, S., Bertogna, M., Buttazzo, G.: Multiprocessor Scheduling for Real-Time
Systems. Springer (2015)

2. Chetto, H., Silly, M., Bouchentouf, T.: Dynamic scheduling of real-time tasks under
precedence constraints. Real-Time Systems 2(3), 181–194 (1990)

3. Cho, H., Ravindran, B., Jensen, E.: An optimal real-time scheduling algorithm for
multiprocessors. In: 27th IEEE International Real-Time Systems Symposium. pp.
101–110 (2006)

4. Crespo, A., Ripoll, I., Masmano, M.: Partitioned embedded architecture based on
hypervisor: The xtratum approach. In: European Dependable Computing Confer-
ence (EDCC). pp. 67–72 (2010)

5. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv. 43(4), 35:1–35:44 (Oct 2011)

6. Forget, J., Boniol, F., Grolleau, E., Lesens, D., Pagetti, C.: Scheduling dependent
periodic tasks without synchronization mechanisms. In: 16th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). pp. 301–310 (2010)

7. Groesbrink, S., Almeida, L.: A criticality-aware mapping of real-time virtual ma-
chines to multi-core processors. In: IEEE Emerging Technology and Factory Au-
tomation (ETFA). pp. 1–9 (2014)

8. Kandasamy, N., Hayes, J., Murray, B.: Dependable communication synthesis for
distributed embedded systems. In: Anderson, S., Felici, M., Littlewood, B. (eds.)
Computer Safety, Reliability, and Security, Lecture Notes in Computer Science,
vol. 2788, pp. 275–288. Springer Berlin Heidelberg (2003)

9. Kleidermacher, D.: System virtualization in multicore systems. In: Moyer, B. (ed.)
Real World Multicore Embedded Systems – A Practical Approach, pp. 227–267.
Elsevier (2013)

10. Klobedanz, K., Jatzkowski, J., Rettberg, A., Mueller, W.: Fault-tolerant deploy-
ment of real-time software in autosar ecu networks. In: Schirner, G., Götz, M.,
Rettberg, A., Zanella, M., Rammig, F. (eds.) Embedded Systems: Design, Analysis
and Verification, IFIP Advances in Information and Communication Technology,
vol. 403, pp. 238–249. Springer Berlin Heidelberg (2013)

11. Lee, S.K.: On-line multiprocessor scheduling algorithms for real-time tasks. In:
Proceedings of TENCON ’94. IEEE Region 10’s Ninth Annual International Con-
ference. Theme: Frontiers of Computer Technology. pp. 607–611 (1994)

12. Main, C.: Virtualization on multicore for industrial real-time operating systems
[from mind to market]. Industrial Electronics Magazine, IEEE 4(3), 4–6 (2010)

13. Masmano, M., Ripoll, I., Crespo, A.: Xtratum: A hypervisor for safety critical
embedded systems. In: Proceedings of 11th Real-Time Linux Workshop. pp. 263–
272 (2009)

14. Masrur, A., Drossler, S., Pfeuffer, T., Chakraborty, S.: Vm-based real-time services
for automotive control applications. In: IEEE 16th International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA). pp.
218–223 (2010)

15. Rönngren, S., Shirazi, B.: Static multiprocessor scheduling of periodic real-time
tasks with precedence constraints and communication costs. In: Proceedings of 28th
Hawaii International Conference on System Sciences. vol. 2, pp. 143–152 (1995)

16. Xi, S., Xu, M., Lu, C., Phan, L., Gill, C., Sokolsky, O., Lee, I.: Real-time multi-
core virtual machine scheduling in xen. In: International Conference on Embedded
Software (EMSOFT). pp. 1–10 (2014)

