Skip to main content

A Decidable Multi-agent Logic with Iterations of Upper and Lower Probability Operators

  • Conference paper
  • First Online:
Foundations of Information and Knowledge Systems (FoIKS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10833))

Abstract

We present a propositional logic for reasoning about higher-order upper and lower probabilities. The main technical result is the proof of decidability of the introduced logical system. We also show that the axiomatization for the corresponding logic without iterations of operators, which we developed in our previous work, is also complete for the new class of models presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a discussion on higher-order probabilities we refer the reader to [10].

  2. 2.

    The notation is motivated by the logic \(\mathsf {LUPP}\) from [34], where LUP stands for “lower and upper probability”, while the second P indicates that the logic is propositional. We add I to denote iteration of upper and lower operators.

References

  1. Abadi, M., Halpern, J.Y.: Decidability and expressiveness for first-order logics of probability. Inf. Comput. 112, 1–36 (1994)

    Article  MathSciNet  Google Scholar 

  2. Anger, B., Lembcke, J.: Infinitely subadditive capacities as upper envelopes of measures. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 68, 403–414 (1985)

    Article  MathSciNet  Google Scholar 

  3. Cintula, P., Noguera, C.: Modal logics of uncertainty with two-layer syntax: a general completeness theorem. In: Kohlenbach, U., Barceló, P., de Queiroz, R. (eds.) WoLLIC 2014. LNCS, vol. 8652, pp. 124–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44145-9_9

    Chapter  Google Scholar 

  4. de Cooman, G., Hermans, F.: Imprecise probability trees: bridging two theories of imprecise probability. Artif. Intell. 172(11), 1400–1427 (2008)

    Article  MathSciNet  Google Scholar 

  5. Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)

    Book  Google Scholar 

  6. Fagin, R., Halpern, J., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87(1–2), 78–128 (1990)

    Article  MathSciNet  Google Scholar 

  7. Fagin, R., Halpern, J.: Reasoning about knowledge and probability. J. ACM 41(2), 340–367 (1994)

    Article  MathSciNet  Google Scholar 

  8. Fattorosi-Barnaba, M., Amati, G.: Modal operators with probabilistic interpretations I. Stud. Log. 46(4), 383–393 (1989)

    Article  MathSciNet  Google Scholar 

  9. Frish, A., Haddawy, P.: Anytime deduction for probabilistic logic. Artif. Intell. 69, 93–122 (1994)

    Article  MathSciNet  Google Scholar 

  10. Gaifman, H., Haddawy, P.: A theory of higher order probabilities. In: Skyrms, B., Harper, W.L. (eds.) Causation, Chance and Credence. Proceedings of the Irvine Conference on Probability and Causation, vol. 1, pp. 191–219. Springer, Dordrecht (1988)

    Chapter  Google Scholar 

  11. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46, 311–350 (1990)

    Article  MathSciNet  Google Scholar 

  12. Halpern, J.Y., Pucella, R.: A logic for reasoning about evidence. J. Artif. Intell. Res. 1, 1–34 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Halpern, J.Y., Pucella, R.: A logic for reasoning about upper probabilities. J. Artif. Intell. Res. 17, 57–81 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Huber, P.J.: Robust Statistics. Wiley, New York (1981)

    Book  Google Scholar 

  15. Hughes, G.E., Cresswell, M.J.: A Companion to Modal Logic. Methuen, London (1984)

    MATH  Google Scholar 

  16. Heifetz, A., Mongin, P.: Probability logic for type spaces. Games Econ. Behav. 35, 31–53 (2001)

    Article  MathSciNet  Google Scholar 

  17. Ikodinović, N., Ognjanović, Z., Rašković, M., Perović, A.: Hierarchies of probabilistic logics. Int. J. Approx. Reason. 55(9), 1830–1842 (2014)

    Article  MathSciNet  Google Scholar 

  18. Ikodinović, N., Rašković, M., Marković, Z., Ognjanović, Z.: A first-order probabilistic logic with approximate conditional probabilities. Log. J. IGPL 22(4), 539–564 (2014)

    Article  MathSciNet  Google Scholar 

  19. Ilić-Stepić, A., Ognjanović, Z.: Complex valued probability logics. Publications de l’Institut Mathematique, N.s. tome 95(109), 73–86 (2014)

    Article  MathSciNet  Google Scholar 

  20. Ilić-Stepić, A., Ognjanović, Z., Ikodinović, N.: Conditional p-adic probability logic. Int. J. Approx. Reason. 55(9), 1843–1865 (2014)

    Article  MathSciNet  Google Scholar 

  21. Kokkinis, I.: The complexity of satisfiability in non-iterated and iterated probabilistic logics. arXiv:1712.00810v1

  22. Kyburg, H.E.: Probability and the Logic of Rational Belief. Wesleyan University Press, Middletown (1961)

    Google Scholar 

  23. Levi, I.: The Enterprise of Knowledge. MIT Press, London (1980)

    Google Scholar 

  24. Lorentz, G.G.: Multiply subadditive functions. Can. J. Math. 4(4), 455–462 (1952)

    Article  MathSciNet  Google Scholar 

  25. Meier, M.: An infinitary probability logic for type spaces. Isr. J. Math. 192(1), 1–58 (2012)

    Article  MathSciNet  Google Scholar 

  26. Miranda, E.: A survey of the theory of coherent lower previsions. Int. J. Approx. Reas. 48(2), 628–658 (2008)

    Article  MathSciNet  Google Scholar 

  27. Milošević, M., Ognjanović, Z.: A first-order conditional probability logic. Log. J. IGPL 20(1), 235–253 (2012)

    Article  MathSciNet  Google Scholar 

  28. Nilsson, N.: Probabilistic logic. Artif. Intell. 28, 71–87 (1986)

    Article  MathSciNet  Google Scholar 

  29. Ognjanović, Z., Rašković, M.: Some probability logics with new types of probability operators. J. Log. Comput. 9(2), 181–195 (1999)

    Article  MathSciNet  Google Scholar 

  30. Ognjanović, Z., Rašković, M.: Some first-order probability logics. Theoret. Comput. Sci. 247(1–2), 191–212 (2000)

    Article  MathSciNet  Google Scholar 

  31. Ognjanović, Z., Rasković, M., Marković, Z.: Probability Logics - Probability-Based Formalization of Uncertain Reasoning. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-47012-2

    Book  MATH  Google Scholar 

  32. Rašković, M., Marković, Z., Ognjanović, Z.: A logic with approximate conditional probabilities that can model default reasoning. Int. J. Approx. Reason. 49(1), 52–66 (2008)

    Article  MathSciNet  Google Scholar 

  33. Savić, N., Doder, D., Ognjanović, Z.: Logics with lower and upper probability operators. Int. J. Approx. Reason. 88, 148–168 (2017)

    Article  MathSciNet  Google Scholar 

  34. Savić, N., Doder, D., Ognjanović, Z.: A first-order logic for reasoning about higher-order upper and lower probabilities. In: Antonucci, A., Cholvy, L., Papini, O. (eds.) ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 491–500. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61581-3_44

    Chapter  MATH  Google Scholar 

  35. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  36. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)

    Book  Google Scholar 

  37. Walley, P.: Towards a unified theory of imprecise probability. Int. J. Approx. Reason. 24(2–3), 125–148 (2000)

    Article  MathSciNet  Google Scholar 

  38. van der Hoek, W.: Some consideration on the logics \(P_{F}D\). J. Appl. Non-Class. Logics 7(3), 287–307 (1997)

    Article  Google Scholar 

  39. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the SNSF project 200021\(\_\)165549 Justifications and non-classical reasoning, by the Serbian Ministry of Education and Science through projects ON174026, III44006 and ON174008, and by ANR-11-LABX-0040-CIMI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Savić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doder, D., Savić, N., Ognjanović, Z. (2018). A Decidable Multi-agent Logic with Iterations of Upper and Lower Probability Operators. In: Ferrarotti, F., Woltran, S. (eds) Foundations of Information and Knowledge Systems. FoIKS 2018. Lecture Notes in Computer Science(), vol 10833. Springer, Cham. https://doi.org/10.1007/978-3-319-90050-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90050-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90049-0

  • Online ISBN: 978-3-319-90050-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics