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Abstract. A correspondence between database tuples as causes for query an-

swers in databases and tuple-based repairs of inconsistent databases with respect

to denial constraints has already been established. In this work, answer-set pro-

grams that specify repairs of databases are used as a basis for solving compu-

tational and reasoning problems about causes. Here, causes are also introduced

at the attribute level by appealing to a both null-based and attribute-based repair

semantics. The corresponding repair programs are presented, and they are used

as a basis for computation and reasoning about attribute-level causes.

1 Introduction

Causality appears at the foundations of many scientific disciplines. In data and knowl-

edge management, the need to represent and compute causes may be related to some

form of uncertainty about the information at hand. More specifically in data manage-

ment, we need to understand why certain results, e.g. query answers, are obtained or

not. Or why certain natural semantic conditions are not satisfied. These tasks become

more prominent and difficult when dealing with large volumes of data. One would ex-

pect the database to provide explanations, to understand, explore and make sense of the

data, or to reconsider queries and integrity constraints (ICs). Causes for data phenomena

can be seen as a kind of explanations.

Seminal work on causality in databases introduced in [32], and building on work

on causality as found in artificial intelligence, appeals to the notions of counterfactuals,

interventions and structural models [28]. Actually, [32] introduces the notions of: (a) a

database tuple as an actual cause for a query result, (b) a contingency set for a cause, as

a set of tuples that must accompany the cause for it to be such, and (c) the responsibility

of a cause as a numerical measure of its strength (building on [19]).

Most of our research on causality in databases has been motivated by an attempt to

understand causality from different angles of data and knowledge management. In [11],

precise reductions between causality in databases, database repairs, and consistency-

based diagnosis were established; and the relationships were investigated and exploited.

In [12], causality in databases was related to view-based database updates and abductive

diagnosis. These are all interesting and fruitful connections among several forms of

non-monotonic reasoning; each of them reflecting some form of uncertainty about the
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information at hand. In the case of database repairs [8], it is about the uncertainty due

the non-satisfaction of given ICs, which is represented by presence of possibly multiple

intended repairs of the inconsistent database.

Database repairs can be specified by means of answer-set programs (or disjunc-

tive logic programs with stable model semantics) [15, 27, 26], the so-called repair-

programs. Cf. [18, 8] for details on repair-programs and additional references. In this

work we exploit the reduction of database causality to database repairs established in

[11], by taking advantage of repair programs for specifying and computing causes,

their contingency sets, and their responsibility degrees. We show that that the result-

ing causality-programs have the necessary and sufficient expressive power to capture

and compute not only causes, which can be done with less expressive programs [32], but

especially minimal contingency sets and responsibilities (which provably require higher

expressive power). Causality programs can also be used for reasoning about causes.

As a finer-granularity alternative to tuple-based causes, we introduce a particular

form of attribute-based causes, namely null-based causes, capturing the intuition that

an attribute value may be the cause for a query to become true in the database. This is

done by profiting from an abstract reformulation of the above mentioned relationship

between tuple-based causes and tuple-based repairs. More specifically, we appeal to

null-based repairs that are a particular kind of attribute-based repairs, according to

which the inconsistencies of a database are solved by minimally replacing attribute

values in tuples by NULL, the null-value of SQL databases with its SQL semantics.

We also define the corresponding notions of contingency set and responsibility. We

introduce repair (answer-set) programs for null-based repairs, so that the newly defined

causes can be computed and reasoned about.

Finally, we briefly show how causality-programs can be adapted to give an account

of other forms of causality in databases that are connected to other possible repair-

semantics for databases.

This paper is structured as follows. Section 2 provides background material on re-

lational databases, database causality, database repairs, and answer-set programming

(ASP). Section 3 establishes correspondences between causes and repairs, and intro-

duces in particular, null-based causes and repairs. Section 4 presents repair-programs

to be used for tuple-based causality computation and reasoning.1 Section 5 presents

answer-set programs for null-based repairs and null-based causes. Finally, Section 6, in

more speculative terms, contains a discussion about research subjects that would nat-

urally extend this work. In order to better convey our main ideas and constructs, we

present things by means of representative examples. The general formulation is left for

the extended version of this paper.

2 Background

2.1 Relational databases

A relational schemaR contains a domain, C, of constants and a set, P , of predicates of

finite arities. R gives rise to a language L(R) of first-order (FO) predicate logic with

1 This section is a revised version of the extended abstract [13]
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built-in equality, =. Variables are usually denoted by x, y, z, ..., and sequences thereof

by x̄, ...; and constants with a, b, c, ..., and sequences thereof by ā, c̄, . . .. An atom is

of the form P (t1, . . . , tn), with n-ary P ∈ P and t1, . . . , tn terms, i.e. constants, or

variables. An atom is ground, aka. a tuple, if it contains no variables. Tuples are denoted

with τ, τ1, . . .. A database instance,D, forR is a finite set of ground atoms; and it serves

as a (Herbrand) interpretation structure for language L(R) [30] (cf. also Section 2.4).

A conjunctive query (CQ) is a FO formula of the form Q(x̄) : ∃ȳ (P1(x̄1) ∧ · · · ∧
Pm(x̄m)), with Pi ∈ P , and (distinct) free variables x̄ := (

⋃
x̄i)r ȳ. If Q has n (free)

variables, c̄ ∈ Cn is an answer to Q from D if D |= Q[c̄], i.e. Q[c̄] is true in D when

the variables in x̄ are componentwise replaced by the values in c̄.Q(D) denotes the set

of answers to Q from D. Q is a boolean conjunctive query (BCQ) when x̄ is empty;

and when it is true in D,Q(D) := {true}. Otherwise, if it is false,Q(D) := ∅. A view

is predicate defined by means of a query, whose contents can be computed, if desired,

by computing all the answers to the defining query.

In this work we consider integrity constraints (ICs), i.e. sentences of L(R), that

are: (a) denial constraints (DCs), i.e. of the form κ : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m))
(sometimes denoted ← P1(x̄1), . . . , Pm(x̄m)), where Pi ∈ P , and x̄ =

⋃
x̄i; and (b)

functional dependencies (FDs), i.e. of the form ϕ : ¬∃x̄(P (v̄, ȳ1, z1) ∧ P (v̄, ȳ2, z2) ∧
z1 6= z2). Here, x̄ = ȳ1∪ȳ2∪v̄∪{z1, z2}, and z1 6= z2 is an abbreviation for¬z1 = z2.2

A key constraint (KC) is a conjunction of FDs:
∧k

j=1
¬∃x̄(P (v̄, ȳ1)∧P (v̄, ȳ2)∧y

j
1 6=

yj2), with k = |ȳ1| = |ȳ2|. A given schema may come with its set of ICs, and its

instances are expected to satisfy them. If an instance does not satisfy them, we say it is

inconsistent. In this work we concentrate on DCs, excluding, for example, inclusion or

tuple-generating dependencies of the form ∀x̄(ϕ(x̄)→ ∃ȳψ(x̄′, ȳ)), with x̄′ ⊆ x̄. See

[1] for more details and background material on relational databases.

2.2 Causality in databases

A notion of cause as an explanation for a query result was introduced in [32], as fol-

lows. For a relational instance D = Dn ∪Dx, where Dn and Dx denote the mutually

exclusive sets of endogenous and exogenous tuples, a tuple τ ∈ Dn is called a coun-

terfactual cause for a BCQ Q, if D |= Q and D r {τ} 6|= Q. Now, τ ∈ Dn is an

actual cause forQ if there exists Γ ⊆ Dn, called a contingency set for τ , such that τ is

a counterfactual cause forQ in D r Γ . This definition is based on [28].

The notion of responsibility reflects the relative degree of causality of a tuple for

a query result [32] (based on [19]). The responsibility of an actual cause τ for Q, is

ρ(τ) := 1

|Γ |+1
, where |Γ | is the size of a smallest contingency set for τ . If τ is not an

actual cause, ρ(τ) := 0. Intuitively, tuples with higher responsibility provide stronger

explanations.

The partition of the database into endogenous and exogenous tuples is because the

latter are somehow unquestioned, e.g. we trust them, or we may have very little control

on them, e.g. when obtained from an external, trustable and indisputable data source,

etc.; whereas the former are subject to experimentation and questioning, in particular,

2 The variables in the atoms do not have to occur in the indicated order, but their positions should

be in correspondence in the two atoms.
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about their role in query answering or violation of ICs. The partition is application

dependent, and we may not even have exogenous tuples, i.e. Dn = D. Actually, in

the following we will assume all the tuples in a database instance are endogenous.

(Cf. [11] for the general case, and Section 6 for additional discussions.) The notion of

cause as defined above can be applied to monotonic queries, i.e. whose sets of answers

may only grow when the database grows [11].3 In this work we concentrate only on

conjunctive queries, possibly with built-in comparisons, such as 6=.

Example 1. Consider the relational database D = {R(a4, a3), R(a2, a1), R(a3, a3),
S(a4), S(a2), S(a3)}, and the query Q : ∃x∃y(S(x) ∧R(x, y) ∧ S(y)). D satisfies

the query, i.e. D |= Q.

S(a3) is a counterfactual cause for Q: if S(a3) is removed from D, Q is no longer

true. So, it is an actual cause with empty contingency set; and its responsibility is 1.

R(a4, a3) is an actual cause for Q with contingency set {R(a3, a3)}: if R(a4, a3) is

removed from D, Q is still true, but further removing the contingent tuple R(a3, a3)
makes Q false. The responsibility of R(a4, a3) is 1

2
. R(a3, a3) and S(a4) are actual

causes, with responsibility 1

2
. �

2.3 Database repairs

We introduce the main ideas by means of an example. If only deletions and insertions

of tuples are admissible updates, the ICs we consider in this work can be enforced only

by deleting tuples from the database, not by inserting tuples (we consider updates of

attribute-values in Section 3.3). Cf. [8] for a survey on database repairs and consistent

query answering in databases.

Example 2. The database D = {P (a), P (e), Q(a, b), R(a, c)} is inconsistent with

respect to (w.r.t.) the (set of) denial constraints (DCs) κ1 : ¬∃x∃y(P (x) ∧ Q(x, y)),
and κ2 : ¬∃x∃y(P (x) ∧R(x, y)); that is, D 6|= {κ1, κ2}.

A subset-repair, in short an S-repair, of D w.r.t. the set of DCs is a ⊆-maximal

subset of D that is consistent, i.e. no proper superset is consistent. The following are S-

repairs:D1 = {P (e), Q(a, b), R(a, b)} andD2 = {P (e), P (a)}. A cardinality-repair,

in short a C-repair, of D w.r.t. the set of DCs is a maximum-cardinality, consistent

subset of D, i.e. no subset of D with larger cardinality is consistent. D1 is the only

C-repair. �

For an instanceD and a setΣ of DCs, the sets of S-repairs and C-repairs are denoted

with Srep(D,Σ) and Crep(D,Σ), resp.

2.4 Disjunctive answer-set programs

We consider disjunctive Datalog programs Π with stable model semantics [23], a par-

ticular class of answer-set programs (ASPs) [15]. They consist of a set E of ground

atoms, called the extensional database, and a finite number of rules of the form

A1 ∨ . . . An ← P1, . . . , Pm, not N1, . . . , not Nk, (1)

3 E.g. CQs, unions of CQs (UCQs), Datalog queries are monotonic, studied in [11, 12], resp.
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with 0 ≤ n,m, k, and the Ai, Pj , Ns are positive atoms. The terms in these atoms are

constants or variables. The variables in the Ai, Ns appear all among those in the Pj .

The constants in programΠ form the (finite) Herbrand universe U of the program.

The ground version of program Π , gr(Π), is obtained by instantiating the variables

in Π with all possible combinations of values from U . The Herbrand base, HB , of Π
consists of all the possible atomic sentences obtained by instantiating the predicates in

Π on U . A subset M of HB is a (Herbrand) model of Π if it contains E and satisfies

gr(Π), that is: For every ground ruleA1∨. . . An ← P1, . . . , Pm, not N1, . . . , not Nk

of gr(Π), if {P1, . . . , Pm} ⊆ M and {N1, . . . , Nk} ∩M = ∅, then {A1, . . . , An} ∩
M 6= ∅. M is a minimal model of Π if it is a model of Π , and no proper subset of M is

a model of Π . MM (Π) denotes the class of minimal models of Π .

Now, take S ⊆ HB(Π), and transform gr(Π) into a new, positive program gr(Π)↓
S (i.e. without not), as follows: Delete every ground instantiation of a rule (1) for

which {N1, . . . , Nk} ∩ S 6= ∅. Next, transform each remaining ground instantiation of

a rule (1) into A1 ∨ . . . An ← P1, . . . , Pm. By definition, S is a stable model of Π iff

S ∈ MM (gr(Π)↓S). A programΠ may have none, one or several stable models; and

each stable model is a minimal model (but not necessarily the other way around) [27].

3 Causes and Database Repairs

In this section we concentrate first on tuple-based causes as introduced in Section 2.2,

and establish a reduction to tuple-based database repairs. Next we provide an abstract

definition of cause on the basis of an abstract repair-semantics. Finally, we instantiate

the abstract semantics to define null-based causes from a particular, but natural and

practical notion of attribute-based repair.

3.1 Tuple-based causes from repairs

In [11] it was shown that causes (as represented by database tuples) for queries can be

obtained from database repairs. Consider the BCQ Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m))
that is (possibly unexpectedly) true in D: D |= Q. Actual causes for Q, their con-

tingency sets, and responsibilities can be obtained from database repairs. First, ¬Q is

logically equivalent to the DC:

κ(Q) : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)). (2)

So, if Q is true in D, D is inconsistent w.r.t. κ(Q), giving rise to repairs of D w.r.t.

κ(Q).
Next, we build differences, containing a tuple τ , between D and S- or C-repairs:

(a) Diff s(D,κ(Q), τ) = {D rD′ | D′ ∈ Srep(D,κ(Q)), τ ∈ (D rD′)}, (3)

(b) Diff c(D,κ(Q), τ) = {D rD′ | D′ ∈ Crep(D,κ(Q)), τ ∈ (D rD′)}. (4)

Proposition 1. [11] For an instanceD, a BCQQ, and its associated DC κ(Q), it holds:

(a) τ ∈ D is an actual cause forQ iff Diff s(D,κ(Q), τ) 6= ∅.
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(b) For each S-repair D′ with (DrD′) ∈ Diff s(D,κ(Q), τ), (Dr (D′ ∪ {τ})) is a

subset-minimal contingency set for τ .

(c) If Diff s(D κ(Q), τ) = ∅, then ρ(τ) = 0. Otherwise, ρ(τ) = 1

|s| , where s ∈

Diff
s(D, κ(Q), τ) and there is no s′ ∈ Diff

s(D,κ(Q), τ) with |s′| < |s|.
(d) τ ∈ D is a most responsible actual cause for Q iff Diff c(D,κ(Q), τ) 6= ∅. �

Example 3. (ex. 1 cont.) With the same instance D and query Q, we consider the

DC κ(Q): ¬∃x∃y(S(x) ∧ R(x, y) ∧ S(y)), which is not satisfied by D. Here,

Srep(D,κ(Q)) = {D1, D2, D3} andCrep(D,κ(Q)) = {D1}, withD1 = {R(a4, a3),
R(a2, a1), R(a3, a3), S(a4), S(a2)}, D2 = {R(a2, a1), S(a4), S(a2), S(a3)}, D3 =
{R(a4, a3), R(a2, a1), S(a2), S(a3)}.

For tuple R(a4, a3), Diff s(D,κ(Q), R(a4, a3)) = {D rD2} = {{R(a4, a3),
R(a3, a3)}}. So,R(a4, a3) is an actual cause, with responsibility 1

2
. Similarly,R(a3, a3)

is an actual cause, with responsibility 1

2
. For tuple S(a3), Diff c(D,κ(Q), S(a3)) =

{D rD1} = {S(a3)}. So, S(a3) is an actual cause, with responsibility 1, i.e. a most

responsible cause. �

It is also possible, the other way around, to characterize repairs in terms of causes

and their contingency sets [11]. Actually this connection can be used to obtain com-

plexity results for causality problems from repair-related computational problems [11].

Most computational problems related to repairs, especially C-repairs, which are related

to most responsible causes, are provably hard. This is reflected in a high complexity for

responsibility [11] (cf. Section 6 for some more details).

3.2 Abstract causes from abstract repairs

We can extrapolate and abstract out from the characterization of causes of Section 3.1

by starting from an abstract repair-semantics, RepS(D,κ(Q)), which identifies a class

of intended repairs of instance D w.r.t. the DC κ(Q). By definition, RepS(D,κ(Q))
contains instances of D’s schema that satisfy κ(Q). It is commonly the case that those

instances depart from D in some pre-specified minimal way, and, in the case of DCs,

the repairs in RepS(D,κ(Q)) are all sub-instances of D [8] (In Section 3.3, we will

depart from this latter assumption.).

More concretely, given a possibly inconsistent instance D, a general class of re-

pair semantics can be characterized through an abstract partial-order relation, �D,4 on

instances of D’s schema that is parameterized by D.5 If we want to emphasize this

dependence on the priority relation �D, we define the corresponding class of repairs

of D w.r.t. a set on ICs Σ as:

RepS
�

(D,Σ) := {D′ | D′ |= Σ, and D′ is �D -minimal}. (5)

This definition is general enough to capture different classes of repairs and in relation to

different kinds of ICs, e.g. those that delete old tuples and introduce new tuples to satisfy

4 That is, satisfying reflexivity, transitivity and anti-symmetry, namely D1 �D D2 and D2 �D

D1 ⇒ D1 = D2.
5 These general prioritized repairs based on this kind of priority relations were introduced in

[34], where also different priority relations and the corresponding repairs were investigated.
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inclusion dependencies, and also repairs that change attribute values. In particular, it is

easy to verify that the classes of S- and C-repairs for DCs of Section 2.3 are particular

cases of this definition.

Returning to a general class of repairs RepS(D,κ(Q)), assuming that repairs are

sub-instances of D, and inspired by (3), we introduce:

Diff S(D,κ(Q), τ) := {D rD′ | D′ ∈ RepS(D,κ(Q)), τ ∈ (D rD′)}. (6)

Definition 1. For an instance D, a BCQ Q, and a class of repairs RepS(D,κ(Q)):
(a) τ ∈ D is an actual S-cause for Q iff Diff S(D,κ(Q), τ) 6= ∅.
(b) For each D′ ∈ RepS(D,κ(Q)) with (D r D′) ∈ Diff s(D,κ(Q), τ), (D r (D′ ∪
{τ})) is an S-contingency set for τ .

(c) The S-responsibility of an actual S-cause is as in Section 2.2, but considering only

the cardinalities of S-contingency sets Γ . �

It should be clear that actual causes as defined in Section 3.1 are obtained from this

definition by using S-repairs. Furthermore, it is also easy to see that each actual S-cause

accompanied by one of its S-contingency sets falsifies queryQ in D.

This abstract definition can be instantiated with different repair-semantics, which

leads to different notions of cause. In the following subsection we will do this by ap-

pealing to attribute-based repairs that change attribute values in tuples by null, a null

value that is assumed to be a special constant in C, the set of constants for the database

schema. This will allow us, in particular, to define causes at the attribute level (as op-

posed to tuple level) in a very natural manner.6

3.3 Attribute-based causes

Database repairs that are based on changes of attribute values in tuples have been con-

sidered in [8, 3, 7], and implicitly in [9] to hide sensitive information in a database D
via minimal virtual modifications of D. In the rest of this section we make explicit this

latter approach and exploit it to define and investigate attribute-based causality (cf. also

[11]). First we provide a motivating example.

Example 4. Consider the database instance D = {S(a2), S(a3), R(a3, a1), R(a3, a4),
R(a3, a5)}, and the query Q : ∃x∃y(S(x) ∧R(x, y)). D satisfies Q, i.e. D |= Q.

The three R-tuples in D are actual causes, but clearly the value a3 for the first

attribute of R is what matters in them, because it enables the join, e.g. D |= S(a3) ∧
R(a3, a1). This is only indirectly captured through the occurrence of different values

accompanying a3 in the second attribute of R-tuples as causes for Q.

Now consider the database instanceD1 = {S(a2), S(a3), R(null , a1), R(null , a4),
R(null , a5)}, where null stands for the null value as used in SQL databases, which

cannot be used to satisfy a join. Now, D′ 6|= Q. The same occurs with the instances

D2 = {S(a2), S(null),R(a3, a1), R(a3, a4), R(a3, a5)}, and D3 = {S(a2), S(null),
R(null , a1), R(null , a4), R(null , a5)}, among others that are obtained from D only

through changes of attribute values by null. �

6 Cf. also [3, secs. 4, 5] for an alternative repair-semantics based on both null- and tuple-based

repairs w.r.t. general sets of ICs and their repair programs. They could also be used to define a

corresponding notion of cause.
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In the following we assume the special constant null may appear in database in-

stances and can be used to verify queries and constraints. We assume that all atoms

with built-in comparisons, say null θ null , and null θ c, with c a non-null constant, are

all false for θ ∈ {=, 6=, <,>, . . .}. In particular, since a join, say R(. . . , x)∧S(x, . . .),
can be written as R(. . . , x)∧S(x′, . . .)∧x = x′, it can never be satisfied through null.

This assumption is compatible with the use of NULL in SQL databases (cf. [3, sec. 4]

for a detailed discussion, also [9, sec. 2]).

Consider an instance D = {. . . , R(c1, . . . , cn), . . .} that may be inconsistent with

respect to a set of DCs. The allowed repair updates are changes of attribute values by

null, which is a natural choice, because this is a deterministic solution that appeals to the

generic data value used in SQL databases to reflect the uncertainty and incompleteness

in/of the database that inconsistency produces.7 In order to keep track of changes, we

may introduce numbers as first arguments in tuples, as global, unique tuple identifiers

(tids). So, D becomes D = {. . . , R(i; c1, . . . , cn), . . .}, with i ∈ N. The tid is a value

for what we call the 0-th attribute of R. With id(t) we denote the id of the tuple t ∈ D,

i.e. id(R(i; c1, . . . , cn)) = i.
If D is updated to D′ by replacement of (non-tid) attribute values by null, and the

value of the j-th attribute in R, j > 0, is changed to null, then the change is captured as

the string R[i; j], which identifies that the change was made in the tuple with id i in the

j-th position (or attribute) of predicate R. These strings are collected forming the set:8

∆null (D,D′) := {R[i; j] | R(i; c1, . . . , cj , . . . , cn) ∈ D, cj 6= null , becomes

R(i; c′1, . . . , null , . . . , c
′
n) ∈ D

′}.

For example, if D = {R(1; a, b), S(2; c, d), S(3; e, f)} is changed into D′ =
{R(1; a, null), S(2; null , d), S(3; null , null)}, then ∆null (D,D′) = {R[1; 2],
S[2; 1], S[3; 1], S[3; 2]}.

For database instances with the constant null, IC satisfaction is defined by treating

null as in SQL databases, in particular, joins and comparisons in them cannot be sat-

isfied through null (cf. [3, sec. 4] for a precise formal treatment). This is particularly

useful to restore consistency w.r.t. DCs, which involve combinations of (unwanted)

joins.

Example 5. (ex. 1 cont.) Still with instance D = {S(a2), S(a3), R(a3, a1), R(a3, a4),
R(a3, a5)}, consider the DC (the negation of Q) κ : ¬∃x∃y(S(x) ∧R(x, z)). Since

D 6|= κ, D is inconsistent.

The updated instance D1 = {S(a2), S(null), R(a3, a1), R(a3, a4), R(a3, a5)}
(among others updated with null) is consistent: D1 |= κ. �

Definition 2. A null-based repair of D with respect to a set of DCs Σ is a consistent

instance D′, such that ∆null (D,D′) is minimal under set inclusion.9 Repnull (D,Σ)

7 Repairs based on updates of attribute values using other constants of the domain have been

considered in [35]. We think the developments in this section could be applied to them.
8 The condition ci 6= null in its definition is needed in case the initially given instance already

contain nulls.
9 An alternative, but equivalent formulation can be found in [9].
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denotes the class of null-based repairs of D with respect to Σ.10 A cardinality-null-

based repair D′ minimizes |∆null (D,D′)|. �

We can see that the null-based repairs are the minimal elements of the partial order

between instances defined by: D1 ≤
null

D D2 iff ∆null (D,D1) ⊆ ∆
null (D,D2).

Example 6. ConsiderD = {R(1; a2, a1), R(2; a3, a3), R(3; a4, a3), S(4; a2), S(5; a3),
S(6; a4)} that is inconsistent w.r.t. the DC

κ : ¬∃xy(S(x) ∧R(x, y) ∧ S(y)).

Here, the class of null-based repairs, Repnull (D,κ), consists of:

D1 = {R(1; a2, a1), R(2; a3, a3), R(3; a4, a3), S(4; a2), S(5; null), S(6; a4)},
D2 = {R(1; a2, a1), R(2; null , a3), R(3; a4, null), S(4; a2), S(5; a3), S(6; a4)},
D3 = {R(1; a2, a1), R(2; null , a3), R(3; a4, a3), S(4; a2), S(5; a3), S(6; null)},
D4 = {R(1; a2, a1), R(2; a3, null), R(3; a4, null), S(4; a2), S(5; a3), S(6; a4)},
D5 = {R(1; a2, a1), R(2; a3, null), R(3; null , a3), S(4; a2), S(5; a3), S(6; a4)},
D6 = {R(1; a2, a1), R(2; a3, null), R(3; a4, a3), S(4; a2), S(5; a3), S(6; null)}.

Here, ∆null (D,D2) = {R[2; 1], R[3; 2]}, ∆null (D,D3) = {R[2; 1], S[6; 1]} and

∆null (D,D1) = {S[5; 1]}. The latter is a cardinality-null-based repair. �

According to the motivation provided at the beginning of this section, we can now

define causes appealing to the generic construction in (6), and using in it the class of

null-based repairs of D. Since repair actions in this case are attribute-value changes,

causes can be defined at both the tuple and attribute levels. The same applies to the

definition of responsibility. First, inspired by (6), for a tuple τ : R(i; c1, . . . , cn) ∈ D,

we introduce:11

Diff null (D,κ(Q), R[i; cj]) := {∆
null (D,D′) | D′ ∈ Repnull (D,κ(Q)), (7)

R[i; j] ∈ ∆null (D,D′)}.

Definition 3. For D an instance and Q a BCQ, and τ ∈ D be a tuple of the form

R(i; c1, . . . , cn).

(a) R[i; cj] is a null-attribute-based (actual) cause forQ iffDiff
null (D,κ(Q, R[i; cj])

6= ∅, i.e. the value cj in τ is a cause if it is changed into a null in some repair.

(b) τ is a null-tuple-based (actual) cause for Q if some R[i; cj] is a null-attribute-

based cause for Q, i.e. the whole tuple τ is a cause if at least one of its attribute

values is changed into a null in some repair.

10 Our setting allows for a uniform treatment of general and combined DCs, including those with

(in)equality and other built-ins, FDs, and KCs. However, for the latter and in SQL databases,

it is common that NULL is disallowed as a value for a key-attribute, among other issues. This

prohibition, that we will ignore in this work, can be accommodated in our definition. For a

detailed treatment of repairs w.r.t. sets of ICs that include FDs, see [10, secs. 4,5].
11 This is not a particular case of (6), because it does not contain full tuples.
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(c) The responsibility, ρa-null(R[i; cj]), of a null-attribute-based cause R[i; cj] for

Q, is the inverse of min{|∆null (D,D′)| : R[i; j] ∈ ∆null (D, D′), and D′ ∈
Repnull (D,κ(Q))}. Otherwise, if R[i; cj] is not a null-attribute-based cause, its

responsibility is 0.

(d) The responsibility, ρt-null(τ), of a null-tuple-based cause τ for Q, is the inverse of

min{|∆null(D,D′)| : R[i; j] ∈ ∆null (D,D′), for some j, and D′ ∈
Repnull (D,κ(Q))}. Otherwise, if τ is not a null-tuple-based cause, its responsi-

bility is 0. �

In cases (c) and (d) we minimize over the number of changes in a repair. However,

in case (d), of a tuple-cause, any change made in one of its attributes is considered in

the minimization. For this reason, the minimum may be smaller than the one for a fixed

attribute value change; and so the responsibility at the tuple level may be greater than

that at the attribute level. More precisely, if τ = R(i; c1, . . . , cn) ∈ D, and R[i; cj] is a

null-attribute-based cause, then: ρa-null(R[i; cj ]) ≤ ρ
t-null(τ).

Example 7. (ex. 6 cont.) Consider R(2; a3, a3) ∈ D. Its projection on its first (non-

id) attribute, R[2; a3], is a null-attribute-based cause since R[2; 1] ∈ ∆null (D,D2).
Also R[2; 1] ∈ ∆null (D,D3). Since |∆null (D,D2)| = |∆null (D,D3)| = 2, we

obtain ρa-null(R[2; 1]) = 1

2
. Clearly R(2; a3, a3) is a null-tuple-based cause for Q,

with ρt-null(R(2; a3, a3)) =
1

2
. �

Example 8. (ex. 4 cont.) The instance with tids isD = {S(1; a2), S(2; a3), R(3; a3, a1),
R(4; a3, a4), R(5; a3, a5)}. The only null-based repairs are D1 and D2, with

∆null (D,D1) = {R[3; 1], R[4; 1], R[5; 1]} and ∆null (D,D2) = {S[2; 1]}.
The values R[3; a3], R[4; a3], R[5; a3], S[2; a3] are all null-attribute-based causes

for Q. Notice that ρa-null(R[3; a3]) = ρa-null(R[4; a3]) = ρa-null(R[5; a3]) = 1

3
,

while ρa-null(R[3; a1]) = ρa-null(R[4; a4]) = ρa-null(R[5; a5]) = 0, that the value (a3)

in the first arguments of the R-tuples has a non-zero responsibility, while the values in

the second attribute have responsibility 0. �

Notice that the definition of tuple-level responsibility, i.e. case (d) in Definition 3,

does not take into account that a same id, i, may appear several times in a∆null (D,D′).
In order to do so, we could redefine the size of the latter by taking into account those

multiplicities. For example, if we decrease the size of the∆ by one with every repetition

of the id, the responsibility for a cause may (only) increase, which makes sense.

In Section 5 we will provide repair programs for null-based repairs, which can be

used as a basis for specifying and computing null-attribute-based causes.

4 Specifying Tuple-Based Causes

Given a database D and a set of ICs, Σ, it is possible to specify the S-repairs of D
w.r.t. a set Σ of DCs, introduced in Section 2.3, by means of an ASP Π(D,Σ), in the

sense that the set, Mod(Π(D,Σ)), of its stable models is in one-to-one correspondence

with Srep(D,Σ) [18, 5] (cf. [8] for more references). In the following, to ease the
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presentation, we consider a single denial constraint12

κ : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)).

Although not necessary for S-repairs, it is useful on the causality side having global

unique tuple identifiers (tids), i.e. every tuple R(c̄) in D is represented as R(t; c̄) for

some integer t that is not used by any other tuple in D. For the repair program we

introduce a nickname predicate R′ for every predicate R ∈ R that has an extra, fi-

nal attribute to hold an annotation from the set {d, s}, for “delete” and “stays”, resp.

Nickname predicates are used to represent and compute repairs.

The repair-ASP, Π(D,κ), for D and κ contains all the tuples in D as facts (with

tids), plus the following rules:

P ′
1(t1; x̄1, d) ∨ · · · ∨ P

′
m(tn; x̄m, d)← P1(t1; x̄1), . . . , Pm(tm; x̄m).

P ′
i (ti; x̄i, s)← Pi(ti; x̄i), not P

′
i (ti; x̄i, d), i = 1, · · · ,m.

A stable model M of the program determines a repair D′ of D: D′ := {P (c̄) |
P ′(t; c̄, s) ∈ M}, and every repair can be obtained in this way [18]. For an FD, say

ϕ : ¬∃xyz1z2vw(R(x, y, z1, v) ∧ R(x, y, z2, w) ∧ z1 6= z2), which makes the third

attribute functionally depend upon the first two, the repair program contains the rules:

R′(t1;x, y, z1, v, d) ∨R
′(t2;x, y, z2, w, d)← R(t1;x, y, z1, v), R(t2;x, y, z2, w),

z1 6= z2.

R′(t;x, y, z, v, s)← R(t;x, y, z, v), not R′(t;x, y, z, v, d).

For DCs and FDs, the repair program can be made non-disjunctive by moving all the

disjuncts but one, in turns, in negated form to the body of the rule [18, 5]. For example,

the rule P (a)∨R(b)← Body , can be written as the two rules P (a)← Body , notR(b)
and R(b) ← Body , notP (a). Still the resulting program can be non-stratified if there

is recursion via negation [27], as in the case of FDs, and DCs with self-joins.

Example 9. (ex. 3 cont.) For the DC κ(Q): ¬∃x∃y(S(x)∧R(x, y)∧S(y)), the repair-

ASP contains the facts (with tids) R(1; a4, a3), R(2; a2, a1), R(3; a3, a3), S(4; a4),
S(5; a2), S(6; a3), and the rules:

S′(t1;x, d) ∨R
′(t2;x, y, d) ∨ S

′(t3; y, d)← S(t1;x), R(t2;x, y), S(t3; y). (8)

S′(t;x, s)← S(t;x), not S′(t;x, d). etc.

Repair D1 is represented by the stable model M1 containing R′(1; a4, a3, s),
R′(2; a2, a1, s), R

′(3; a3, a3, s), S
′(4; a4, s), S

′(5; a2, s), and S′(6; a3, d). �

Now, in order to specify causes by means of repair-ASPs, we concentrate, according

to (3), on the differences betweenD and its repairs, now represented by {P (c̄) | P (t; c̄, d)
∈ M}, the deleted tuples, with M a stable model of the repair-program. They are used

12 It is possible to consider combinations of DCs and FDs, corresponding to UCQs, possibly with

6=, [11].
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to compute actual causes and their⊆-minimal contingency sets, both expressed in terms

of tids.

The actual causes for the query can be represented by their tids, and can be ob-

tained by posing simple queries to the program under the uncertain or brave seman-

tics that makes true what is true in some model of the repair-ASP.13 In this case,

Π(D,κ(Q)) |=brave Cause(t), where the Cause predicate is defined on top of Π(D,
κ(Q)) by the rules: Cause(t)← R′(t;x, y, d) and Cause(t)← S′(t;x, d).

For contingency sets for a cause, given the repair-ASP for a DC κ(Q), a new binary

predicate CauCont(·, ·) will contain a tid for cause in its first argument, and a tid for

a tuple belonging to its contingency set. Intuitively, CauCont(t, t′) says that t is an

actual cause, and t′ accompanies t as a member of the former’s contingency set (as

captured by the repair at hand or, equivalently, by the corresponding stable model).

More precisely, for each pair of not necessarily different predicates Pi, Pj in κ(Q)
(they could be the same if it has self-joins or there are several DCs), introduce the rule

CauCont(t, t′) ← P ′
i (t; x̄i, d), P

′
j(t

′; x̄j , d), t 6= t′, with the inequality condition only

when Pi and Pj are the same predicate (it is superfluous otherwise).

Example 10. (ex. 3 and 9 cont.) The repair-ASP can be extended with the following

rules to compute causes with contingency sets:

CauCont(t, t′)← S′(t;x, d), R′(t′;u, v, d).

CauCont(t, t′)← S′(t;x, d), S′(t′;u, d), t 6= t′.

CauCont(t, t′)← R′(t;x, y, d), S′(t′;u, d).

CauCont(t, t′)← R′(t;x, y, d), R′(t′;u, v, d), t 6= t′.

For the stable model M2 corresponding to repair D2, we obtain CauCont(1, 3) and

CauCont(3, 1), from the repair differenceD rD2 = {R(a4, a3), R(a3, a3)}. �

We can use extensions of ASP with set- and numerical aggregation to build the

contingency set associated to a cause, e.g. the DLV system [29] by means of its DLV-

Complex extension [17] that supports set membership and union as built-ins. We intro-

duce a binary predicate preCont to hold a cause (id) and a possibly non-maximal set of

elements from its contingency set, and the following rules:

preCont(t, {t′})← CauCont(t, t′).

preCont(t,#union(C, {t′′}))← CauCont(t, t′′), preCont(t, C),

not #member(t′′, C).

Cont(t, C)← preCont(t, C), not HoleIn(t, C).

HoleIn(t, C)← preCont(t, C),CauCont(t, t′),

not #member(t′, C).

The first two rules build the contingency set for an actual cause (within a repair or

stable model) by starting from a singleton and adding additional elements from the

13 As opposed to the skeptical or cautious semantics that sanctions as true what is true in all

models. Both semantics as supported by the DLV system [29].
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contingency set. The third rule, that uses the auxiliary predicate HoleIn makes sure that

a set-maximal contingency set is built from a pre-contingency set to which nothing can

be added.

The responsibility for an actual cause τ , with tid t, as associated to a repair D′

(with τ /∈ D′) associated to a model M of the extended repair-ASP, can be computed

by counting the number of t′s for which CauCont(t, t′) ∈ M . This responsibility

will be maximum within a repair (or model): ρ(t,M) := 1/(1 + |d(t,M)|), where

d(t,M) := {CauCont(t, t′) ∈ M}. This value can be computed by means of the

count function, supported by DLV [24], as follows:

pre-rho(t, n)← #count{t′ : CauCont(t, t′)} = n,

followed by the rule computing the responsibility:

rho(t,m)← m ∗ (pre-rho(t, n) + 1) = 1.

Or, equivalently, via 1/|d(M)|, with d(M) := {P (t′; c̄, d) | P (t′; c̄, d) ∈M}.
Each model M of the program so far will return, for a given tid that is an actual

cause, a maximal-responsibility contingency set within that model: no proper subset is

a contingency set for the given cause. However, its cardinality may not correspond to

the (global) maximum responsibility for that tuple. Actually, what we need is ρ(t) :=
max{ρ(t,M) |M is a model}, which would be an off-line computation, i.e. not within

the program. Fortunately, this is not needed since each C-repair gives such a global

maximum. So, we need to specify and compute only maximum-cardinality repairs, i.e.

C-repairs.

C-repairs can be specified by means of repair-ASPs as above [3], but adding weak-

program constraints [16, 29]. In this case, since we want repairs that minimize the num-

ber of deleted tuples, for each database predicate P , we introduce the weak-constraint:

:∼ P (t; x̄), P ′(t; x̄, d).

In a modelM the body can be satisfied, and then the program constraint violated, but the

number of violations is kept to a minimum (among the models of the program without

the weak-constraints).14 A repair-ASP with these weak constraints specifies repairs that

minimize the number of deleted tuples; and minimum-cardinality contingency sets and

maximum responsibilities can be computed, as above.

The approach to specification of causes can be straightforwardly extended via re-

pair programs for several DCs to deal with unions of BCQs (UBCQs), which are also

monotonic.

Example 11. Consider D = {P (a), P (e), Q(a, b), R(a, c)} and the query Q := Q1 ∨
Q2, with Q1 : ∃xy(P (x) ∧ Q(x, y)) and Q2 : ∃xy(P (x) ∧ R(x, y)). It generates the

set of DCs: Σ = {κ1, κ2}, with κ1 :← P (x), Q(x, y) and κ2 :← P (x), R(x, y). Here,

D |= Q and, accordingly,D is inconsistent w.r.t. Σ.

14 In contrast, hard program-constraints, of the form ← Body , eliminate the models where

they are violated, i.e. where Body is satisfied. Weak constraints as those above are sometimes

denoted with ⇐ P (t; x̄), P ′(t; x̄, d).
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The actual causes for Q in D are: P (a), Q(a, b), R(a, c), and P (a) is the most

responsible cause. D1 = {P (a), P (e)} and D2 = {P (e), Q(a, b), R(a, c)} are the

only S-repairs; D2 is also the only C-repair for D. The repair program for D w.r.t. Σ
contains one rule like (8) for each DC in Σ. The rest is as above in this section. �

Remark 1. When dealing with a set of DCs, each repair rule of the form (8) is meant

to solve the corresponding, local inconsistency, even if there is interaction between

the DCs, i.e. atoms in common, and other inconsistencies are solved at the same time.

However, the minimal-model property of stable models makes sure that in the end a

minimal set of atoms is deleted to solve all the inconsistencies [18]. �

5 Specifying Attribute-Based Repairs and Causes

Example 12. Consider the instanceD = {P (1, 2), R(2, 1)} for schemaR = {P (A,B),
R(B,C)}. With tuple identifiers it takes the form D = {P (1; 1, 2), R(2; 2, 1)}. Con-

sider also the DC:15

κ : ¬∃x∃y∃z(P (x, y) ∧R(y, z)), (9)

which is violated by D.

Now, consider the following alternative, updated instances Di, each them obtained

by replacing attribute values by null:

D1 {P (1; 1, null), R(2; 2, 1)}
D2 {P (1; 1, 2), R(2; null, 1)}
D3 {P (1; 1, null), R(2; null , 1)}

The sets of changes can be identified with the set of changed positions, as in Section

3.3, e.g. ∆null (D,D1) = {P [1; 2]} and ∆null (D,D2) = {R[2; 2]} (remember that

the tuple id goes always in position 0). These Di are all consistent, but D1 and D2

are the only null-based repairs of D; in particular they are ≤null

D -minimal: The sets of

changes ∆null (D,D1) and ∆null (D,D2) are incomparable under set inclusion. D3 is

not ≤null

D -minimal, because ∆null (D,D3) = {P [1; 2], R[2; 2]} % ∆null (D,D2). �

As in Section 4, null-based repairs can be specified as the stable models of a dis-

junctive ASP, the so-called repair program. We show next these repair programs by

means of Example 12.

The repair-programs for null-based repairs are inspired by ASP-programs that are

used to specify virtually and minimally updated versions of a database D that is pro-

tected from revealing certain view contents [9]. This is achieved by replacing direct

query answering on D by simultaneously querying (under the certain semantics) the

virtual versions of D.

When we have more than one DC, notice that, in contrast to the tuple-based seman-

tics, where we can locally solve each inconsistency without considering inconsistencies

w.r.t. other DCs (cf. Remark 1), a tuple that is subject to a local attribute-value up-

date (into null) to solve one inconsistency, may need further updates to solve other

15 It would be easy to consider tids in queries and view definitions, but they do not contribute to

the final result and will only complicate the notation. So, we skip tuple ids whenever possible.
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inconsistencies. For example, if we add in Example 12 the DC κ′ : ¬∃x∃y(P (x, y) ∧
R(y, x)), the updates in repair D1 have to be further continued, producing: P (1; null ,
null), R(2; null , null). In other words, every locally updated tuple is considered to:

“be in transition” or “being updated” only (not necessarily in a definitive manner) until

all inconsistencies are solved.

The above remark motivates the annotation constants that repair programs will use

now, for null-based repairs. The intended, informal semantics of annotation constants is

shown in the following table. (The precise semantics is captured through the program

that uses them.)

Annotation Atom Tuple R(ā) is ...

u R(t; ā,u) the result of an update

fu R(t; ā, fu) the very last update of a tuple

t R(t; ā, t) an initial or updated tuple

s R(t; ā, s) definitive, to stay in the repair

More precisely, for each database predicate R ∈ R, we introduce a copy of it

with an extra, final attribute (or argument) that contains an annotation constant. So,

a tuple of the form R(t; c̄) would become an annotated atom of the form R′(t; c̄, a).
The annotation constants are used to keep track of virtual updates, i.e. of old and new

tuples: An original tuple R(t; c̄) may be successively updated, each time replacing an

attribute value by null, creating tuples of the form R(t; c̄′,u). Eventually the tuple will

suffer no more updates, at which point it will become of the form R′(t; c̄′′, fu). In the

transition, to check the satisfaction of the DCs, it will be combined with other tuples,

which can be updated versions of other tuples or tuples in the database that have never

been updated. Both kinds of tuples are uniformly annotated with R′(t′, d̄, t). In this

way, several, possibly interacting DCs can be handled. The tuples that eventually form

a repaired version of the original database are those of the form R′(t; ē, s), and are

the final versions of the updated original tuples or the original tuples that were never

updated.

In R′(t; ā, fu), annotation fu means that the atom with tid t has reached its final

update (during the program evaluation). In particular,R(t; ā) has already been updated,

and u should appear in the new, updated atom, say R′(t; ā′,u), and this tuple cannot be

updated any further (because relevant updateable attribute values have already been re-

placed by null if necessary). For example, consider a tuple R(t; a, b) ∈ D. A new tuple

R(t; a, null) is obtained by updating b into null . Therefore, R′(t; a, null ,u) denotes

the updated tuple. If this tuple is not updated any further, it will also eventually appear

as R′(t; a, null , fu), indicating it is a final update.16 (Cf. rules 3. in Example 13.)

The repair program uses these annotations to go through different steps, until its

stable models are computed. Finally, the atoms needed to build a repair are read off

by restricting a model of the program to atoms with the annotation s. The following

example illustrates the main ideas and issues.

Example 13. (ex. 12 cont.) Consider D = {P (1, 2), R(2, 1)} and the DC:

κ : ¬∃x∃y∃z(P (x, y)∧R(y, z)). The repair programΠ(D, {κ}) is as follows: (it uses

16 Under null-based repairs no tuples are deleted or inserted, so the original tids stay all in the

repairs and none is created.
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several auxiliary predicates to make rules safe, i.e. with all their variables appearing in

positive atoms in their bodies)

1. P (1; 1, 2). R(2; 2, 1). (initial database)

2. P ′(t1;x, null ,u) ∨R
′(t2; null , z,u)← P ′(t1;x, y, t), R

′(t2; y, z, t), y 6= null .

3. P ′(t;x, y, fu)← P ′(t;x, y,u), not auxP.1(t;x, y), not auxP.2(t;x, y).

auxP.1(t;x, y)← P ′(t; null , y,u), P (t;x, z), x 6= null .

auxP.2(t;x, y)← P ′(t;x, null ,u), P (t; z, y), y 6= null . (idem for R)

4. P ′(t;x, y, t)←P (t;x, y).

P ′(t;x, y, t)← P ′(t;x, y,u). (idem for R)

5. P ′(t;x, y, s)←P ′(t;x, y, fu). (idem for R)

P ′(t;x, y, s)←P (t;x, y), not auxP (t).

auxP (t)← P ′(t;u, v,u).

In this program tids in rules are handled as variables; and constant null in the pro-

gram is treated as any other constant. The latter is the reason for the condition y 6= null

in the body of 2., to avoid considering the join through null a violation of the DC.17 A

quick look at the program shows that the original tids are never destroyed and no new

tids are created, which simplifies keeping track of tuples under repair updates. It also

worth mentioning that for this particular example, with a single DC, a much simpler

program could be used, but we keep the general form that can be applied to multiple,

possibly interacting DCs.

Facts in 1. belong to the initial instance D, and become annotated right away with

t by rules 4. The most important rules of the program are those in 2. They enforce one

step of the update-based repair-semantics in the presence of null and using null (yes,

already having nulls in the initial database is not a problem). Rules in 2. capture in the

body the violation of DC; and in the head, the intended way of restoring consistency,

namely making one of the attributes participating in a join take value null.

Rules in 3. collect the final updated versions of the tuples in the database, as those

whose values are never replaced by a null in another updated version.

Rules in 4. annotate the original atoms and also new versions of updated atoms.

They all can be subject to additional updates and have to be checked for DC satisfaction,

with rule 2.. Rules in 5. collect the tuples that stay in the final state of the updated

database, namely the original and never updated tuples plus the final, updated versions

of tuples. �

Proposition 2. There is a one-to-one correspondence between the null-based repairs of

D w.r.t. a set of DCs Σ and the stable models of the repair program Π(D,Σ). More

specifically, a repair D′ can be obtained by collecting the s-annotated atoms in a stable

17 If instead of (9) we had κ : ¬∃x∃y∃z(P (x, y) ∧ R(y, z) ∧ y < 3), the new rule body could

be P ′(t1;x, y, t), R
′(t2; y, z, t), y < 3, because null < 3 would be evaluated as false.
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model M , i.e. D′ = {P (c̄) | P ′(t; c̄, s) ∈M}; and every repair can be obtained in this

way.18
�

Example 14. (ex. 13 cont.) The program has two stable models: (the facts in 1. and the

aux-atoms are omitted)

M1 = {P ′(1; 1, 2, t), R′(2; 2, 1, t), R′(2; 2, 1, s), P ′(1; 1, null,u), P ′(1; 1, null, t),

P ′(1; 1, null , fu), P ′(1; 1, null , s)}.

M2 = {P ′(1; 1, 2, t), R′(2; 2, 1, t), P ′(1; 1, 2, s), R′(2; null , 1,u), R′(2; null , 1, t),

R′(2; null , 1, fu), R′(2; null , 1, s)}.

The repairs are built by selecting the underlined atoms: D1 = {P (1, null), R(2, 1)}
and D2 = {P (1, 2), R(null , 1)}. They coincide with those in Example 12. �

Finally, and similarly to the use of repair programs for cause computation in Section

4, we can use the new repair programs to compute null-attribute-based causes (we do

not consider here null-tuple-based causes, nor the computation of responsibilities, all of

which can be done along the lines of Section 4). All we need to do is add to the repair

program the definition of a cause predicate, through rules of the form:

Cause(t; i; v)← R′(t; x̄, null , z̄, s), R(t; x̄′, v, z̄′), v 6= null ,

(with v and null the body in the same position i), saying that value v in the i-th position

in original tuple with tid t is a null-attribute-based cause. The rule collects the original

values (with their tids and positions) that have been changed into null. To the program

in Example 13 we would add the rules (with similar rules for predicate R)

Cause(t; 1;x)← P ′(t; null , y, s), P (t;x, y′).

Cause(t; 2; y)← P ′(t;x, null , s), P (t;x′, y).

.

6 Discussion

Complexity. Computing causes for CQs can be done in polynomial time in data [32],

which also holds for UBCQs [11]. In [12] it was established that cause computation for

Datalog queries falls in the second level of the polynomial hierarchy (PH). As has been

established in [32, 11], the computational problems associated to contingency sets and

responsibility are at the second level of PH, in data complexity.

On the other side, our repairs programs, and so our causality-ASPs, can be trans-

formed into non-disjunctive, unstratified programs [5, 18], whose reasoning tasks are

also at the second level of PH (in data) [22]. It is worth mentioning that the ASP ap-

proach to causality via repairs programs could be extended to deal with queries that are

more complex than CQs or UCQs, e.g. Datalog queries and queries that are conjunc-

tions of literals (that were investigated in [33]).

18 The proof of this claim is rather long, and is similar in spirit to the proof that tuple-based

database repairs w.r.t. integrity constraints [8, 6] can be specified by means of disjunctive logic

programs with stable model semantics (cf. [14, 4]).
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Causality programs and ICs The original causality setting in [32] does not consider

ICs. An extension of causality under ICs was proposed in [12]. Under it, the ICs have

to be satisfied by the databases involved, i.e. the initial one and those obtained by cause

and contingency-set deletions. When the query at hand is monotonic,19 monotonic ICs,

i.e. for which growing with the database may only produce more violations (e.g. denial

constraints and FDs), are not much of an issue since they stay satisfied under deletions

associated to causes. So, the most relevant ICs are non-monotonic, such as inclusion

dependencies, e.g. ∀xy(R(x, y)→ S(x)). These ICs can be represented in a causality-

program by means of (strong) program constraints. In the running example, we would

have, for tuple-based causes, the constraint: ← R′(t, x, y, s), not S′(t′, x, s).20

Negative CQs and inclusion dependencies In this work we investigated CQs, and

what we did can be extended to UCQs. However, it is possible to consider queries that

are conjunctions of literals, i.e. atoms or negations thereof, e.g. Q : ∃x∃y(P (x, y) ∧
¬S(x)).21 (Causes for these queries were investigated in [33].) If causes are defined in

terms of counterfactual deletions (as opposed to insertions that can also be considered

for these queries), then the repair counterpart can be constructed by transforming the

query into the unsatisfied inclusion dependency (ID): ∀x∀y(P (x, y)→ S(x)). Repairs

w.r.t. this kind of IDs that allow only tuple deletions were considered in [20], and re-

pairs programs for them in [18]. Causes for CQs in the presence of IDs were considered

in [12].

Endogenous and prioritized causes and repairs. As indicated in Section 3.2, different

kinds of causes can be introduced by considering different repair-semantics. Apart from

those investigated in this work, we could consider endogenous repairs, which are ob-

tained by removing only (pre-specified) endogenous tuples [11]. In this way we could

give an account of causes as in Section 2.2, but considering the partition of the database

between endogenous and exogenous tuples.

Again, considering the abstract setting of Section 3.2, with the generic class of

repairs RepS
�

(D,Σ), it is possible to consider different kinds of prioritized repairs

[34], and through them introduce prioritized actual causes. Repair programs for the

kinds of priority relations � investigated in [34] could be constructed from the ASPs

introduced and investigated in [25] for capturing different optimality criteria. The repair

programs could be used, as done in this work, to specify and compute the corresponding

prioritized actual causes and responsibilities.

Optimization of causality programs. Different queries, but of a fixed form, about

causality could be posed to causality programs or directly to the underlying repair

programs. Query answering could benefit from query-dependent, magic-set-based op-

timizations of causality and repair programs as reported in [18]. Implementation and

experimentation in general are left for future work.

19 I.e. the set of answers may only grow when the instance grows.
20 Or better, to make it safe, by a rule and a constraint: aux (x) ← S′(t′, x, s) and

← R′(t, x, y, s), not aux (x).
21 They should be safe in the sense that a variable in a negative literals has to appear in some

positive literal too.
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Connections to Belief Revision/Update. As discussed in [2] (cf. also [8]), there are

some connections between database repairs and belief updates as found in knowledge

representation, most prominently with [21]. In [3], some connections were established

between repair programs and revision programs [31]. The applicability of the latter in a

causality scenario like ours becomes a matter of possible investigation.
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