

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (postprint):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-708516

Christel Baier, Philipp Chrszon, Clemens Dubslaff, Joachim Klein, Sascha Klüppelholz

Energy-Utility Analysis of Probabilistic Systems with Exogenous
Coordination

Erstveröffentlichung in / First published in:

It's All About Coordination, 2018. Cham: Springer, S. 38 – 56. ISBN 978-3-319-90089-6

DOI: https://doi.org/10.1007/978-3-319-90089-6_3

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-708516
https://doi.org/10.1007/978-3-319-90089-6_3

Energy-Utility Analysis of Probabilistic Systems
with Exogenous Coordination⋆

Christel Baier, Philipp Chrszon, Clemens Dubslaff,
Joachim Klein, and Sascha Klüppelholz

Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
{christel.baier, philipp.chrszon, clemens.dubslaff,
joachim.klein, sascha.klueppelholz}@tu-dresden.de

Abstract. We present an extension of the popular probabilistic model
checker Prism with multi-actions that enables the modeling of complex
coordination between stochastic components in an exogenous manner.
This is supported by tooling that allows the use of the exogenous coordi-
nation language Reo for specifying the coordination glue code. The tool
provides an automatic compilation feature for translating a Reo network
of channels into Prism’s guarded command language. Additionally, the
tool supports the translation of reward monitoring components that can
be attached to the Reo network to assign rewards or cost to activity
within the coordination network. The semantics of the translated model
is then based on weighted Markov decision processes that yield the basis,
e.g., for a quantitative analysis using Prism. Feasibility of the approach
is shown by a quantitative analysis of an energy-aware network system
example modeled with a role-based modeling approach in Reo.

1 Introduction

In recent decades, many algorithms, logics and tools have been developed for
the formal modeling and analysis of probabilistic systems, combining techniques
introduced by the model-checking community with methods for the analysis
of stochastic models (see, e.g., [22,16,12]). A widely used model is provided by
Markov decision processes (MDPs), which represent probabilistic systems with
non-determinism, suitable to model, e.g., concurrency, adversarial behavior or
control. To allow for quantitative information attached to the states or transitions,
MDPs are often augmented with rewards (sometimes also interpreted as costs).
Rewards are useful, e.g,. to reason about energy, waiting times or other costs, as
well as utility, such as the number of successful completions of a task. Popular
⋆ This is a post-peer-review, pre-copyedit version of an article published in It’s All About

Coordination, Lecture Notes in Computer Science, vol 10865. The final authenticated
version is available online at: https://doi.org/10.1007/978-3-319-90089-6_3.
The authors have been supported by the DFG through the Collaborative Research
Center SFB 912 – HAEC, the Excellence Initiative by the German Federal and State
Governments (cluster of excellence cfAED), the Research Training Group RoSI (GRK
1907), the DFG-projects BA-1679/11-1 and BA-1679/12-1, and the 5G Lab Germany.

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

https://doi.org/10.1007/978-3-319-90089-6_3

Textual
Reo network

Extended
ReoCompiler

Prism language model
(multi-action, MDP)

Reo library
(constraint automata)

Prism module
templates

Extended
Prism

Fig. 1. Using the extended ReoCompiler to generate Prism language models

model checkers such as Prism [33,42] or Storm [18] can then be used to establish
formal guarantees on the expected extremal (maximal/minimal) accumulated
rewards and for the analysis of the trade-off between multiple accumulated
rewards, e.g., comparing the required energy and the utility gained until reaching
a goal for the various ways the non-determinism in the MDP can be resolved
(see, e.g., [20,21,10,11]).

For modeling of stochastic systems, a common formalism is the Prism input
language, a guarded-command language with probabilistic language features
inspired by reactive modules [1]. It allows modeling a system by parallel com-
position of independent modules that can synchronize over shared actions and
is particularly suitable for a symbolic encoding using, e.g., multi-terminal bi-
nary decision diagrams (MTBDDs) [42]. However, in practice, modeling complex
coordination between the modules can be cumbersome and may require hard-
coding the various synchronization possibilities in each module manually. It would
therefore be desirable to model the coordination exogenously, i.e., the individual
components of the system expose their willingness for synchronization via a
well-defined interface to the outside, but do not need to be aware of the concrete
connections to the other parts of the system. This facilitates a separation of
concerns between computation and coordination, providing modeling flexibility
and the ability to easily switch between coordination variants.

A preeminent advocate and example for this exogenous approach is the Reo
language [2], a modeling formalism that allows for coordination patterns to be
modeled compositionally as a network of channels. There are a wide variety of
semantics for Reo [27] and, due to its generality, it can be useful in a wide
range of contexts [5,3,8,45,28,31,30]. In the context of (non-probabilistic) model
checking of systems described or coordinated by a Reo network, the operational
semantics provided by constraint automata [14] proved to be versatile [8,31,30].

Contributions. We present an extension of the Prism input language and
provide tool support that permits the use of multi-actions and suitable parallel
composition operators that facilitate the exogenous modeling of coordination
(Sec. 3). With an underlying MDP-based semantics, the parallel composition
operators are derived from a data-abstract variant of simple probabilistic con-
straint automata (spCA) [7]. Here, probabilistic choice can influence the choice
of successor state, but does not directly apply to the selection of enabled actions
and is thus compatible with the MDP formalism.

Having provided the technical base for exogenous coordination, we are then
interested to leverage Reo for the coordination of Prism modules. To achieve this,

2

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

we have extended the ReoCompiler [47] with support for Prism as a new target
language (Sec. 4). This enables the automatic generation of a Prism language
model description from a textual description of a Reo network that coordinates
Prism modules exogenously (see Fig. 1). To attach rewards to activity of the
components and the network, we introduce the concept of reward monitors and
provide tool support. This allows the quantitative analysis of the performance and
of trade-offs for different scheduling and coordination strategies using Prism’s
variety of analysis backends (probabilistic model checking using explicit and
symbolic engines as well as statistical model checking).

Our main focus is on the use of non-probabilistic Reo networks (with a
constraint-automata-based operational semantics) for the coordination of proba-
bilistic Prism modules. However, due to the compatibility with the spCA and
MDP semantics, it is also possible to describe and use probabilistic channels by
providing their operational behavior in the spCA semantics as Prism modules
and incorporate those into a Reo network.

To demonstrate the feasibility of this exogenous modeling approach for the
analysis of non-trivial stochastic systems, we consider a case study of a peer-to-
peer network with compute nodes that can either play the role of a server, a
client, or a relay in the computer network (Sec. 5). For this, we apply the role-
based modeling approach using Reo as suggested in [17]. Role binding and role
playing, as well as the communication protocol for the file transfer is constructed
and coordinated via a network of Reo channels and connectors. We consider
variants where the network topology is replaced and where a particular strategy
is employed by switching to a different role-playing coordinator. We demonstrate
the analysis of several queries that can be used to illuminate the trade-offs in the
strategies. Our extensions of Prism and the ReoCompiler, as well as additional
material is available at https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/FA18.

Related Work. Apart from Reo, there is a variety of coordination languages,
surveyed, e.g., in [41]. For our case study (Sec. 5), we rely on the models in-
corporating the concept of roles. Although roles are intuitive and commonly
understood, there is no generally accepted definition of roles [48]. We follow the
Dresden approach towards roles [32] and rely on our modeling framework for
role-based systems using Reo presented in [17].

Several approaches extending Reo with stochastic component connectors
have been presented in the literature, providing semantics in terms of simple
probabilistic constraint automata [7], continuous-time constraint automata [15]
quantitative intensional automata [4], stochastic Reo automata [38], stochastic
timed automata for Reo [36], and probabilistic timed constraint automata [23],
to mention a few. All these approaches above have in common that no direct tool
support exists for these models and practical use is mainly justified by providing
translations to continuous-time Markov chains (CTMCs) or interactive Markov
chains (IMCs) [25]. For instance, case studies have been carried out in [4,38,39],
based on IMC and CTMC representations of stochastic Reo automata and
computing steady-state probabilities using Prism. In this line, Reo2MC, a tool

3

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/FA18

chain to automatically generate CTMC semantics from quantitative intensional
automata was presented in [6]. Avoiding intermediate semantics, [40] presented
a direct IMC semantics for stochastic Reo and provides tool support using the
model checkers CADP and IMCA. Using Prism, they also performed quantitative
analysis on CTMCs generated from the IMC semantics, including reward-based
properties in the case study of [39].

Concerning modeling formalisms for stochastic systems, there is a variety of
other approaches departing from the state-based models such as Markov chains or
Markov decision processes we employ in this paper, e.g., stochastic Petri nets [37]
or the stochastic process algebra PEPA [26].

2 Preliminaries

In this section we provide a brief overview to the Prism input language, Markov
decision processes (MDPs) as underlying semantics and the quantitative measures
that can be addressed using probabilistic model checking. For details on Prism
we refer, e.g., to [42,43]. Details on MDPs and probabilistic model checking can,
e.g., be found in [46,29,13] and the tutorial [19]. In the later sections of the paper
we assume the reader to be familiar with the core concepts of Reo. For further
details we refer, e.g., to [2,14].

Markov decision processes. A Markov decision process (MDP) is a tuple
M = (S,Act, P,Rew) where S is a finite set of states, Act a finite set of actions,
P : S×Act×S → [0, 1]∩Q is the transition probability function and Rew is a set
of reward functions rew i : S×Act → N. We require that

∑
s′∈S P (s, α, s′) ∈ {0, 1}

for all (s, α) ∈ S×Act. We denote by Act(s) the set of actions that are enabled in
s, i.e., α ∈ Act(s) iff P (s, α, s′) > 0 for some s′ ∈ S. The paths of M are finite or
infinite sequences s0 α0 s1 α1 s2 α2 . . . where states and actions alternate such that
P (si, αi, si+1) > 0 for all i ⩾ 0. Intuitively, in each step first the non-determinism
between the enabled actions is resolved and then the successor state is chosen
according to the probability distribution. If π=s0 α0 s1 α1 s2 α2 . . . αk−1 sk is a
finite path, then rew(π)=rew(s0, α0)+rew(s1, α1)+. . .+rew(sk−1, αk−1) denotes
the accumulated reward along π. A (randomized) scheduler for M, often also
called policy or adversary, is a function σ that assigns to each finite path π a
probability distribution over Act(last(π)) resolving the non-determinism in the
MDP, where last(π) is the last state of π.

The Prism input language. We provide a brief, informal overview of the
Prism modeling language (which is also used by other tools and alternative
model checkers such as Storm) and its MDP-based semantics. In particular, we
concentrate on the features that are used for the synchronization of the individual
modules, as our work presented in this paper extends them with features for
multi-action synchronization.

A Prism language model description generally consists of a set of modules
M1, . . . ,Mn. Each module can be seen as an independent process with local state
variables, which can be either Boolean or can take values from a fixed integer

4

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

module foo
s : [0..4] init 0;

[act1] s = 0 → 1/2 : (s′ = 0) + 1/2 : (s′ = 1);

[] s < 4 → 1/4 : (s′ = 0) + 3/4 : (s′ = s+ 1);

endmodule

Fig. 2. A simple Prism module

range. The values of these state variables can only be updated from within the
module, but can be read from other modules. Therefore, state variable names
have to be unique across all the modules in the system. In addition to the local
variables inside the modules, one can also declare global variables, which can
be updated from any module with certain restrictions that ensure the absence
of conflicting updates. In addition to modules, Prism allows defining reward
structures that assign costs to either states or transitions.

The global state space of the composed MDP then consists of the Cartesian
product of the local variables of all the modules, as well as of the global variables.
Thus, each state in the MDP corresponds to a particular variable valuation. The
step-wise behavior of a module Mi is specified by a set of guarded commands Ci,
where each command cj consists of an action aj , a state guard gj and an update
specification uj . The state guard, a Boolean expression over the variable valuations
of all variables (global and local in any module), determines whether a command
is locally enabled in a module. The update specification describes a probability
distribution over the updates to the variable valuations. The action of a command
allows for the synchronization between modules. A command becomes globally
enabled only if all synchronization partners provide corresponding locally enabled
commands. In standard Prism, the action consists of an action name or it can be
left empty. The latter corresponds to an internal action that can happen at any
time the state guard evaluates to true. Such actions never synchronize with other
actions. Consider the example in Fig. 2. Here, the Prism module has a single
variable s with possible values 0, . . . , 4 and two guarded commands. The first,
with action act1, is enabled if variable s = 0 and, upon execution, will set the
value of variable s to either 0 or 1, each with probability 1/2. The second guarded
command specifies an internal action, which is enabled as long as s < 4 and,
upon execution, will reset the value of s to 0 with probability 1/4 or increment
the value of s by 1 with probability 3/4. Each module Mi has an action alphabet
Act i, which consists of all the actions that are mentioned in the commands of
module Mi.

The composed MDP arises from the parallel composition of the modules
M1, . . . ,Mn. Prism supports several process-algebra operators that allow fine-
grained control over the order and synchronization type used in the parallel
composition [43,44]. The parallel composition operator M1||M2, which is used by
default, synchronizes commands in M1 and M2 that have actions which occur
in both action alphabets Act1 and Act2. Thus, a command in M1 with action
a ∈ Act1 ∩Act2 is only enabled in some state in M1||M2 if there exists at least

5

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

one command in M2 with action a that is enabled as well. In this case, each
enabled a-command in M1 can be executed with each enabled a-command in
M2. On the other hand, if there is no enabled a-command in M2, then none
of the a-commands in M1 are enabled. Those commands with actions outside
of Act1 ∩ Act2, as well as those without an action, can be executed only by
themselves, i.e., in an interleaved manner. In addition to this default parallel
composition operator, Prism supports an operator M1|||M2, which does not
allow any synchronization and instead composes the commands of M1 and M2 in
an interleaved manner, as well as a composition operator M1 |Act |M2 that allows
for specifying the set of actions Act over which synchronization happens directly.
Thus, M1||M2 is equivalent to M1 |Act1∩Act2|M2 and M1|||M2 is equivalent to
M1 |∅|M2, i.e., using the empty set as the synchronizing alphabet. The action
alphabet of the composition of M1 and M2 is obtained as the union of Act1
and Act2. Additionally, there is an operator that supports hiding of actions,
i.e., turning some named actions into internal, empty actions and removing the
actions from the action alphabet, as well as an operator for renaming actions.

Quantitative analysis. Probabilistic model checkers such as Prism and Storm
can be used for the automated analysis of MDPs, for example answering questions
such as “What is the maximal (minimal) probability for reaching some goal
state, ranging over all schedulers?”. Observing the rewards in the MDP, which
can for example be used to model costs, energy, utility, etc., such tools also
support a reward-based analysis, e.g., computing the maximal (minimal) expected
accumulated reward until some goal is reached. Here, a trade-off analysis between
multiple reward functions is of particular interest, for example using multi-
objective analysis [20,21] or analysis of an energy-utility trade-off [10,11].

3 Exogenous coordination with Prism

We have extended Prism’s guarded command language with features that facili-
tate the modeling of more complex coordination schemes, in particular exogenous
coordination. Most importantly, we have conservatively extended the Prism
language to support multi-actions. Although multi-actions arise rather naturally
in Reo connectors coordinating the activity and communication of components,
till now there has been no support for in Prism.

Extending the Prism language with multi-actions. A command in our
extension comprises a (possibly empty) set of actions α, a state guard, and an
update specification. The actions α can either occur in a closed form, denoted by
[α] or an open form, denoted by]α[. Intuitively, a closed multi-action indicates
that no further action can be added during composition and yield a multi-action
α′ ⊆ α, while an open multi-action allows the composition with other actions
to form a multi-action α′ ⊇ α. Note that this extension is conservative in the
sense that if α occurs only in closed form and contains at most one action, every
command is as in standard Prism. As before, the action alphabet Act i of module
Mi is obtained from the set of actions that occur in any of Mi’s commands.

6

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

(1)
[α1] : g1 → u1 ∈ C1 ∧ [α2] : g2 → u2 ∈ C2 ∧ α1 = α2 ∧ α1 ∩Act ̸= ∅

[α1 ∪ α2] : g1 ∧ g2 → u1 · u2 ∈ C1||2

(2a)
[α1] : g1 → u1 ∈ C1 ∧ α1 ∩Act = ∅

[α1] : g1 → u1 ∈ C1||2
(2b)

[α2] : g2 → u2 ∈ C2 ∧ α2 ∩Act = ∅
[α2] : g2 → u2 ∈ C1||2

(3)
]α1[: g1 → u1 ∈ C1 ∧]α2[: g2 → u2 ∈ C2 ∧ α1 ∩Act = α2 ∩Act

]α1 ∪ α2[: g1 ∧ g2 → u1 · u2 ∈ C1||2

(4a)
]α1[: g1 → u1 ∈ C1 ∧ α1 ∩Act = ∅

]α1[: g1 → u1 ∈ C1||2
(4b)

]α2[: g2 → u2 ∈ C2 ∧ α2 ∩Act = ∅
]α2[: g2 → u2 ∈ C1||2

(5a)
]α1[: g1 → u1 ∈ C1 ∧ [α2] : g2 → u2 ∈ C2 ∧ α2 ̸= ∅ ∧ α1 = α2 ∩Act

[α1 ∪ α2] : g1 ∧ g2 → u1 · u2 ∈ C1||2

(5b)
[α1] : g1 → u1 ∈ C1 ∧]α2[: g2 → u2 ∈ C2 ∧ α1 ̸= ∅ ∧ α2 = α1 ∩Act

[α1 ∪ α2] : g1 ∧ g2 → u1 · u2 ∈ C1||2

Fig. 3. SOS rules for the parallel composition of the commands of two modules, syn-
chronizing over the action alphabet Act .

Using the well-known SOS notation, we now provide the rules for the
M1|Act |M2 parallel composition operator (see Fig. 3) that supports multi-actions.
As noted above, M1||M2 can be obtained by using Act = Act1 ∩ Act2 as the
synchronization alphabet. In Fig. 3, we denote by [α] : g → u ∈ Ci that there
is a command in module Mi with closed multi-action α, state guard g and
update specification u. Similarly,]α[: g → u ∈ Ci denotes the same command
albeit with open multi-action α. In the bottom part of the rules, C1||2 stands
for the commands in the composed module M1||M2. Furthermore, u1 · u2 stands
for the combined update specification obtained from u1 and u2 by using their
product distribution, just as in the standard Prism semantics. For instance, the
combined update specification u1 · u2 for u1 = 1/2 : (s′=0) + 1/2 : (s′=1) and
u2 = 1/3 : (t′=0) + 2/3 : (t′=1) would be

1/6 : (s′=0, t′=0) + 2/6 : (s′=1, t′=0) + 1/6 : (s′=0, t′=1) + 2/6 : (s′=1, t′=1).

We now provide some intuitive explanations for the composition rules. Rule (1)
concerns the synchronization of two commands with closed multi-actions. As
both are closed, it is not possible to add additional actions, which implies that
α1 = α2 = α1 ∪ α2. The condition α1 ∩ Act ̸= ∅ ensures that there is at least
one action available for synchronization. All commands with closed actions that
do not have any synchronizing action are handled by the symmetrical rules (2a)
and (2b). This includes the handling of the closed empty multi-action, clearly
excluded from the scope of rule (1). Altogether, rules (1), (2a) and (2b) collapse
to the standard composition operator of Prism whenever the multi-actions are
singletons or empty, thus preserving the standard Prism semantics whenever
neither multi-actions nor open actions are used.

Rules (3), (4a) and (4b) deal with the composition of commands with open
multi-actions. Rule (3) allows the parallel execution of two commands whenever
their actions agree on the synchronized action alphabet. Note that there is no

7

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

restriction on the non-emptiness of α1 ∩ Act and α2 ∩ Act . Thus, two open
commands that do not have actions in the synchronization alphabet and are
therefore “unrelated” can be executed in parallel. Likewise, by rules (4a) and
(4b), those actions can also be executed without synchronization.

Rules (5a) and (5b) deal with the parallel composition of open and closed
commands. For (5a), the condition α2 ̸= ∅ ensures that closed, empty actions
never synchronize, while α1 = α2 ∩Act ensures that α1 ⊆ α2, i.e., α1 introduces
no new actions, and that α1 agrees with α2 on the synchronizing actions. Rule
(5b) is the symmetric rule to rule (5a).

The three rules (3), (4a) and (4b) correspond to the product rules for a data-
abstract simple probabilistic constraint automaton as presented in [7]. The other
rules in Fig. 3 can be similarly seen as variants of those product rules, adapted
for closed commands and the mixture of closed and open commands in a natural,
backward compatible fashion. Note that our parallel composition is commutative
and associative, i.e., for modules M1, M2, and M3 we have that the semantics of
M1 ∥ M2 is isomorphic to the semantics of M2 ∥ M1 and likewise, the semantics
of M1 ∥ (M2 ∥ M3) is isomorphic to the semantics of (M1 ∥ M2) ∥ M3. The proof
of this statement is straightforward but tedious and is provided in the extended
version of this paper [9].

In the translation from the Prism language model description to the under-
lying MDP, the set of actions in the MDP then corresponds to the powerset
of action names that appear in the model description. That is, for an action
alphabet Act of the composed system, the set of actions in the MDP is then
Act = 2Act , i.e., each action in the MDP is a subset of Act .

Reward structures in PRISM can be used to assign rewards to state-action
pairs in the MDP, by declaring reward values for states satisfying a state guard
and a specific, single action name. We have extended the declarations of reward
structures with support for multi-action specifications, i.e., of the form [α] and
]α[in the definitions of reward structures, where α is a set of actions from the
action alphabet Act of the composed system. The reward value is then assigned
to state-action pairs in the MDP with matching actions. A specification [α]
matches exactly the action β ∈ Act in the MDP iff α = β. For]α[, all actions
β ∈ Act that satisfy α ⊆ β match and are assigned the reward value. This can
be used, e.g., to assign a reward whenever a particular action name is active,
irregardless of which other actions in the system are active simultaneously.

Further extensions of the Prism language. We have extended the Prism
language with additional features that simplify exogenous and compositional
model design. Prism supports a mechanism to take one module and obtain an
additional instance. As the variable names and action names of a module live in
the same namespace (even local variables of a module can be read from other
modules), this requires renaming all module variables and possibly the action
names in case synchronization between instances should be avoided. For example,
the Prism statement

module M2 = M1 [s1 = t1, s1 = t2, a1 = a2] endmodule

8

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

constructs module M2 as a copy of M1, renaming the state variables s1 and s2

to t1 and t2, respectively, as well as renaming action a1 to a2. As this kind of
statement requires detailed knowledge of the variable names for the module, we
have extended the syntax to allow for rule-based renaming. For example, the
statement

module M2 = M1 (varprefix = M1_)[a1 = a2] endmodule

would automatically rename a variable s in M1 to M1_s, which makes it easy
to ensure global uniqueness of variable names. Additionally, we support rules
with varsuffix (adding a given suffix to the variable names), actionprefix
and actionsuffix (similarly renaming the individual action names occurring in
a module). Rule-based renaming is being performed first, then the additional,
explicitly given, renamings are performed. Note that, however, every state variable
and action can only be renamed once. With this automatic renaming, Prism’s
module renaming statement can be seen as the instantiation of a module. However,
in standard Prism, every module definition that appears in the input file is
automatically instantiated. This makes it impossible to provide a library of
module templates, of which only a subset is actually instantiated. To remedy this
issue, we allow a module definition to be marked as template. Such a template
module will not be instantiated automatically, but is available for instantiation
via module renaming.

A simple example of exogenous coordination. As an example for exogenous
coordination, consider a simple setting with three producer modules and three
consumer modules. Each of them has a certain probability in each step to become
broken. In each step, exactly one of the non-broken producers shall synchronize
with one of the non-broken consumers, until eventually almost surely all have
failed. In the standard Prism language, we have to hard-code one command
for each synchronization choice in each module, e.g., by using actions picj to
synchronize producer i with consumer j. With our extension of Prism, we can
model exogenous coordination: Each producer and consumer module has a single
action, which is suitably synchronized by some glue code modules, e.g., a merger
module that nondeterministically selects one of the producers and is chained
to a router module that nondeterministically selects one of the consumers. In
the extended version of this paper [9], we provide a detailed description of both
approaches. It is readily apparent that the second, exogenous approach provides
far greater flexibility and separation of concerns, making it easy to replace the
coordination glue code by alternative variants, specializations, etc.

Prism implementation. We have extended Prism with support for handling
multi-actions and for dealing with the other proposed language extensions, both
in Prism’s explicit engine (where an explicit, graph-based model representation
is built) and in the (semi-)symbolic engines (where a symbolic model representa-
tion [42] is used). For the explicit engine, this mostly consists of the handling of
the parallel composition according to the rules of Fig. 3 during model construc-
tion. For a given variable valuation, we can easily determine the commands that
are locally enabled in each module of the system. Then, we have to determine

9

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

the possibilities for synchronized and independent execution of commands from
different modules, maintaining data structures to speed-up the lookup of potential
synchronizing commands.

For the symbolic engine of Prism, which is based on a symbolic representa-
tion of the model via multi-terminal binary decision diagrams (MTBDDs) [42],
the transition structure of an MDP is encoded using MTBDD variables for the
nondeterministic choices, as well as variables for encoding the states and successor
states, mapping to the probability for a given transition in the MDP. As Prism
already encodes each action name in the model description by one variable, adapt-
ing the encoding to multi-actions is rather straightforward. Likewise, the various
composition rules in Fig. 3 can be elegantly formulated as symbolic operations
on the MTBDD representation for each module. One complication however is the
encoding of local nondeterminism within a module, i.e., to distinguish which of
multiple commands with the same multi-action that are enabled simultaneously
are actually executed. The encoding used by standard Prism (a binary encoding
of an integer for the various local nondeterministic choices) is not convenient for a
fully symbolic composition, therefore we changed this encoding. In our extension,
each command in the model corresponds to an MTBDD variable that denotes
whether this command is actually active or inactive in a given step.

4 Reo for exogenous coordination within Prism

Having extended Prism by the infrastructure for the exogenous coordination of
probabilistic components, we are now interested in a framework for the convenient
modeling of the coordination glue code. For this, the channel-based coordination
language Reo [2] provides an elegant and compositional modeling approach, where
the coordination glue code for components is specified using a Reo network
of channels that can be used to model a plethora of coordination patterns.
For this, both stateless channels such as synchronous channels (ensuring that
activity at their channel ends happens simultaneously), asynchronous channels
(ensuring the non-synchronicity/mutual exclusion at their channel ends), lossy
channels or transformer channels, as well as stateful ones such as FIFO channels
(which can accept a token or data and pass it on later) are used, mediated by
network nodes that coordinate the activity of the connected channels. Additionally,
ready-made or user-defined circuits can be used as building blocks to model
common coordination patterns, such as a sequencer that ensures that certain
activity happens one after the other. With constraint-automata-based operational
semantics [14,7] for Reo, the behavior of the whole network can be obtained from
the automata-based descriptions of the individual parts (channels and nodes) in
a compositional manner by a series of product operations.

To allow the use of Reo as the coordination glue code of Prism components,
we make use of the ReoCompiler tool developed at the Centrum Wiskunde
& Informatica, Amsterdam [47]. Among others, the ReoCompiler supports
the convenient textual specification of Reo networks, providing the glue code
for components. Then, it allows the compilation of the glue code to a target

10

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

language (such as Java). When combined with definitions of the components in
the target language (e.g., a Java class implementing the component’s behavior),
the coordinated system can then be executed. The external components interface
with the Reo network via input and output ports.

Prism as a target language of the ReoCompiler. We have extended the
existing ReoCompiler with support for the Prism language. In particular, we
provide a translation from the constraint-automata-like intermediate compilation
result for the glue code to the Prism language. This relies on the extension
for multi-actions and the product operator for modules presented in Sec. 3,
which allows the encoding of the operational semantics via (data-abstract) simple
probabilistic constraint automata [7]. Together with the flexible module instanti-
ation from module templates, the generated Prism language model description
properly instantiates the various (Prism-based) components and connects with
the generated coordination glue code. Here, Prism’s components actions are
exported to the network as input/output ports.

The constraint-automata semantics for the Reo channels supports the transfer
of data, i.e., ports or nodes in the network are not only active or not, but may
have some observable data value. As we are mainly interested in the data-abstract
coordination of Prism components, i.e., an action either fires or not but carries no
data, we treat the Reo network as using a singleton data domain. As sometimes
attaching data to actions is natural for certain modeling tasks, we however provide
basic tooling as well to emulate actions carrying data by encoding the different
data values as variants of the actions, i.e., for an action a there are variants a1,
a2, . . . corresponding to the data values 1, 2,

We support two orthogonal approaches to the compilation. In the first, mono-
lithic approach, the whole Reo network comprising the glue code, i.e., all parts
of the network except for the “native” Prism components are compiled into a
single protocol module. This compilation relies on the composition of all the
channels and nodes within the ReoCompiler. In a second, compositional ap-
proach, the ReoCompiler is used to generate a Prism language file where all
the individual channels and nodes of the Reo network are translated to individual
Prism modules and where the composition of the behavior is performed during
Prism’s translation from the model description to the concrete MDP. Here, we
crucially rely on the fact that we can readily translate the ReoCompiler’s
internal representation of Reo networks into a Prism module. It should be
noted that both approaches have a minor difference in the underlying semantics:
The composition inside the ReoCompiler relies on classical interleaving for
independent (unsynchronized) parts of the Reo network. Then, the generated
code realizes a sequential implementation that simulates the parallel execution
of these independent parts. In the compositional approach, unrelated actions
can synchronize (cf. rule (3) in Fig. 3, with Act = ∅) and thus are executed in
parallel. This can, e.g., be observed for chains of FIFO channels. The monolithic
approach can be useful to hide the internal complexity of a Reo network from
Prism, while the compositional approach provides more insight into the parts
and the structure of the Reo network at the level of the model checker.

11

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Further extensions to the ReoCompiler. We have extended the ReoCom-
piler with some other features that are useful in the context of the quantitative
analysis of the generated models. First, towards model checking it is often required
to refer to the content of a state variable, e.g., for one of the Prism components
or the state of a FIFO channel in the Reo network. As the focus of the Reo-
Compiler is more on generating executable code where the component names
are largely irrelevant, it only generates unique, but not necessarily stable names.
We have added syntax and support for providing a name during component
instantiation, which results in a predictable name for the state variables of the
component instances (and memory cells for stateful channels) in the generated
Prism language file.

Another common requirement in probabilistic model checking is the ability to
assign rewards or costs to the model, for example to model the energy consumption
or to track the achieved utility on completion of a task. In Prism, such rewards
can be attached to states (e.g., for every step spent in a state, a certain reward
is accumulated) as well to transitions (e.g., for a step with certain actions, a
given reward is accumulated). As the names of the actions (i.e., ports and nodes)
generated during the network composition process are not necessarily stable or
predictable, e.g., due to the application of the Reo hiding operator, we have
extended ReoCompiler with support for reward monitors. Here, a reward
monitor is a special component with a given set of input ports which can be
attached to the network using the standard Reo channels and operations. The
reward-monitor definition then specifies the rewards that are assigned whenever
certain of the input ports of the monitor are active. We support two variants,
local and global monitors. A local monitor tracks a reward on its own, resulting
in a single reward structure in the generated Prism file. In contrast, a global
monitor carries a label that ensures that, if there are multiple monitors with the
same label, the reward from all of those monitors is collected in a single Prism
reward structure. This allows, e.g., attaching a dedicated reward monitor to each
component that records the energy consumption when there is port activity, with
all those rewards being added together to yield the overall energy consumption
of the system in each step.

Additionally, we have added the ability to include Prism language snippets
from external files into the generated Prism language file, allowing the convenient
inclusion of the module templates for the Prism components that may be
instantiated in the generated model description, as well as auxiliary definitions
that commonly arise during the modeling with Prism, such as constant definitions,
the definition of state labels as well as additional reward structures.

Example. In the extended version of this paper [9], we provide a detailed
description how the coordination glue code in the producer/consumer example
can be elegantly modeled using a Reo network, with automatic generation of the
corresponding Prism language model description via our extended version of the
ReoCompiler. Here, we can model the coordination using Reo channels and
an exclusive router, which provides the desired coordination in a compositional
manner.

12

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Other model semantics. In addition to the MDP semantics, it is also possible
to generate a model description for a discrete-time Markov chain (DTMC). Here,
Prism resolves all nondeterminism in the MDP model uniformly. Moreover, it
is possible as well to select probabilistic timed automata (PTA) semantics [35],
where the Prism modules may additionally contain special clock variables, clock
invariants and the commands can contain clock guards and clock resets. For
these PTA models, our extension for multi-actions and the related composition
operators supports the analysis via Prism’s digital clock engine, which internally
transforms the PTA into an MDP [34]. The adaption of Prism’s other PTA
analysis engines remains part of future work.

5 Application: Energy-aware Network System

In this section, we present a peer-to-peer file transfer case study that leverages the
extensions to Prism and the Reo tool support to model the complex coordination
between the components of the system. The model is inspired by a case study
presented in [24]. The network system consists of several stations or nodes
interconnected via a network with some fixed topology, e.g. a ring or star topology.
Each of the stations can store files. We do not consider the actual contents of
these files in our model and rather represent them using an abstract index. A
station may request a file from another station connected to the network. Then,
the file is transfered between the stations using a peer-to-peer approach, i.e.,
without a central entity handling the transfer.

In a file transfer, each participating station may act in one of three different
roles. The station that initiated the request and will receive the file plays the role
of the client. Conversely, a station that has a local copy of the requested file can
act as a server. Since a file transfer can also happen between stations that are not
directly connected, but via one or more hops, the stations in between client and
server play the role of a relay. A relay station retransmits incoming requests and
file data to its neighboring stations. As a file transfer may be initiated between
any two stations on the network, each station may dynamically play one of the
three roles: server, client or relay.

To model such a system, we employed the role-based modeling approach
proposed in [17]. Within this approach, the dynamically changing behaviors,
i.e., the roles, are separated from the static core functionality. The main idea is
to encapsulate the role behaviors into role components. These role components
are then bound to their player using a Reo connector. This binding connector
enables the player component to dynamically enact the role behavior.

Figure 4 depicts the binding connector between a station and its roles in detail.
Here, denotes standard Reo nodes with nondeterministic merging on the input
side and replication (simultaneous activity) on the output side, while denotes
an x-router node, where there is a nondeterministic choice on the output side.
The station component as well as the role components are modeled as Prism
modules. Each of the role components is wrapped in a role adapter (shown in
detail for the client role). This adapter adds one port that allows enabling or

13

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Station

store

load
Client

role adapter

Server

Relay

in

out

actclient actserver actrelay

Fig. 4. A station component and its bound role components

disabling the role. Internally, this port is synchronized with the in and out ports
of the role component, thus blocking the act port will effectively disable the role.
The connector between the station component and the role components ensures
that each role can retrieve the file stored on the local station or replace it with
another one. The other part of the connector attaches the roles to the network,
allowing each of them to send or receive requests or file data. We use the same
binding connector for all stations within the network. The network itself is also
realized as a Reo network which connects the in and out ports of the stations
according to the network topology.

The act ports of a station’s roles allow the role-playing coordinator to enable
and disable role behaviors dynamically. The role-playing coordinator enforces
that all stations act according to the peer-to-peer file-transfer protocol. The core
component of a station can generate a request for a certain file according to a
probabilistic distribution. This request is buffered by the coordinator. Eventually,
the coordinator allows the station to play the client role to send the request into
the network. Another station will then receive this request. In case this station
has the requested file, the server role will be enabled, which in turn fetches the file
and sends it back. If the station does not have the file, the relay role will be played
and the request is sent to the neighboring stations. For simplicity, the global
coordination will also ensure that only one file transfer happens simultaneously.

Our approach allows us to vary the coordination without modifying the Prism
modules “implementing” the station core component and the role components.
The connector modeling the network can be changed to different topologies.
The remaining nondeterminism in the system stands for the different strategies
that may be employed to achieve certain objectives. This concerns, e.g., the
role-playing assignments for the different stations and the choice which of the
pending requests will be processed next. By attaching different coordination, we
can thus explore the effect of a particular strategy, for example replacing the
nondeterministic choice of the next request by a uniform random choice. The

14

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

coordinator could also be augmented to ensure that no file is “forgotten” by the
network by blocking requests that would overwrite the last copy of a file.

We have analyzed the file-transfer model with three stations. In particular,
we have considered four variants of the model by using a ring or chain topology
of the network connector and by either using a nondeterministic choice or a
probabilistic choice of the next request to be processed.1 For the analysis, we have
added reward monitors and state rewards to the model. Energy is consumed on
network activity, i.e., whenever one or more of the in and out ports of the network
connector are active. Furthermore, a penalty (negative utility) is associated with
pending requests that have not yet been processed. We have used Prism to
analyse the model variants, among others asking for

(a) the minimal/maximal probability that eventually station 1 receives its re-
quested file,

(b) the minimal/maximal probability that eventually all stations have a file,
(c) the minimal expected time until the file requested by station 1 is delivered,
(d) the minimal expected time until all stations have received a file,
(e) the maximal probability to deliver a file to station 1 with less than x penalty,
(f) the maximal probability for delivering a file using a given energy budget

without overstepping the penalty threshold, and
(g) the minimal energy required such that a file is delivered to station 1 with a

probability greater than 0.9 without a penalty violation.

The analysis results for the queries (c) to (g) are presented in Table 1. The
results for (c) show that in a ring topology, the requested file is delivered faster
than in the chain topology. This is as expected, since in the chain topology, we
always need one hop to transfer a file between the two outer stations of the
network, while in the ring topology a direct transfer without hops is always
possible. The same argument also applies to (d). The results for (e) show the
difference between the random scheduling and the optimal scheduling of the
next file transfer. Generally, the random scheduling collects a higher penalty,
which means that pending transfers are kept waiting longer. The reward-bounded
reachability probability (f) and the quantile [10] query (g) illuminate the trade-off
between early processing of a request and thus consuming less energy, or waiting
for another request to arrive thereby collecting a penalty for pending requests.
Comparing the minimal energy consumption in (g) for the nondeterministic and
random selection of the requests, we see that the nondeterministic choice uses less
energy. This is as expected, because the nondeterministic selection corresponds
to the optimal strategy for choosing the next request.

Model sizes and the time required for model construction and analysis of
instances of queries (f) as well as (g) are presented in Table 2. The number of
components consists of the number of channels, Prism modules and Reo nodes
in the network. The actions column refers to the number of unique action names
within the generated model. Here, the analysis has been carried out using the
1 For further details on the models and experiments, see
https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/FA18.

15

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/FA18

Table 1. Analysis results for the file-transfer model with 3 stations

Variant (c) (d) (e) (f) (g)

chain, nondet 4.0 16.15 0.95 0.98 10.0
ring, nondet 2.0 15.94 1.0 0.96 12.0
chain, random 5.87 18.73 0.64 0.65 15.0
ring, random 4.0 18.34 0.78 0.72 12.0

Table 2. Model sizes and analysis times for the file-transfer model with 3 stations

Time (s)

Variant States Components Actions Build Analysis (f) Analysis (g)

chain, nondet 4204 108 150 10.7 81.1 58.4
ring, nondet 34164 112 150 90.7 197.8 91.3
chain, random 12612 103 154 10.6 92.0 24.4
ring, random 102492 107 154 62.6 224.5 101.0

symbolic engine of Prism and the monolithic approach. The considerable number
of components and states is caused by the detailed modeling of the role-playing
coordinator. The coordinator divides a file transfer into multiple steps which
requires storing request messages in its internal state. The number of states within
the random variants is greater than in the nondeterministic variants because the
random selection of requests requires additional internal state compared to a
nondeterministic selection. The ring topology further increases the number of
states since more routes within the network are possible.

6 Conclusions

We have extended the Prism language and the Prism model checker by fea-
tures that allow an exogenous modeling of the coordination of Prism modules.
We believe that, already on its own, these modeling capabilities will be very
useful for the modeling of complex case studies. By using our extension of the
ReoCompiler, this exogenous approach can additionally leverage the elegant
specification of complex coordination patterns by Reo networks and allow the
creation of model variants, as seen in our case study.

As future work, we are interested in exploring the full integration of actions
with attached data values into Prism. Previous experience with the symbolic
encoding of models with data [8] suggest that this would require some effort to
ensure a compact symbolic encoding, which is compounded by the fact that good
heuristics for the variable ordering from the non-probabilistic setting, such as
interleaving the data on the actions with related state variables, may conflict with
variable-ordering restrictions designed for efficient probabilistic model checking.

We are also interested in ways to provide the user more feedback during
modeling, e.g., by integrating a visualization of the Reo network with animated

16

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

control flow into Prism’s simulation view, which can also be used to explore
counter-examples from Prism’s non-probabilistic CTL and LTL checkers.

References

1. R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design,
15(1):7–48, 1999.

2. F. Arbab. Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science, 14:329–366, 2004.

3. F. Arbab, L. Astefanoaei, F. S. de Boer, M. Dastani, J. C. Meyer, and N. A. M.
Tinnemeier. Reo connectors as coordination artifacts in 2APL systems. In Intelligent
Agents and Multi-Agent Systems (PRIMA’08), volume 5357 of LNCS, pages 42–53.
Springer, 2008.

4. F. Arbab, T. Chothia, R. van der Mei, S. Meng, Y. Moon, and C. Verhoef. From
coordination to stochastic models of QoS. In Coordination Models and Languages
(COORDINATION’09), volume 5521 of LNCS, pages 268–287. Springer, 2009.

5. F. Arbab, N. Kokash, and S. Meng. Towards using Reo for compliance-aware business
process modeling. In Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA’08), volume 17 of Communications in Computer and Information
Science, pages 108–123. Springer, 2008.

6. F. Arbab, S. Meng, Y. Moon, M. Z. Kwiatkowska, and H. Qu. Reo2MC: a tool
chain for performance analysis of coordination models. In ESEC/SIGSOFT FSE’09,
pages 287–288. ACM, 2009.

7. C. Baier. Probabilistic models for Reo connector circuits. Journal of Universal
Computer Science, 11(10):1718–1748, October 2005.

8. C. Baier, T. Blechmann, J. Klein, and S. Klüppelholz. Formal verification for
components and connectors. In Formal Methods for Components and Objects
(FMCO’08), volume 5751 of LNCS, pages 82–101. Springer, 2009.

9. C. Baier, P. Chrszon, C. Dubslaff, J. Klein, and S. Klüppelholz. Energy-utility
analysis of probabilistic systems with exogenous coordination (extended version),
2018. http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/FA18/.

10. C. Baier, M. Daum, C. Dubslaff, J. Klein, and S. Klüppelholz. Energy-utility
quantiles. In NASA Formal Methods (NFM’14), volume 8430 of LNCS, pages
285–299. Springer, 2014.

11. C. Baier, C. Dubslaff, J. Klein, S. Klüppelholz, and S. Wunderlich. Probabilistic
model checking for energy-utility analysis. In Horizons of the Mind. A Tribute to
Prakash Panangaden, volume 8464 of LNCS, pages 96–123. Springer, 2014.

12. C. Baier, B. R. Haverkort, H. Hermanns, and J. Katoen. Model-checking algorithms
for continuous-time Markov chains. IEEE Transactions on Software Engineering,
29(6):524–541, 2003.

13. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
14. C. Baier, M. Sirjani, F. Arbab, and J. J. M. M. Rutten. Modeling component

connectors in Reo by constraint automata. Science of Computer Programming,
61(2):75 – 113, 2006.

15. C. Baier and V. Wolf. Stochastic reasoning about channel-based component
connectors. In Coordination Models and Languages (COORDINATION’06), volume
4038 of LNCS, pages 1–15. Springer, 2006.

16. A. Bianco and L. de Alfaro. Model checking of probabilistic and non-deterministic
systems. In Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’95), volume 1026 of LNCS, pages 499–513, 1995.

17

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/FA18/

17. P. Chrszon, C. Dubslaff, C. Baier, J. Klein, and S. Klüppelholz. Modeling role-based
systems with exogenous coordination. In Theory and Practice of Formal Methods -
Essays Dedicated to Frank de Boer on the Occasion of His 60th Birthday, volume
9660 of LNCS, pages 122–139. Springer, 2016.

18. C. Dehnert, S. Junges, J. Katoen, and M. Volk. A Storm is coming: A modern
probabilistic model checker. In Computer Aided Verification (CAV’17), Part II,
volume 10427 of LNCS, pages 592–600. Springer, 2017.

19. V. Forejt, M. Z. Kwiatkowska, G. Norman, and D. Parker. Automated verification
techniques for probabilistic systems. In School on Formal Methods for the Design
of Computer, Communication and Software Systems (SFM’11), volume 6659 of
LNCS, pages 53–113. Springer, 2011.

20. V. Forejt, M. Z. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Quantitative
multi-objective verification for probabilistic systems. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’11), volume 6605 of LNCS,
pages 112–127. Springer, 2011.

21. V. Forejt, M. Z. Kwiatkowska, and D. Parker. Pareto curves for probabilistic
model checking. In Automated Technology for Verification and Analysis (ATVA’12),
volume 7561 of LNCS, pages 317–332. Springer, 2012.

22. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6:512–535, 1994.

23. K. He, H. Hermanns, and Y. Chen. Models of connected things: On priced prob-
abilistic timed Reo. In 41st IEEE Annual Computer Software and Applications
Conference (COMPSAC’17), Volume 1, pages 234–243, 2017.

24. R. Hennicker and A. Klarl. Foundations for ensemble modeling – the Helena
approach. In Specification, Algebra, and Software, volume 8373 of LNCS, pages
359–381. Springer, 2014.

25. H. Hermanns. Interactive Markov chains. PhD thesis, University of Erlangen-
Nuremberg, Germany, 1999.

26. J. Hillston. A compositional approach to performance modelling. PhD thesis,
University of Edinburgh, UK, 1994.

27. S. T. Q. Jongmans and F. Arbab. Overview of thirty semantic formalisms for Reo.
Scientific Annals of Computer Science, 22(1):201–251, 2012.

28. S. T. Q. Jongmans, F. Santini, M. Sargolzaei, F. Arbab, and H. Afsarmanesh.
Automatic code generation for the orchestration of web services with Reo. In
Service-Oriented and Cloud Computing (ESOCC’12), volume 7592 of LNCS, pages
1–16. Springer, 2012.

29. L. Kallenberg. Markov Decision Processes. Lecture Notes. University of Leiden,
2011.

30. N. Kokash and F. Arbab. Formal design and verification of long-running transactions
with extensible coordination tools. IEEE Transactions on Services Computing,
6(2):186–200, 2013.

31. N. Kokash, C. Krause, and E. de Vink. Reo + mCRL2: A framework for model-
checking dataflow in service compositions. Formal Aspects of Computing, 24(2):187–
216, 2012.

32. T. Kühn, M. Leuthäuser, S. Götz, C. Seidl, and U. Aßmann. A metamodel family for
role-based modeling and programming languages. In Software Language Engineering
(SLE’14), volume 8706 of LNCS, pages 141–160. Springer, 2014.

33. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic
real-time systems. In Computer Aided Verification (CAV’11), volume 6806 of LNCS,
pages 585–591. Springer, 2011.

18

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

34. M. Z. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods in System
Design, 29(1):33–78, 2006.

35. M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. Theoretical Computer
Science, 282(1):101–150, 2002.

36. Y. Li, X. Zhang, Y. Ji, and M. Sun. Capturing stochastic and real-time behavior in
Reo connectors. In Symposium on Formal Methods: Foundations and Applications
(SBMF’17), volume 10623 of LNCS, pages 287–304. Springer, 2017.

37. M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling
with generalized stochastic Petri nets. SIGMETRICS Performance Evaluation
Review, 26(2):2, 1998.

38. Y. Moon, A. Silva, C. Krause, and F. Arbab. A compositional model to reason about
end-to-end QoS in stochastic Reo connectors. Science of Computer Programming,
80:3–24, 2014.

39. Y.-J. Moon, F. Arbab, A. Silva, A. Stam, and C. Verhoef. Stochastic Reo: a
case study. In Workshop on Harnessing Theories for Tool Support in Software
(TTSS’11), pages 90–105, 2011.

40. N. Oliveira, A. Silva, and L. S. Barbosa. Imcreo: Interactive Markov chains for
stochastic Reo. J. Internet Serv. Inf. Secur., 5(1):3–28, 2015.

41. G. A. Papadopoulos and F. Arbab. Coordination models and languages. Advances
in Computers, 46:329 – 400, 1998.

42. D. Parker. Implementation of Symbolic Model Checking for Probabilistic Systems.
PhD thesis, University of Birmingham, 2002.

43. PRISM Manual. http://www.prismmodelchecker.org/manual/.
44. PRISM Language Semantics. http://www.prismmodelchecker.org/doc/

semantics.pdf.
45. J. Proença. Synchronous coordination of distributed components. PhD thesis, Leiden

University, 2011.
46. M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. John Wiley & Sons, Inc., New York, NY, 1994.
47. The Reo compiler. https://github.com/ReoLanguage/Reo.
48. H. Zhu and M. Zhou. Roles in information systems: A survey. IEEE Transactions

on Systems, Man, and Cybernetics, Part C, 38(3):377–396, 2008.

19

Final edited form was published in "It's All About Coordination", Cham: Springer 2018
https://doi.org/10.1007/978-3-319-90089-6_3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://www.prismmodelchecker.org/manual/
http://www.prismmodelchecker.org/doc/semantics.pdf
http://www.prismmodelchecker.org/doc/semantics.pdf
https://github.com/ReoLanguage/Reo

	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (postprint):
	Christel Baier, Philipp Chrszon, Clemens Dubslaff, Joachim Klein, Sascha Klüppelholz
	Energy-Utility Analysis of Probabilistic Systems with Exogenous Coordination
	Chrszon_Energy-Utility Analysis.pdf
	Energy-Utility Analysis of Probabilistic Systems with Exogenous Coordination

	Chrszon_Energy-Utility Analysis.pdf
	Energy-Utility Analysis of Probabilistic Systems with Exogenous Coordination

