Skip to main content

Formal Verification of the Correspondence Between Call-by-Need and Call-by-Name

  • Conference paper
  • First Online:
Functional and Logic Programming (FLOPS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10818))

Included in the following conference series:

Abstract

We formalize the call-by-need evaluation of \(\lambda \)-calculus (with no recursive bindings) and prove its correspondence with call-by-name, using the Coq proof assistant.

It has been long argued that there is a gap between the high-level abstraction of non-strict languages—namely, call-by-name evaluation—and their actual call-by-need implementations. Although a number of proofs have been given to bridge this gap, they are not necessarily suitable for stringent, mechanized verification because of the use of a global heap, “graph-based” techniques, or “marked reduction”. Our technical contributions are twofold: (1) we give a simpler proof based on two forms of standardization, adopting de Bruijn indices for representation of (non-recursive) variable bindings along with Ariola and Felleisen’s small-step semantics, and (2) we devise a technique to significantly simplify the formalization by eliminating the notion of evaluation contexts—which have been considered essential for the call-by-need calculus—from the definitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We believe that our approach can be adopted in other proof assistants as well.

  2. 2.

    Strictly speaking, the reduction rules shown here are called standard reduction rules in their paper, as opposed to non-deterministic reduction. Note that the let-binding \(\mathbf {let}~x=M~\mathbf {in}~N\) is non-recursive.

  3. 3.

    Although this argument seems to be a proof by contradiction, our actual Coq proof is constructive, using an induction on the finite reduction sequence of \({\xrightarrow {\mathrm {name}}}\circ {\xrightarrow {\beta }_*}\) from \(M^\pitchfork \) as we shall see in Sect. 5.

  4. 4.

    Another drawback is that evaluation contexts may introduce an arbitrary number of bindings and therefore need to be indexed by that number to coexist with de Bruijn indices, requiring heavy natural number calculations—like the Omega [9] library for Presburger arithmetic—in the mechanized proofs. Our approach will also obviate the need for such calculations.

  5. 5.

    Indeed, we also formalized the original semantics and proved its correspondence to call-by-name. See: https://github.com/fetburner/call-by-need.

  6. 6.

    This definition is adopted from the accessibility predicate Acc in Coq.

References

  1. Abramsky, S.: The lazy lambda calculus. In: Turner, D.A. (ed.) Research Topics in Functional Programming, pp. 65–116. Addison-Wesley Publishing Co., Boston (1990)

    Google Scholar 

  2. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: Jeuring, J., Chakravarty, M.M.T. (eds.) Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming, Gothenburg, Sweden, 1–3 September 2014, pp. 363–376. ACM (2014)

    Google Scholar 

  3. Ariola, Z.M., Blom, S.: Cyclic lambda calculi. In: Abadi, M., Ito, T. (eds.) TACS 1997. LNCS, vol. 1281, pp. 77–106. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0014548

    Chapter  Google Scholar 

  4. Ariola, Z.M., Felleisen, M.: The call-by-need lambda calculus. J. Funct. Program. 7(3), 265–301 (1997)

    Article  MathSciNet  Google Scholar 

  5. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. Studies in Logic and the Foundations of Mathematics, vol. 103, Revised edn. North-Holland, New York (1984)

    MATH  Google Scholar 

  6. Breitner, J.: The adequacy of Launchbury’s natural semantics for lazy evaluation. J. Funct. Program. 28, e1 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chang, S., Felleisen, M.: The call-by-need lambda calculus, revisited. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 128–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2_7

    Chapter  Google Scholar 

  8. Chlipala, A.: Parametric higher-order abstract syntax for mechanized semantics. In: Hook, J., Thiemann, P. (eds.) Proceeding of the 13th ACM SIGPLAN International Conference on Functional Programming, ICFP 2008, Victoria, BC, Canada, 20–28 September 2008, pp. 143–156. ACM (2008)

    Google Scholar 

  9. Crégut, P.: Omega: a solver of quantifier-free problems in Presburger arithmetic. In: The Coq Proof Assistant Reference Manual, Version 8.7.0 (2017)

    Google Scholar 

  10. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem. Indagation. Math. (Proc.) 75(5), 381–392 (1972)

    Article  MathSciNet  Google Scholar 

  11. Fairbairn, J., Wray, S.: Tim: a simple, lazy abstract machine to execute supercombinators. In: Kahn, G. (ed.) FPCA 1987. LNCS, vol. 274, pp. 34–45. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-18317-5_3

    Chapter  Google Scholar 

  12. Goldfarb, W.D.: The undecidability of the second-order unification problem. Theor. Comput. Sci. 13, 225–230 (1981)

    Article  MathSciNet  Google Scholar 

  13. Gordon, A.D.: A mechanisation of name-carrying syntax up to alpha-conversion. In: Joyce, J.J., Seger, C.-J.H. (eds.) HUG 1993. LNCS, vol. 780, pp. 413–425. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57826-9_152

    Chapter  Google Scholar 

  14. Johnsson, T.: Efficient compilation of lazy evaluation. In: Deusen, M.S.V., Graham, S.L. (eds.) Proceedings of the 1984 SIGPLAN Symposium on Compiler Construction, Montreal, Canada, 17–22 June 1984, pp. 58–69. ACM (1984)

    Google Scholar 

  15. Kesner, D.: Reasoning about call-by-need by means of types. In: Jacobs, B., Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 424–441. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49630-5_25

    Chapter  MATH  Google Scholar 

  16. Launchbury, J.: A natural semantics for lazy evaluation. In: Deusen, M.S.V., Lang, B. (eds.) Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Charleston, South Carolina, USA, January 1993, pp. 144–154. ACM Press (1993)

    Google Scholar 

  17. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. J. Funct. Program. 8(3), 275–317 (1998)

    Article  MathSciNet  Google Scholar 

  18. McBride, C., McKinna, J.: Functional pearl: I am not a number-I am a free variable. In: Nilsson, H. (ed.) Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell 2004, Snowbird, UT, USA, 22–22 September 2004, pp. 1–9. ACM (2004)

    Google Scholar 

  19. McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized. J. Autom. Reason. 23(3–4), 373–409 (1999)

    Article  MathSciNet  Google Scholar 

  20. Ong, C.L.: Fully abstract models of the lazy lambda calculus. In: 29th Annual Symposium on Foundations of Computer Science, White Plains, New York, USA, 24–26 October 1988, pp. 368–376. IEEE Computer Society (1988)

    Google Scholar 

  21. Peyton Jones, S.L.: Implementing lazy functional languages on stock hardware: the spineless tagless G-machine. J. Funct. Program. 2(2), 127–202 (1992)

    Article  Google Scholar 

  22. Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: Wexelblat, R.L. (ed.) Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language Design and Implementation (PLDI), Atlanta, Georgia, USA, 22–24 June 1988, pp. 199–208. ACM (1988)

    Google Scholar 

  23. Schäfer, S., Tebbi, T., Smolka, G.: Autosubst: reasoning with de Bruijn terms and parallel substitutions. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 359–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22102-1_24

    Chapter  Google Scholar 

  24. Sestoft, P.: Deriving a lazy abstract machine. J. Funct. Program. 7(3), 231–264 (1997)

    Article  MathSciNet  Google Scholar 

  25. Urban, C.: Nominal techniques in Isabelle/HOL. J. Autom. Reason. 40(4), 327–356 (2008)

    Article  MathSciNet  Google Scholar 

  26. Vassena, M., Breitner, J., Russo, A.: Securing concurrent lazy programs against information leakage. In: 30th IEEE Computer Security Foundations Symposium, CSF 2017, Santa Barbara, CA, USA, 21–25 August 2017, pp. 37–52 (2017)

    Google Scholar 

  27. Wadsworth, C.P.: Semantics and pragmatics of the lambda calculus. Ph.D. thesis, Oxford University (1971)

    Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for valuable comments and suggestions. This work was partially supported by JSPS KAKENHI Grant Number 15H02681 and 16K12409.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Mizuno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mizuno, M., Sumii, E. (2018). Formal Verification of the Correspondence Between Call-by-Need and Call-by-Name. In: Gallagher, J., Sulzmann, M. (eds) Functional and Logic Programming. FLOPS 2018. Lecture Notes in Computer Science(), vol 10818. Springer, Cham. https://doi.org/10.1007/978-3-319-90686-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90686-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90685-0

  • Online ISBN: 978-3-319-90686-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics