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Abstract. The present paper concerns the individualization of the training of 

aircraft pilots. Specifically, it presents the data collection, and modeling efforts 

carried out to assess trainees’ transition from a controlled, effortful piloting ex-

perience (i.e., System 2), to an automatic, effortless process (i.e., System 1). It 

is argued that cardiovascular activity can be associated with deployment of ef-

fort, and therefore be used for assessing the transition across systems. Heart 

rate, respiration rate, and heart rate variability were sampled on 11 pilots (5 stu-

dents “novice” and 6 instructors “experts”), performing 6 one-hour flights (5 

flights in tandem: one student and one instructor, the 6th flight with an instruc-

tor flying alone). These data were used for the development of a prediction 

model computing the probability of a pilot being an expert or a novice. After a 

“leave-one-tandem-out” validation, the accuracy of the model was 86.86%.  

The results are discussed in terms of effortful processes and skill acquisition. 

Further work will consist in implementing contextual parameters in the model 

in order to improve the prediction. Such a model could be used by instructors 

and trainees as a supporting tool for tracking progress of the training at the in-

dividual level. 

Keywords: Psycho-physiology, Heart rate, Heart rate variability, Ease of flight, 

Training, Quantification of Learning. 

1 Introduction 

In a complex and dynamic environment such as piloting a fighter plane, a pilot must 

constantly be prepared to react to unexpected situations, and engage additional cogni-

tive resources for carrying out his mission. Hence, an important part of military pilot 

training is to appreciate the unpredictable nature of the mission (Fornette, Darses & 

Bourgy, 2015). This educational approach is all the more demanding since it begins 

early in the formation of the trainee and should allow him to perform well in spite of 

the uncertainty of the operating environment.  

For the instructor, identifying the specific moment to go from an expected to an  

unexpected situation is crucial, as the change must only be operated once the trainee  



has acquired the fundamentals of the flight, that is to say a set of knowledge devoted 

to maintaining the aircraft in a safe area (i.e. maintain altitude, heading, etc.). If unex-

pected changes are brought too early in the training, the trainee will not be able to 

fully integrate the basis, and will not reach the optimal and target state which is re-

ferred to as “ease in flight”. Indeed, excessive demand on resources imposed by the 

attended task(s) typically results in performance degradation (Nourbakhsh et al., 

2013; Stanton et al., 2005). On the contrary, a delayed addition of unexpected situa-

tions will have no benefit and inefficiently extend the training time. Currently, in-

structors exclusively rely on their experience and subjective observations to detect 

this key moment. 

From a cognitive point of view, ease of flight could be associated with automatic 

processes (i.e., System 1) as opposed to controlled processes (i.e., System 2). Over the 

last decades, this multiple system theory of decision making has been widely studied 

and has accumulated a large body of evidence (see Sanfey and Chang 2008 for a brief 

review). System 1 has been described as fast, effortless, and unconscious whereas 

system 2 has been depicted as slow, effortful, and conscious.  

Skill acquisition can be viewed as a shift from system 2 to system 1. Kahneman 

(2003) has even linked System 1 to “intuition”, frequently associated with how ex-

perts make decisions (e.g., Dreyfus, 2014 [in Zsambok and Klein]).   

Automated processes require very little cognitive resources, as opposed to con-

trolled processes. An expert pilot has automated the majority of recurrent piloting 

tasks and procedures (e.g., take-off), which, for him, do not require an important en-

gagement of cognitive resources. In comparison, a novice who has not fully automat-

ed the procedures will have to spend more energy to reach a similar performance. In a 

systemic view of the phenomenon, this difference in terms of energetic cost is ex-

pected to have physiological corollaries, in particular cardiorespiratory, which can be 

used as indicators of energetic spending. Indeed, several physiological corollaries of 

cognitive efforts have been identified over the last decades, including in piloting tasks 

(Roscoe, 1992). 

For instance, increase in heart rate (HR) has been associated with effort, cognitive 

(e.g., Kennedy & Scholey, 2000) and physical. Notably, it was used by Dahlstrom and 

Nahlinder (2009) to estimate mental workload for pilots in simulators and in-flight. It 

has great potential for in-flight mental workload estimation because it is easily ob-

tained, and less subject to noise than other typically used measures, like electro-

encephalogram. HR variability (HRV) refers to the regularity of consecutive R-R 

intervals of the QRS complex as measured by an electro-cardiogram (ECG). Although 

not as intuitive as HR, HRV is one of the most frequently used metric associated with 

mental effort, both in fundamental and applied research. For instance, HRV was asso-

ciated with mental overload in a simulated piloting task (Durantin et al., 2014), and 

with several fundamental neuro-cognitive tasks (Gagnon et al., 2016). Finally, respi-

ration rate (RR) has been linked with energetic spending, has been considered a 

measure of task demands (Overbeek et al., 2014) and was also associated with nega-

tive valance and arousal (Masa et al., 2003).  

In the context of air force pilot training, we hypothesize that during identical 

flights, the trainees will have to deploy a greater amount of mental effort than instruc-



tors for reaching similar performances. Therefore, trainees should exhibit a specific 

pattern of physiological parameters: HR and RR should be higher, and HRV should 

be lower than for instructors. Based on this premise, we hypothesize that it is possible 

to predict the role of the pilot (trainee or instructor) using physiological measures.  

Moreover, the use of physiological measures could allow the identification of  “ex-

pected pattern” among experienced pilots, which would be used as references when 

considering the same metrics among trainees in identical situations. The variation of 

the difference between the expected pattern (expert) and the observation (trainee) 

could be interpreted as a consequence of the levels of cognitive automation of the 

processes in the given situation for a trainee. Hence, this paper considers the possibil-

ity of quantifying learning by comparing his metrics to the reference measured on his 

instructor. 

1.1 Objectives 

The main goal of the present paper is to open the way towards an objective measure 

of “ease in flight”, which would assist instructors and their students during training. 

Such an objective measure would be a key element in the process of individualizing 

the training of pilots. As learning skills have a great variability between trainees, ob-

jectively quantifying to which degree a student easily performs a task could allow a 

great improvement in the training. Specifically, this paper is organized around two 

objectives, described below. 

Objective 1 

The first objective is to assess the impact of roles and flight phases on physiological 

measures. Specifically, three variation of the main hypothesis are formulated: 

 H1. Mean physiological values will differ across roles 

 H1a. Mean heart rate will be higher for trainees when compared with instructors 

 H1b. Mean heart rate variability will be lower for trainees when compared with 

instructors 

 H1c. Breathing rate should be higher for trainees when compared with instruc-

tors 

Objective 2 

The second objective is to develop a model for predicting the level of expertise 

based on physiological measures. The physiological predictors will be comprised of 

statistically significant predictors that varied across roles. The model will be applied 

to the physiological measures and predicted expertise will be assessed. This model 

assumes that instructors have greater expertise than trainees.  

The goal is to evaluate if such a model could help dynamically (1) quantify the 

progression of training and (2) identify periods of time where the instructor might not 

be fully in control of the flight. 



2 Method 

Eleven pilot participants were equipped with a Zephyr Bio Harness 3.0 chest strap 

measuring the electrical activity of the heart (ECG), RR, and accelerations on 3-axis. 

They were also equipped with an Android mobile phone on which the Sensor Hub 

(Gagnon et al., 2014) application was installed. The application integrates all generat-

ed data, processes HR, HRV (frequency and temporal domain), accelerations (3-axis), 

respiration rate, and global positioning system coordinates.  

Participants were organized in tandems consisting of an instructor (assumed ex-

pert) and a trainee (assumed novice). The data were collected on five comparable 

aerobatic flights with trainees of approximately the same skill level. One of the flights 

was performed by an instructor flying alone. Each flight was broken down into five 

phases: pre-flight (briefing), take-off, flight, landing, and post-flight (debriefing). 

During the flight, instructors performed specific maneuvers that the trainees had to 

perform immediately after, therefore transferring the control of the plane from one to 

another. Instructors were responsible for take-off and landing.  

3 Results 

Results are described in two sub-sections, aligned with the objectives. First the statis-

tical significance tests are reported to evaluate the impact of the key factors (role and 

phases) on individual physiological measures. Second, a classifier of expertise is de-

veloped and described.  

 

3.1 Factors Influencing Physiological Parameters 

Three mixed ANOVAs were carried out to test the effect of the role (Trainee vs In-

structor), phase (repeated 5 levels), and their interaction on (1) mean HR in bpm, (2) 

mean HRV in ms, and (3) mean RR in bpm.  

Hypothesis H1a 

Results show that both role F(1,6) = 9.27, p < .05 and phase F(4,30) = 14.51, p < .001 

had a statistically significant impact on mean HR in bpm. Interaction of role and 

phase was not statistically significant F(4,30) = 1.81, N.S. In line with hypothesis 

H1a, mean HR in bpm is statistically higher in the trainee condition (mean = 113.56, 

sd = 22.73) when compared with the instructor condition (mean = 74.82, sd = 11.21). 

Results are presented in Fig. 1. 



 

Fig. 1. Mean HR in bpm by role and phase. 

Hypothesis H1b 

Results show that both role F(1,6) = 11.30, p < .05 and phase F(4,30) = 3.50, p < .05 

had a statistically significant impact on mean HRV in ms. Interaction of role and 

phase was not statistically significant F(4,30) = 1.77, N.S. In line with hypothesis 

H1b, mean HRV in ms is statistically lower in the student condition (mean = 36.58, sd 

= 16.93) when compared with the instructor condition (mean = 65.66, sd = 17.80). 

Results are presented in Fig. 2. 

 

 

Fig. 2. Mean HRV by role and phase. 

 

 



Hypothesis H1c 

Results show that phase F(4,30) = 5,48, p < .001 had a statistically significant impact 

on mean RR in bpm. Role did not have a significant impact F(1,6) = 1.11,  N.S. How-

ever interaction of role and phase was statistically significant F(4,30) = 4.39, p < .01.  

Unsupportive of hypothesis H1c, mean RR in bpm is not statistically higher in the 

student condition (mean = 19.80, sd = 2.21) when compared with the instructor condi-

tion (mean = 18.23, sd = 3.26), but there is a significant interaction of the two factors 

F(4,30) = 4.66, p < .01 on respiration rate. Results are presented in Fig. 3. 

 

Fig. 3. Mean respiration rate in bpm by role and phase. 

3.2 Modeling effort linked with expertise 

In addition to statistical significance tests, an integrated model was developed to pre-

dict the role of the participant based on HR, HRV, and RR as predictors. In an attempt 

to remain parsimonious and explainable, the generalized linear model (GLM) was 

employed. However, rather than using phases as temporal separations, equal non-

overlapping bins of 10 minutes were created. For each of these bins, mean HR in 

bpm, mean HRV in ms and mean RR in bpm were calculated. The model was devel-

oped using this data. The reason for the creation of bins is that the flight phases are 

highly variable in terms of length and would therefore induce a bias in the statistical 

representativeness of metrics within the model. For instance, a very short phase of 

two minutes would have the same statistical weight than a phase lasting 45 minutes.  

The model was validated for generalization using a “leave-one-tandem-out” proce-

dure. The final model used for predictions was retrained on all the data.  

Results show that the model achieved an accuracy of 86.86% (95% confidence in-

terval = 80.03 – 92.02), ϰ = .74. The predictors (and associated betas β) are repre-

sented in order of relative influence in Table 1. 



Table 1. Model predictors and associated β. 

Predictor β 

Heart rate in bpm -2.6211 

Heart rate variability in ms 1.1584 

Breathing rate in bpm 0.4858 

Intercept -0.1214 

The model was then applied to each individual data to see how the predictions un-

fold in time during a flight. The numeric prediction represents the probability that the 

observed physiological pattern (composed of HR, HRV, and RR) is the one of an 

instructor. Hence, when the probability exceeds 50%, the point is classified as “in-

structor”, and conversely when below 50%. By showing the predicted probability, we 

can track changes in the progression of each individual. We plotted the predictions of 

two tandems that were deemed interesting for discussion. Tandem 1 model predic-

tions were plotted in Fig. 4, and tandem 5 in Fig. 7. Alongside the predictions of the 

model, we plotted the most influencing factor of the model (i.e., heart rate in bpm), 

and altitude in meters to provide some context.  

Tandem 1 (Fig. 4, Fig. 5, Fig. 6) shows that the instructor was classified as an in-

structor all the time. Interestingly, results show that the student was above the 50% 

threshold (so classified as an instructor) for a long period of the flight, but still had 

punctual states corresponding to the typical state of a “trainee”.  

Tandem 5 (Fig. 7, Fig. 8, Fig. 9) resulted in a much different pattern than the pre-

vious tandem. First, it is observed that the instructor is not classified with as much 

confidence as instructor from Tandem 1. Punctually, the probability of being an in-

structor even falls below the 50% threshold. On the other hand, the data shows a pro-

gression of the trainee from trainee to instructor as the flight progresses. 



 

Fig. 4. Tandem 1 - Probability of being an instructor according to the model, by role for the 

whole flight. The classification threshold corresponds to the point where the most probable 

classification changes from one role to another. The points over the horizontal line (Classifica-

tion threshold, 0.5) represent the data which were classified as being those of an instructor. 

 

Fig. 5. Tandem 1 - HR in bpm sampling values through the flight. The predictions made by the 

model are largely based on this metric. 

 

Fig. 6. Tandem 1 - Altitude in meters of the aircraft. 

 



 

Fig. 7. Tandem 5 - Probability of being an instructor according to the model, by role for the 

whole flight. The classification threshold corresponds to the point where the most probable 

classification changes from one role to another. The points over the horizontal line (Classifica-

tion threshold, 0.5) represent the data which were classified as being those of an instructor. 

 

Fig. 8. Tandem 5 – HR in bpm sampling values through the flight. The predictions made by the 

model are largely based on this metric. 

 

Fig. 9. Tandem 5 - Altitude in meters of the aircraft. 

 

 

 

 

 

 

 

 

 



4 Discussion 

Results regarding HR and HRV supported both hypotheses concerning the relation-

ship between physiological parameters and roles (H1a, H1b). Indeed, as expected, 

mean HRV in ms was lower for the trainees when compared with instructors, and 

conversely for mean HR in bpm. These findings support the assumption that expertise 

is associated with effortless processes. This is not surprising, but not trivial either as 

the effects of flight dynamics (especially in aerobic flight) on physiological parame-

ters are still largely unknown. Because aerobatic maneuvers probably require a great-

er deployment of physical effort when compared with regular flights, the effects asso-

ciated with aerobatic flight might have prevented the effects associated with cognitive 

effort deployment from being observed. Fortunately, the results show that roles had a 

statistically significant impact on physiological parameters.  

Results regarding all three variables suggested that flight phases have a significant 

effect on physiological parameters. The results obtained also highlighted a significant 

effect of the interaction of the role and phase the on the RR in bpm. These results, 

again, were expected if we consider that different flight phases induce different levels 

of cognitive effort, depending on the difficulty of each phase.  

Effect of flight phases can be considered as a reflection of the differences induced 

notably by the different procedures associated within each phase, and the variation of 

expertise of each pilot on these specific situations. By extension, these results raise 

the importance of taking into account the context of the mission and several associat-

ed external parameters, when modeling cognitive efforts and similar concepts. How-

ever, the current model of mental effort does not capture flight phases or procedures, 

and more generally does not take avionic parameters into account. A next step will be 

to link physiology-based predictions with the context of the mission. The use of avi-

onic and contextual parameters will also allow the consolidation of the “expected 

good behavior” of a pilot, depending on the situation and the mission which must be 

performed, and hence improve the accuracy of the model. Such behavioral measures 

and context aware systems are deemed essential for real-world application of mental 

effort models and similar concepts (Elkin-Frankston et al., 2017, Bracken et al., 2016, 

2017). 

We argue that the model developed presented in this paper is linked with effort of 

mental processes, and that it can be used to quantify learning associated with a given 

procedure. Indeed, it can be argued that the only difference between the “role” of the 

pilots (either instructor or trainee) is expertise since they were measured in tandem on 

similar flights. Expertise itself cannot be measured directly with physiology without 

context. Given the nature of the physiological data, and the support to hypotheses in a 

context where expertise plays a great role, it can be stated that we measured variations 

in physiological parameters associated with effort. Such a model is interesting be-

cause it could allow the identification of procedures which are not yet fully acquired 

by the trainee. If we consider the example of Tandem 5, presented in Fig.7, the pre-

dictions made by the model do not allow the differentiation of the student from the 

instructor during the second part of the flight (end of flight, landing, and post-flight). 

This can be explained by the fact that the physiological pattern of the trainee was 



similar to the one of an instructor, as captured by the model. Given this information, 

the instructor could, if the decision of the model matches with his personal apprecia-

tion, make the decision of spending more time on other, less automated exercises, and 

thus individualizing the training. Such individualization lies at the heart of optimal 

training, especially for combat aviation population (Meland et al., 2015). 

Future work will focus on the development of a feedback mechanism to the in-

structors and trainees, and quantification of the benefits – in terms of learning – asso-

ciated with the use of this tool. 
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