Recursive algorithm for exhaustive search of possible
multiversion software realizations with the choice of the
optimal versions set

Roman Yu. Tsarevl, Denis V. Gruzenkin' and Galina V. Grishina'

! Siberian Federal University, Russia
tsarev.sfulmail.ru
gruzenkin.denis@good-look.su
ggv-09@inbox.ru

Abstract. N-version software is used all over the world as one of the approach-
es that can provide with the high level of reliability and software fault tolerance.
The application of redundant module versions of software allows to obtain a
correct result even if there is an error in the separate module versions. However,
the program redundancy that can increase software reliability needs extra re-
sources. It results in an optimization problem. There is a necessity for a certain
variant of multiversion software realization i. e. such a modules versions set is
required that demands less resources and guarantees high level of reliability
simultaneously. The exhaustive search of all possible multiversion software re-
alizations is carried out by the recursive algorithm proposed in the article.

Keywords: multiversion software, N-version software, reliability, optimization,
exhaustive search, recursion, recursive algorithm.

1 Introduction

The problem of software reliability has been in existence as long as software exists.
There is a demand for the software that guarantees a high level of reliability. It forces
software designers to resort to such methods and tools that allow creating error and
fault tolerance software. Since the beginning of 1960s when the software industry
started to develop, a vast amount of approaches and methods of assessment and in-
creasing of software reliability have been suggested [1].

There are some of the approaches that can be distinguished. They are based on
time, information and program redundancy. The introduction of redundancy enables
both to increase reliability and to guarantee fault tolerance of software. The program
redundancy is implemented by two main approaches. They are N-version program-
ming [2], [3] and recovery blocks [4], [5].

N-version programming has successfully proved itself particularly in such spheres
as fault-tolerant control software for communications satellite system [6], railway
interlocking systems [7], producing an architectural framework to automate and en-

mailto:tsarev.sfu@mail.ru
mailto:gruzenkin.denis@good-look.su

hance application security [8], developing a N-version programming-based protection
scheme for microgrids [9], web services systems [10].

The idea of N-version programming can be understood in the following way. The
developing software has to solve a certain problem. The solution of this problem is
the achievement of a certain goal. The problem is divided into some subtasks and the
goal is achieved by finding solutions to them. On the conceptual level every subtask is
solved by an appropriate module. The module is realized by means of several versions
(multiversions) in order to ensure high reliability and fault tolerance of software. So,
the modules and the software as a whole are becoming multiversion.

The introduction of the program redundancy in the form of the redundant modules
versions ensures high reliability. It happens due to the fact that if one (or several) of
the modules versions returns an incorrect result, the other versions return correct re-
sults nevertheless. When all results are obtained, it is necessary to analyze them and
choose the one that is correct. It will be sent to all versions of the next module as in-
put data. The analysis is carried out by a decision-making unit. The process of deci-
sion-making is usually realized by a voting algorithm [11], [12]. During the imple-
mentation of N-version software, the voting algorithm is implemented after every
modules versions implementation. This algorithm defines the correct result of the
operation of the whole module (i.e. all its versions).

The main problem of the application of any type of redundancy is the requirement
for extra resources. The problem is connected with optimizing that could correspond
to a higher level of reliability and at the same time to less amount of resources [13].
While developing N-version software the problem is defined as the choice of a mod-
ules versions set that could achieve the goals. The formal description of the problem
is presented below.

2 The generation model of optimal versions set of N-version
software

The conventional signs that are used are as follows

n — the number of subtasks that are required to be solved to achieve the goal,

i —a subtask number, i =1, 2, ..., n;

m; — the number of multiversions that are available for the solution of i-subtask;

j — an available multiversion number for the solution of i-subtask, j =1, 2, ..., m;;

R;; — the reliability (the possibility of no-failure operation) of j-multiversion, solv-
ing i-subtask;

N; — the set of all multiversions subsets with the power range from 1 to m;;

N, — the multiversions subset, N; € N;;

IN;'| - power N;';

RN; — the N; reliability during i-subtask solution. It is equal to the possibility that
no less than |N; |/2 multiversions from a large number of multiversions N; return a
similar result;

v; — the voting algorithm that analyzes the results of i-subtask solution, i =1, 2, ...,
n;

R,; — the voting algorithm reliability v, i =1, 2, ..., n;

C; —the cost of j-multiversion that solves i-subtask;

C,; — the cost of the voting algorithm development v;, i =1, 2, ..., n;

C; — the total cost of multiversions selected for the i-subtask solution;

x;— Boolean variable is equal tol, if j-multiversion is selected for i-subtask solu-
tion, and it is equal to 0 in an opposite case.

The selection problem of the optimal versions set of N-version software can be
presented by dual-purpose nonlinear task of integer programming with Boolean vari-
ables:

max fi(x) = [[}2; RiRy; (D

min f,(x) = ¥, Z;-nil Cijxij + Xiz1 Cyi 2

on conditions that:

. R
Yixj=z1li=1n,

R; = ZN;‘ENL»[H]'EN; Xij [ien;-n; (1 = xik)]RNi*:

INg|

RN; = 21'=|Ni*|/2 [ZMEN;‘||M|=j{erM Rix HleN;‘—M(l - Ril)}]a

The objective function (1) maximizes the software reliability while the objective
function (2) minimizes the software cost. As a rule, these two purposes conflict with
each other.

The software cost includes the cost of every multiversion or decision-making unit
realizing the voting algorithm only once. So, if one and the same voting algorithm is
applied after several subtasks solutions, its cost is included only once.

The realization variants of N-version software can be a solution to this problem, i.
e. a certain modules versions set (or a version set) of N-version software. It is possible
to choose the variant after the exhaustive search of all possible variants of N-version
software. In order to solve the task the algorithm is proposed.

3 The exhaustive search algorithm of all possible realizations of
N-version software

If the i-subtask is solved by the i-module realized in the form of some multiversions
then the number of i-module multiversions is equal to m;. The i-module multiversions
set is presented by the series x;1, X, ..., Xim;, Where x;; is equal to 1, if j-multiversion is
used in the i-module of N-version software and it is equal to 0 in the opposite case
(see Fig. 1).

loJofof[1] [oJof1]o] [oJof1[1] [of1]0fo0]..[2[1]1]1]

Fig. 1. Possible module version sets realized in four multiversions

There is an algorithm which is used to generate module version sets (Listing 1). The
input data for this algorithm is the natural number N that varies in the range from 1 to
2mi — 1. Every N number in this range corresponds to one of the i-module version
sets. The number of i-module version sets that is equal to 2mi — 1 is exhaustive. The i-
module version sets is stored in a binary form in a one-dimensional array Bin, whose
size is equal to mi.

assign for record the rightmost cell of the array Bin
execute in a cycle:

record in the array Bin record cell the remainder of N
on division by 2;

assign for record the cell that precedes the current
record cell;

divide N by 2;
until the integer part from division is equal to 0;
record zeros in the remaining cells of the array Bin.

Listing 1. A binary array generation algorithm corresponding to the module version set

An exhaustive search algorithm of different realizations of N-version software has
been developed. The algorithm is presented as a recursive function in pseudolanguage
(Listing 2). On the basis of multiversions multitude the algorithm allows to consider
all possible variants of the modules version sets of N-version software.

recursive function (module number i, binary array Alt)
for natural number N from 1 to 2mi - 1 execute in a cy-
cle:
generate a binary array Bin for the current value N;
copy the array Bin values in the i-line of the array
Alt;
if i-module is not the last then
call for the recursive function (with the number of
the next module (i+1l) and the binary array Alt);
carry out a required action on the current variant;
the end of the cycle;
the end of the recursive function.

Listing 2. The algorithm of the recursive function performing an exhaustive search of all possi-
ble version set variants of N-version software.

The first function call is accompanied by sending the module number i = 1 as the first
argument of the function. The current variant of the modules version set of N-version
software is stored in a two-dimensional binary array Alt with the size n by max mi, i =
1,2,..,n

The cycle is executed in the recursive function and the last line of the cycle implies
any required actions that can be carried out on the obtained variant of version set of
N-version software. There are some examples of such actions. They are the calcula-

tion of the reliability (1) or the cost (2) of the current variant of N-version software
generation, the record of both the obtained variant version set and the values of char-
acteristics corresponding to the variant into separate arrays for further application
without the recurrence of the exhaustive search.

Fig. 2 shows the example of the recursive function execution during the exhaust
search of different realizations of N-version software consisting of six modules that
are realized by the following number of multiversions: m; =5, my =4, m3 =4, my =3,
ms=4,mg=>5.

0[0[{0[0[1]10[{0{0{0[1] J0[{0[0|0|1 000/0/0/1
0/0/0f1 0/0({01 0/(0/01
0/0/0/1 0(0/0]|1
0/0/1
0/(0/0|1
000/0/0/1
a b c d
0[0/0[{0[1]10[{0{0{0[1] J0[{0[|0|0]1 000/0/0/1
0/0/0f1 0/0/0f1 0/0({01 0/(0/0|1
0/0/0f1 0/0/0f1 0/0({0]1 0(0/01
001 001 0/0/1 0/0/1
000 0/0/0f1 0/(0/01 000
0/0/0 01 10[{0|O0|1[1]]0[0[1/0|0 1(1]1 1
e f g h
0[0[{0[0[1]10[0{0{0[1] J0[{0[0|0]1 1(1(1]1]1
0/0/01 0/0/0f1 0/0/0|1 1(1]1]1
0/0/0]1 0(0/01 0[0/0]1 1(1]1]1
0/0]1 0/0|1 0/0|1 1/1]1
0/0/1|0 0/0[{1]0 0[0[{1]0 1/1]1
0[0/0[0[1]10{0{0[1[0] JO[0|0|1]1 1(1(1]1]1
i Jj k [

Fig. 2. Different realizations of N-version software

Every picture in Fig. 2 corresponds to one of the version sets of N-version soft-
ware. The lines mean modules, the number of cells in a line mean the maximum pos-
sible number of the current module, the values in cells mean the values of the variable
x; that reflects whether the current module version is applied (x; = 1) or not (x; = 0).

Fig. 2a-2d show the generation of the first variant of realization for every module
from one multiversion according to the algorithm in listing 1. A new recursive func-
tion copy is called for every module. Fig. 2d shows the first variant of the version set
of N-version software.

After that the sixth module version set is searched in the last recursive function
copy (Fig. 2e-2h).

Then there is a return to the previous recursive function copy and another version
is selected for the fifth module. The fifth line in Fig. 4i corresponds to this case. And
again a new recursive function copy is called and the sixth module multiversions are
searched (Fig. 2i-2k).

The last possible variant of the version set of N-version software is in Fig. 21. All
available multiversions are selected.

So, the proposed recursive algorithm allows to make a complete exhaustive search
of all possible realizations of N-version software.

4 Conclusion

N-version software has a high level of fault tolerance and reliability due to the realiza-
tion of program redundancy principle. In practice, reliable software modules are real-
ized as a series of functionally equivalent versions. A software designer can include
one or another module version into N-version software. The selection of versions is
caused by the necessity to ensure a high level of reliability and to reduce the applied
resources. The proposed recursive algorithm enables to make the exhaustive search of
all possible realizations of N-version software that allows a decision maker to select
an optimal variant.

References

1. Sommerville I. Software engineering, 9th edn. Addison-Wesley, Wokingham, England/
Reading (2010).

2. Avizienis A., Chen L. On the implementation of N-version programming for software
fault-tolerance during program execution // Proc. IEEE Comput. Soc. Int. Comput. Soft-
ware & Appl. Conf., COMPSAC “77.—-1977. —P. 149-155.

3. Gruzenkin, D.V., Chernigovskiy, A.S., Tsarev, R.Y. N-version Software Module Re-
quirements to Grant the Software Execution Fault-Tolerance (2018) Advances in Intelli-
gent Systems and Computing, 661, pp. 293-303.

4. Randell B., Jie X. The Evolution of the Recovery Block Concept // Software Fault Toler-
ance, Michael R. Lyu (ed.), Wiley. — 1995. — P. 1-21.

5. Kaur, R., Arora, S., Jha, P.C., Madan, S. Fuzzy multi-criteria approach for component se-
lection of fault tolerant software system under Consensus Recovery Block Scheme (2015)
Procedia Computer Science vol. 45 no. C, pp. 842-851.

6. Kulyagin, V.A., Tsarev, R.Y., Prokopenko, A.V., Nikiforov, A.Y., Kovalev, L.LV. N-
version design of fault-tolerant control software for communications satellite system
(2015) 2015 International Siberian Conference on Control and Communications, SIBCON
2015 - Proceedings, art. Ne 7147116.

10.

11.

12.

13.

Eris, O., Yildirim, U., Durmus, M.S., Séylemez, M.T., Kurtulan, S. N-version program-
ming for railway interlocking systems: Synchronization and voting strategy (2012) IFAC
Proceedings Volumes (IFAC-PapersOnline), pp. 177-180.

Malaika, M., Nair, S., Coyle, F. N-Version architectural framework for application securi-
ty automation (NVASA) (2014) CrossTalk, 27 (5), pp. 30-34.

. Hussain, A., Aslam, M., Arif, S.M. N-version programming-based protection scheme for

microgrids: A multi-agent system based approach (2016) Sustainable Energy, Grids and
Networks, 6, pp. 35-45.

Peng, K.-L., Huang, C.-Y., Wang, P.-H., Hsu, C.-J. Enhanced N-Version programming
and recovery block techniques for web service systems (2014) International Workshop on
Innovative Software Development Methodologies and Practices, InnoSWDev 2014 - Pro-
ceedings, pp. 11-20.

Durmus, M.S., Eris, O., Yildirim, U., S6ylemez, M.T. A new voting strategy in Diverse
programming for railway interlocking systems (2011) Proceedings 2011 International Con-
ference on Transportation, Mechanical, and Electrical Engineering, TMEE 2011, cratbst Ne
6199304, pp. 723-726.

Rezaee, M., Sedaghat, Y., Farmad, M.K. A confidence-based software voter for safety-
critical systems (2014) Proceedings - 2014 World Ubiquitous Science Congress: 2014
IEEE 12th International Conference on Dependable, Autonomic and Secure Computing,
DASC 2014, cratbs Ne 6945688, pp. 196-201.

Gruzenkin, D.V., Grishina, G.V., Durmus, M.S., Ustoglu, I., Tsarev, R.Y. Compensation
model of multi-attribute decision making and its application to N-version software choice
(2017) Advances in Intelligent Systems and Computing, 575, pp. 148-157.

