Skip to main content

Identifying an Emotional State from Body Movements Using Genetic-Based Algorithms

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10841))

Abstract

Emotions may not only be perceived by humans, but could also be identified and recognized by a machine. Emotion recognition through pattern analysis can be used in expert systems, lie detectors, medical emergencies, as well as during rescue operations to quickly identify people in distress. This paper describes a system capable of recognizing emotions based on the arm movement. Features extracted from 3D skeleton using Kinect sensor are classified by five commonly used machine learning techniques: K nearest neighbors, SVM, Decision tree, Neural Network and Naive Bayes. A genetic algorithm is then invoked to find the best system parameters to achieve the higher recognition rate. The system achieved 98.96% average accuracy on the experimental dataset.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kozlowski, L.T., Cutting, J.E.: Recognizing the sex of a walker from a dynamic point-light display. Atten. Percept. Psychophy. 21(6), 575–580 (1977)

    Article  Google Scholar 

  2. Cutting, J.E.: Generation of synthetic male and female walkers through manipulation of a biomechanical invariant. Perception 7(4), 393–405 (1978)

    Article  Google Scholar 

  3. Hill, H., Pollick, F.E.: Exaggerating temporal differences enhances recognition of individuals from point light displays. Psychol. Sci. 11(3), 223–228 (2000)

    Article  Google Scholar 

  4. Munir, S., Arora, R., Hesling, C., Li, J., Francis, J., Shelton, C., Martin, C., Rowe, A., Berges, M.: Real-time fine grained occupancy estimation using depth sensors on ARM embedded platforms. In: 23rd IEEE RTETA Symposium (2017)

    Google Scholar 

  5. Gavrilova, M.L., Monwar, M.: Multimodal Biometrics and Intelligent Image Processing for Security Systems. IGI Global, Hershey (2013)

    Book  Google Scholar 

  6. Ahmed, F., Paul, P.P., Gavrilova, M.L.: DTW-based kernel and rank-level fusion for 3D gait recognition using Kinect. Vis. Comput. 31(6–8), 915–924 (2015)

    Article  Google Scholar 

  7. Pollick, F.E., Paterson, H.M., Bruderlin, A., Sanford, A.J.: Perceiving affect from arm movement. Cognition 82(2), B51–B61 (2001)

    Article  Google Scholar 

  8. Xia, L., Chen, C., Aggarwal, J.: View invariant human action recognition using histograms of 3D joints. In: IEEE Conference CVPR, pp. 20–27 (2012)

    Google Scholar 

  9. Yang, X., Tian, Y.: Effective 3D action recognition using eigenjoints. J. Vis. Commun. Image Represent. 25(1), 2–11 (2014)

    Article  MathSciNet  Google Scholar 

  10. Theodorakopoulos, I., Kastaniotis, D., Economou, G., Fotopoulos, S.: Pose-based human action recognition via sparse representation in dissimilarity space. J. Vis. Commun. Image Represent. 25(1), 12–23 (2014)

    Article  Google Scholar 

  11. Roether, C.L., Omlor, L., Christensen, A., Giese, M.A.: Critical features for the perception of emotion from gait. J. Vis. 9(6), 1–15 (2009)

    Article  Google Scholar 

  12. Saha, S., Datta, S., Konar, A., Janarthanan, R.: A study on emotion recognition from body gestures using Kinect sensor. In: Proceedings of Communications and Signal Processing (ICCSP), pp. 056–060 (2014)

    Google Scholar 

  13. Senecal, S., Cuel, L., Aristidou, A., Magnenat-Thalmann, N.: Continuous body emotion recognition system during theater performances. Comput. Animat. Virtual Worlds 27(3–4), 311–320 (2016)

    Article  Google Scholar 

  14. Wang, Y., Howard, N., Karcprzyk, J., Frieder, P., Sheu, P., Fiorini, R., Gavrilova, M.L., Patel, S., Peng, J., Widrow, B.: Cognitive informatics: towards cognitive machine learning and autonomous knowledge manipulation. Int. J. Cogn. Inf. Nat. Intell. (IJCINI) 12(1), 1–18 (2017)

    Google Scholar 

  15. Gavrilova, M., Wang, Y., Ahmed, F., Paul, P.P.: KINECT sensor gesture and activity recognition for consumer cognitive systems. IEEE Consum. Electron. Mag. Spec. Issue. Consum. Electron. 4, 88–96 (2017)

    Google Scholar 

  16. Melin, P., Castillo, O., Kacprzyk, J. (eds.): Nature-Inspired Design of Hybrid Intelligent Systems. SCI, vol. 667. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47054-2

    Book  Google Scholar 

  17. Ball, A., Rye, D., Ramos, F., Velonaki, M.: Unsupervised clustering of people from ‘skeleton’ data. In: 2012 Conference on Human Robot Interaction, pp. 225–226 (2012)

    Google Scholar 

  18. Preis, J., Kessel, M., Linnhoff-Popien, C., Werner, M.: Gait recognition with Kinect. In: Workshop on Kinect in Pervasive Computing (2012)

    Google Scholar 

  19. Gabel, M., Gilad-Bachrach, R., Renshaw, E., Schuster, A.: Full body gait analysis with kinect. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1964–1967 (2012)

    Google Scholar 

  20. Sas, D., Saeed, K.: Comprehensive performance evaluation of various feature extraction methods for OCR purposes. In: Saeed, K., Homenda, W. (eds.) CISIM 2015. LNCS, vol. 9339, pp. 411–422. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24369-6_34

    Chapter  Google Scholar 

  21. Markowska-Kaczmar, U., Kwasnicka, H., Szczepkowski, M.: Genetic algorithm as a tool for stock market modelling. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 450–459. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69731-2_44

    Chapter  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge NSERC, MITACS funding and Switzerland international exchange program. We also grateful to all members of the Biometric Technologies Laboratory, Department of Computer Science, University of Calgary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Gavrilova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maret, Y., Oberson, D., Gavrilova, M. (2018). Identifying an Emotional State from Body Movements Using Genetic-Based Algorithms. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10841. Springer, Cham. https://doi.org/10.1007/978-3-319-91253-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91253-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91252-3

  • Online ISBN: 978-3-319-91253-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics