
ar
X

iv
:1

70
4.

07
14

7v
1 

 [
st

at
.M

L
] 

 2
4 

A
pr

 2
01

7

A Neural Network model with Bidirectional

Whitening

Yuki Fujimoto∗ and Toru Ohira∗∗

Graduate School of Mathematics, Nagoya University, Nagoya, Japan
∗E-mail: m15042x@math.nagoya-u.ac.jp ∗∗E-mail: ohira@math.nagoya-u.ac.jp

Abstract

We present here a new model and algorithm which performs an effi-
cient Natural gradient descent for Multilayer Perceptrons. Natural gradi-
ent descent was originally proposed from a point of view of information
geometry, and it performs the steepest descent updates on manifolds in
a Riemannian space. In particular, we extend an approach taken by the
“Whitened neural networks” model. We make the whitening process not
only in feed-forward direction as in the original model, but also in the
back-propagation phase. Its efficacy is shown by an application of this
“Bidirectional whitened neural networks” model to a handwritten charac-
ter recognition data (MNIST data).

1 Introduction

Interests for developing and efficient learning algorithm for multilayer neural
networks have grown rapidly due to recent upheaval of the deep learning and
other machine learnings. Natural gradient descent(NGD) is considered as one
of the strong methods. It was proposed from a point of view of information
geometry[1], where neural networks are considered as manifolds in a Rieman-
nian space with a measure given by the Fisher information matrix (FIM). Then,
the learning process can be interpreted as an optimization problem of a function
in a Riemannian space. The idea of applying the NGD to multilayer neural net-
works was initiated by Amari. Recently, it has regained interests from machine
learning researchers[6, 9].

However, difficulty exists for using the NGD: the computational costs of es-
timating the FIM and obtaining its inverse is high. Much attention and research
efforts have gone into solving this difficulty[4, 7, 8, 5, 10].

In this paper, we will focus on one of such approaches, and extend the work of
[4]. In their approach “Whitened neural networks” model was proposed. There,
a neural network architecture, whose FIM is closer to the identity matrix with
less computational demands, is explored. Extra neurons and connections are

1

http://arxiv.org/abs/1704.07147v1


added to achieve this whitening approximation. In particular, they have used
this scheme for the forward direction of inputs to neurons and achieved lower
computational costs.

Our main proposal in this paper is to further push the approximation of the
FIM being closer to the identity by implementing the whitening process also in
the back-propagation phase. This model, which we term as the “bidirectional
whitened neural networks” model, will be described in the following. Its efficacy
is also shown through its application to a handwritten character recognition data
(MNIST data).

2 Multilayer Perceptron and Natural Gradient

Descent

We present here a brief review of the Multilayer Perceptron and the Natural
Gradient Descent, which we focus in this paper. The first level of approximation
for the FIM is also discussed.

2.1 Multilayer Perceptron

Multilayer Perceptron is a model of neural networks which has feed-forward
structure with no recurrent loops. They have multiple layers called input, hid-
den, and output, and neurons have all to all connections between successive
layers. Let us consider a N layer Perceptron, and set the values of the input
as z(0) = x, the hidden layer values as z(i) = h(i), (1 ≤ i ≤ N − 1), and the
output of the entire network as z(N) = f(x; w).

This f(x; w) can be viewed as a function of x by fixing the parameters w,
and thus called as a “multilayer Perceptron function”. The rules of computing
the value of the i layer from the i− 1 in the network is given as follows (1 ≤ i ≤
N).

a(i) = W (i)z(i−1) + b(i) (1)

= W̄ (i)z̄(i−1) (2)

z(i) = φ(i)(a(i)) (3)

Here, φ(i)(·)is an activation function applied to each element of a. Typically, the
sigmoid function or ReLU function are used for this activation function. Also,

(2) is a shortened notation by setting W̄ (i) ≡ (b(i), W (i)), z̄(i) ≡ (1, z(i)T

)T .
Hence, the multilayer Perceptron function (MPF) is defined by setting

{(W (i), b(i))}. It is often convenient to denote these parameters by w, defined
by

w ≡ (vec(W̄ (1))T , . . . , vec(W̄ (N))T )T (4)

where vec(A) means a compound vector of column vectors of a matrix A

The learning process of multilayer Perceptrons is an optimization problem
set by the following statistical inference. The training data of input and output

2



pairs is given as D ≡ {(xk, yk)}K
k=1. We assume this data set is generated

by the same joint distribution Q(X, Y ) independently. In order to estimate
this input output probabilistic relations, a statistical model {p(x, y; w)}w∈Θ is
considered using the MPF. Here p(x, y; w) is a joint probability density function
and Θ ⊂ R

M is a set of parameters. The problem is to find the parameter w

which makes p(x, y; w) as a best estimate of Q(X, Y ). The maximum likelihood
method is employed to obtain such w∗.

w∗ ≡ arg max
w∈Θ

K
∏

k=1

p(xk, yk; w) (5)

It is known that this estimation is the same as the following minimization prob-
lem.

w∗ ≡ arg min
w∈Θ

K
∑

k=1

− log p(xk, yk; w) (6)

= arg min
w∈Θ

M(w) (7)

Here, we have set the target function to minimize as M(w). Research on efficient
algorithms for this optimization problem is the central issue in the following.

2.2 Natural Gradient Method

Natural Gradient Method is a steepest descent method in a Riemannian space.
It is proposed from the information geometry where statistical models are mani-
folds in a Riemannian space with a metric of the Fisher Information Matrices[2].
Thus, we can view the learning by the multilayer Perceptrons as an optimization
problem in a Riemannian space as presented in 2.1.

Let us start by defining the Fisher information matrix and the Natural Gra-
dient Descent.

Definition: Fisher Information Matrix

We set l(x; w) ≡ log p(x; w). For w ∈ Θ, a square matrix G(w) = (gij(w))
is defined as follows.

G(w) ≡ E
[

∇l(X ; w)∇l(X ; w)T
]

(8)

(8) can be expressed by each elements as,

gij(w) = E

[

∂l

∂wi

(X ; w)
∂l

∂wj

(X ; w)

]

=

∫

∂l

∂wi

(x; w)
∂l

∂wj

(x; w)p(x; w)dx (9)

We call this matrix G the Fisher information matrix (FIM).

3



Definition: Natural Gradient Descent

We call the following gradient method as the Natural Gradient Descent
(NGD).

w(t + 1)=w(t)−η(t)G−1(w(t))∇M(w(t)) (10)

Here η(t) is a rate of the learning.

Then, −G−1(w(t))∇M(w(t)) is the direction of the maximal decrease of the
target function M given a fixed step size. We note that this NGD reduces to
the ordinary gradient descent, when G is the identity matrix.

2.3 Approximation of the Fisher Information Matrix

As discussed in the previous section, the FIM and its inverse play important roles
in the calculation in the NGD. We, thus, present a preliminary approximation
of the FIM in order to lessen the computational burdens[7].

Let us first compute the FIM for the multilayer Perceptrons. The probability
density function associated with the multilayer Perceproton function (MPF) is
given as follows.

p(x, y; w) = p(y|f(x; w))p(x) (11)

Also, the gradient vector are written concisely as in (4),

∂l

∂w
≡

(

vec

(

∂l

∂W̄ (1)

)T

, . . . , vec

(

∂l

∂W̄ (N)

)T
)T

(12)

Then, the FIM for the MLP is given as follows.

G(w) =











G1,1 G1,2 · · · G1,N

G2,1 G2,2 · · · G2,N

...
...

. . .
...

GN,1 GN,2 · · · GN,N











(13)

Gi,j ≡ E

[

vec

(

∂l

∂W̄ (i)

)

vec

(

∂l

∂W̄ (j)

)T
]

(14)

Hence, the FIM for the MLP is composed of the block matrices Gi,j .

If we further set δ
(i)
j =

∂l

∂a
(i)
j

, the following is obtained.

∂l

∂W̄ (i)
= δ(i)z̄(i−1)T

(15)

4



By putting (15) into (14), the Gi,j can now be expressed as

Gi,j = E
[

z̄(i−1)z̄(j−1)T

⊗ δ(i)δ(j)T
]

(16)

(Here, ⊗ is the Kronecker product. )
For the efficient computation, it is essential to approximate this FIM. The

preliminary approximation consists of two steps.
The first step approximation of Gi,j is given as G̃i,j which is defined as

follows.

Gi,j ≈ E
[

z̄(i−1)z̄(j−1)T
]

⊗ E
[

δ(i)δ(j)T
]

(17)

≡ Z̄i−1,j−1 ⊗Di,j

≡ G̃i,j

This approximation means that we are inter-changing the expectation of the
Kronecker products with the Kronecker products of the expectations. The ma-
trix G̃, whose elements are given by replacing Gi,j of (13) with G̃i,j , is the first
step approximation of the FIM. We note that the FIM is decomposed into two
parts by this approximation: z̄(i−1) (the feed-forward phase part) and δ(i) (the
back-propagtaing phase part).

We perform the second step approximation on G̃ to obtain Ğ.

Ğ ≡ diag(G̃1,1, G̃2,2, . . . , G̃N,N) (18)

Here, diag(· · · ) denotes a block diagonal matrix, whose non-zero diagonals are
given by the elements. In other words, Ğ is obtained from G̃ by setting non-
diagonal elements as the zero matrix,

G̃i,j = O (i 6= j) (19)

This approximation allows us to compute the FIM layer by layer independently.

3 Whitened Neural Networks

In this section, we present algorithms which aim to perform Natural Gradient
Descent efficiently with the approximated FIM, Ğ.

3.1 Natural Gradient Descent by Whitening

Let us first describe Whitened Neural Networks[4]. The main idea of this method
is to perform the NGD by reconfiguring the network and parameters, so that
the FIM becomes closer to the identity matrix. When the FIM is the identity
matrix, the NGD is the same as the ordinary gradient descent, thus can be
implemented simply with less computational costs.

5



3.1.1 Whitened Neural Network

The architecture of the Whitened Neural Networks (WNN) is obtained by chang-
ing (1) through (3) into the following form.

z†(i−1)

= U (i−1)(z(i−1) − c(i−1)) (20)

a(i) = W †(i)

z†(i−1)

+ b†(i)

(21)

z(i) = φ(i)
(

a(i)
)

(22)

Here {(U (i−1), c(i−1))} are the new parameters introduced as “Whitening” pa-

rameters. {(W †(i)

, b†(i)

)} are the new model parameters associated with this
new architecture. These are the ones which we want to estimate and update
using gradient descent methods as in the normal multilayer Perceptrons.

We present in the Figure 1 the new architecture defined by (20), (21), (22).
It shows the i−1th layer to the ith layer. We note the gray layer in the Figure 1
is the new inserted layer for the purpose of “whitening”. This change of network
configuration is the essence of WNN.

Figure 1: Architecture of Whitened Neural Networks

From (17), the approximated FIM G̃i,i in the WNN, then, is expressed as
the following.

G̃i,i = E

[

z̄†(i−1)

z̄†(i−1)T

]

⊗ E
[

δ(i)δ(i)T
]

(23)

The essential idea of the whitening is to make Ğ closer to the identity by defining

6



the whitening parameters {(U (i−1), c(i−1))} as

E

[

z̄†(i−1)

z̄†(i−1)T

]

= I (24)

for each i and performs the gradient descent. (Our idea, which will be described

later in 3.2, is to further extend the whitening to the latter factor E
[

δ(i)δ(i)T

]

in (23))

3.1.2 Updating of the Whitening Parameters

We calculate here explicitly {(U (i−1), c(i−1))}, which satisfies the condition (24).

As z̄†(i−1)

= (1, z†(i−1)T

)T , (24) can be decomposed into




1 E
[

z†(i−1)T
]

E
[

z†(i−1)
]

E
[

z†(i−1)

z†(i−1)T
]



 = I (25)

Thus,

E
[

z†(i−1)
]

= 0 (26)

E

[

z†(i−1)

z†(i−1)T

]

= I (27)

are required to satisfy this condition.
Let us look at these conditions. (26) can be satisfied by

c(i−1) ← E
[

z(i−1)
]

(28)

Also, for (27), we first set the matrix Ži−1,i−1 by the following

Ži−1,i−1 ≡ E
[

(z(i−1)−c(i−1))(z(i−1)−c(i−1))T
]

(29)

Then, (27) becomes

E

[

z†(i−1)

z†(i−1)T

]

= U (i−1)Ži−1,i−1U (i−1)T

= I (30)

Because Ži−1,i−1 is a symmetric matrix, there exists a orthogonal matrix P ,
which makes it diagonal.

Ži−1,i−1 = P ΛP T (31)

Here Λ is the diagonalized matrix. Then, if we set

U (i−1) ← (Λ + εI)− 1
2 · P T (32)

the condition (30) is approximately satisfied. (Here, ε is a small positive con-
stant to avoid division by zero. )

By this process, called the whitening process, according to (28) and (32),
we update the whitening parameters satisfying (24). We note that, in this
updating, the calculation of z(i−1) in feed-forward phase is essential.

7



3.1.3 Updating of the model parameters

We now turn our attention to the updating of the model parameters {(W †(i)

, b†(i)

)}.
We need to pay attention so that the inclusion of the whitening process and the
associated layer does not change the value of the multilayer Perceptron func-
tion (MPF) itself. In concrete, we need to do the following. Let us assume the

whitening parameters {(U (i−1), c(i−1))} are updated to {(U
(i−1)
new , c

(i−1)
new )}. We

want to keep the value of (21) unchanged by this updating. This places a con-

strains in the way we update the model parameters {(W †(i)

new, b†(i)

new)}. Namely,
for any value of z(i−1), the following must be satisfied.

W †(i)

U (i−1)(z(i−1) − c(i−1)) + b†(i)

= W †(i)

newU (i−1)
new (z(i−1) − c(i−1)

new ) + b†(i)

new (33)

We can obtain the following by solving these equations.

W †(i)

new = W †(i)

U (i−1)U (i−1)−1

new (34)

b†(i)

new = b†(i)

−W †(i)

U (i−1)c(i−1) + W †(i)

newU (i−1)
new c(i−1)

new (35)

By putting together (20) and (21), we can set {(W (i), b(i))} as

W (i) = W †(i)

U (i−1) (36)

b(i) = b†(i)

−W †(i)

U (i−1)c(i−1) (37)

Using these {(W (i), b(i))}, we can re-write (34)and (35) as

W †(i)

← W (i)U (i−1)−1

new (38)

b†(i)

← b(i) + W (i)c(i−1)
new (39)

Thus, we can keep MPF the same by updating whitening parameters first as in
(28) and (32) and then update model parameters with (38) and (39).

As we change model parameters, the values of E[z(i−1)], Ži−1,i−1 changes,
which in turn requires the update of the whitening parameters to keep the
FIM close to the identity matrix. However, it is computationally expensive to
update both set of parameters at every iterations. In particular, the update of
the whitening parameters for a layer of M neurons takes computation of the
order of O(M3). Thus, in actual implementations, the update of the whitening
parameters are performed at certain fixed time intervals[4], though this makes a
gradual digression from the NGD for that time interval between the successive
updating of the whitening parameters.

The method and algorithm described above is called “Projected Natural
Gradient Descent”(PRONG)[4], which is outlined in Algorithm 1.

8



Algorithm 1 Projected Natural Gradient Descent (PRONG)[4].

Input: training set D, initial parameter w(0)
Hyper parameters: updating period of whitening parameters τ

• U (i) ← I; c(i) ← 0; t← 0
while ending condition not satisfied do

if mod(t, τ) = 0 then

for all layers i do

• Computation of standard parameters {(W (i), b(i))}.
• Estimations of E[z(i−1)], Ži−1,i−1.
• Updating of the Whitening parameters {(U (i−1), c(i−1))}.

• Updating of the model parameters {(W †(i)

, b†(i)

)}.
end for

end if

• Updating of {(W †(i)

, b†(i)

)} by the ordinary gradient descent.
• t← t + 1

end while

3.2 Extension of Whitening

Here, we describe our proposal of the new extended whitening algorithms based
on 3.1.

In the whitening method described above, in order to keep the approximated
FIM, Ğ, closer to the identity matrix, updating of the whitening parameters

{(U (i), c(i))} are performed. This makes the first factor E
[

z̄†(i−1)

z̄†(i−1)T
]

in

G̃i,i = E

[

z̄†(i−1)

z̄†(i−1)T

]

⊗ E
[

δ(i)δ(i)T
]

(40)

closer to the identity matrix.

The main idea of our method is to make the second factor E
[

δ(i)δ(i)T

]

toward the identity as well, so that G̃i,i is even better approximated by the
identity matrix. This turns out that we implement whitening process not only
in the feed-forward phase but also in the back-propagating phase.

3.2.1 Bidirectional Whitened Neural Networks

In order to perform the back-whitening, we modify the forward-whitening pro-
cess described by (20), (21) and (22) into the following.

z†(i−1)

= U (i−1)(z(i−1) − c(i−1)) (41)

a†(i)

= W †(i)

z†(i−1)

+ b†(i)

(42)

a(i) = R(i)T

a†(i)

(43)

z(i) = φ(i)
(

a(i)
)

(44)

9



Here, {R(i)T

} is a newly introduced parameter, called the back-whitening pa-
rameter.

We show, as in Figure 1, the architecture of this extended method defined
by (41), (42), (43), (44) in the Figure 2. The dark gray part in the Figure 2
is the newly introduced layer to accommodate the back-whitening parameter

{R(i)T

}.
As mentioned above, this proposed method performs whitening process both

in feed-forward and back-propagating phase. Thus, we call this new architecture
as the Bidirectional Whitened Neural Networks (BWNN).

Figure 2: Architecture of the Bidirectional Whitened Neural Networks

We introduce a new parameter δ†(i)

in place of δ(i) as in the following.

δ†(i)

≡
∂l

∂a†(i)
(45)

Then, the approximation of G̃i,i is then expressed as

G̃i,i = E

[

z̄†(i−1)

z̄†(i−1)T

]

⊗ E

[

δ†(i)

δ†(i)T

]

(46)

In analogy with Section 3.1, we will fix the back-whitening parameter {R(i)T

}
so that

E

[

δ†(i)

δ†(i)T

]

= I (47)

3.2.2 Updating of the back-whitening parameter

Let us explicitly find {R(i)T

} to satisfy (47). From (45), we have

δ
†(i)

j =
∑

k

∂l

∂a
(i)
k

∂a
(i)
k

∂a
†(i)

j

=
∑

k

δ
(i)
k r

(i)T

kj (48)

10



Thus, δ†(i)

is a linear transformation of δ(i), which can be written as

δ†(i)

= R(i)δ(i) (49)

By inserting (49) into (47), we obtain

E

[

δ†(i)

δ†(i)T

]

= R(i)Di,iR
(i)T

= I (50)

Hence, in analogy with (32), R(i) which satisfies (47) is given by the following

R(i) ← (Λ + εI)− 1
2 · P T (51)

Here, Λ, P are the diagonalized and the orthogonal matrices associated with
Di,i, and ε is the small positive parameter to avoid a division by zero.

Altogether, as in the case of the forward-whitening parameters, (47) is sat-
isfied by updating of the back-whitening parameters according to (51), which,
in turn, depends on the calculation of δ(i) in the back-propagating phase.

3.2.3 Updating of the model parameters

As in the feed-forward phase, we update the model parameters {(W †(i)

, b†(i)

)}
so that the values of the multilayer Perceptron function are kept the same when
the back-whitening parameters are updated.

In order to achieve this, the model parameters {(W †(i)

, b†(i)

)} need to be
updated as follows, given the back-whitening parameters are updated from R(i)

to R
(i)
new .

W †(i)

← (R(i)T

new)−1R(i)T

W †(i)

(52)

b†(i)

← (R(i)T

new)−1R(i)T

b†(i)

(53)

We will call the above algorithm as “Bidirectional Projected Natural Gra-
dient Descent”(BPRONG) because it performs whitening both in feed-forward
and back-propagaing phase. Its outline is shown in Algorithm 2. Also, as in
the forward-whitening, we can perform the back-whitening update in a fixed
intervals. They can both be done at the same time, or independently. In the
following section, we will employ the latter method for a numerical application.

11



Algorithm 2 Bidirectional Projected Natural Gradient Descent(BPRONG).

Input: training set D,initial parameter w(0)
Hyper parameters: parameters for forward-whitening τ1, c1,parameters for
back-whitening τ2, c2

• U (i) ← I; c(i) ← 0; R(i)T

← I; t← 0
while ending condition not satisfied do

if mod(t, τ1) = c1 then

• forward-whitening (cf. Algorithm 1).
end if

if mod(t, τ2) = c2 then

for all layers i do

• Estimation of Di,i.

• Computation of the back-whitening parameters {R
(i)T

new}.

• Updating the model parameters {(W †(i)

, b†(i)

)}.

• Updating the back-whitening parameters {R(i)T

}.
end for

end if

• Updating of {(W †(i)

, b†(i)

)} by the ordinary gradient descent.
• t← t + 1

end while

4 Numerical Experiment

In order to see the efficacy of our proposed method BPRONG in 3.2, we have
applied it to a problem of hand-written character (digits) recognition using the
MNIST data set (http://yann.lecun.com/exdb/mnist/) and compared against
three other methods: ordinary Stochastic Gradient Descent(SGD), Batch
Normalization(BN)[5], and PRONG. The network architecture is common to all
the compared methods with 5 layers of 784-100-100-100-10 neurons from input
to output. Also, common learning rate of 0.01 is taken and the mini-batch size
is 100. The training data contains 60000 sets and the test data has 10000. We
call updates of 600 as 1 epoch, and plot, at each epoch, the training loss with
the training set, and the validation loss with the test data sets.

We observe the advantage of BPRONG with respect to the iteration numbers
both in the training and the validation losses as shown in Figures 3 and 4. With
respect to the actual computation times, BPRONG is faster than PRONG, and
about the same speed as the BN (Figures 5 and 6). This is due to the fact
that eigenvalue decomposition associated with the whitening is computationally
costly to offset the advantage over BN with respect to iteration numbers.

Altogether, our proposed method, BPRONG, has shown its potential. If we
can find methods to speed up the whitening process, BPRONG can show its
effectiveness further.

12

http://yann.lecun.com/exdb/mnist/


Figure 3: Training loss as a function of the iteration numbers

Figure 4: Validation loss as a function of the iteration numbers

13



Figure 5: Training loss as a function of the computational time

Figure 6: Validation loss as a function of the computational time

14



5 Discussion

We presented here an extended model of the previously proposed Whitened
Neural Networks[4] as a method to realize the Natural Gradient Descent. Our
extension, which we call Bidirectional Whitened Neural Networks, aims to make
the Fisher Information Matrix closer to the identity matrix. It has shown its
potential as an efficient method thorough a numerical application to a hand-
written digits recognition problem.

We note two points as topics to be investigated further. First, the proposed
model should be tested for larger and deeper network architectures for a check of
its efficacy and stability. It may require further modifications for improvements
on these aspects, particularly by exploring matrix decomposition methods. Sec-
ondly, we want to find more dynamical way for whitening process. In other
words, we would like to keep the Fisher Information Matrix constantly closer
to the identity by continuous whitenings. Though it is computationally more
expensive, we may build on some previous studies, such as adaptive calculations
of transforming matrices[3].

References

[1] Shun-ichi Amari. Natural gradient works efficiently in learning. Neural
computation, 10(2):251–276, 1998.

[2] Shun-ichi Amari and Hiroshi Nagaoka. Methods of Information Geome-
try (Translations of Mathematical Monographs). American Mathematical
Society, 2007.

[3] J-F Cardoso and Beate H Laheld. Equivariant adaptive source separation.
IEEE Transactions on signal processing, 44(12):3017–3030, 1996.

[4] Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, and Koray
Kavukcuoglu. Natural neural networks. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 2071–2079. Curran Associates,
Inc., 2015.

[5] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Proceedings
of the 32nd International Conference on Machine Learning (ICML-15),
pages 448–456, 2015.

[6] James Martens. New insights and perspectives on the natural gradient
method. arXiv preprint arXiv:1412.1193, 2014.

[7] James Martens and Roger Grosse. Optimizing neural networks
with kronecker-factored approximate curvature. arXiv preprint
arXiv:1503.05671, 2015.

15



[8] Hyeyoung Park, Shun-ichi Amari, and Kenji Fukumizu. Adaptive natural
gradient learning algorithms for various stochastic models. Neural Net-
works, 13(7):755–764, 2000.

[9] Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep
networks. arXiv preprint arXiv:1301.3584, 2013.

[10] Tim Salimans and Diederik P Kingma. Weight normalization: A simple
reparameterization to accelerate training of deep neural networks. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems 29, pages 901–909.
Curran Associates, Inc., 2016.

16


	1 Introduction
	2 Multilayer Perceptron and Natural Gradient Descent
	2.1 Multilayer Perceptron
	2.2 Natural Gradient Method
	2.3 Approximation of the Fisher Information Matrix

	3 Whitened Neural Networks
	3.1 Natural Gradient Descent by Whitening
	3.1.1 Whitened Neural Network
	3.1.2 Updating of the Whitening Parameters
	3.1.3 Updating of the model parameters

	3.2 Extension of Whitening
	3.2.1 Bidirectional Whitened Neural Networks
	3.2.2 Updating of the back-whitening parameter
	3.2.3 Updating of the model parameters


	4 Numerical Experiment
	5 Discussion

