Skip to main content

Block Matching Based Obstacle Avoidance for Unmanned Aerial Vehicle

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10841))

Abstract

Unmanned aerial vehicles (UAVs) are becoming very popular now. They have a variety of applications: search and rescue missions, crop inspection, 3D mapping, surveillance and military applications. However, many of the lower-end UAV do not have obstacle avoidance systems installed, which can lead to broken equipment or people may get injured. In this paper, we describe the design of low-cost UAV with computer vision based obstacle avoidance system. We used Block Match (BM) and Semi Global Block Match (SGBM) algorithms for detection of obstacles in stereo images. We constructed custom UAV platform, and demonstrated the effectiveness of UAV with an obstacle avoidance system in real-world field testing conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Austin, R.: Unmanned Aircraft Systems: UAVS Design, Development and Deployment. Wiley, Hoboken (2010)

    Book  Google Scholar 

  2. Naidoo, Y., Stopforth, R., Bright, G.: Development of an UAV for search & rescue applications. In: AFRICON 2011, Livingstone, pp. 1–6 (2011). https://doi.org/10.1109/afrcon.2011.6072032

  3. Zhang, C., Walters, D., Kovacs, J.M.: Applications of low altitude remote sensing in agriculture upon farmers’ requests-a case study in northeastern Ontario, Canada. PLoS One 9(11), e112894 (2014). https://doi.org/10.1371/journal.pone.0112894

    Article  Google Scholar 

  4. Jones, G.P., Pearlstine, L.G., Percival, H.F.: An assessment of small unmanned aerial vehicles for wildlife research. Wildl. Soc. Bull. 34(3), 750–758 (2006)

    Article  Google Scholar 

  5. Cermak, P., Martinu, J.: Component based design of mini UAV. In: International Conference on Military Technologies, ICMT 2015, pp. 1–5 (2015). https://doi.org/10.1109/miltechs.2015.7153714

  6. Ashraf, A., Majd, A., Troubitsyna, E.: Towards a realtime, collision-free motion coordination and navigation system for a UAV fleet. In: Rysavy, O., Vranić, V., Papadopoulos, G.A. (eds.) Proceedings of the Fifth European Conference on the Engineering of Computer-Based Systems (ECBS 2017), Article no. 11, p. 9. ACM, New York (2017). https://doi.org/10.1145/3123779.3123805

  7. Goppert, J.M., Wagoner, A.R., Schrader, D.K., Ghose, S., Kim, Y., Park, S., Gomez, M., Matson, E.T., Hopmeier, M.J.: Realization of an autonomous, air-to-air counter unmanned aerial system (CUAS). In: First IEEE International Conference on Robotic Computing (IRC), Taichung, pp. 235–240 (2017)

    Google Scholar 

  8. Wagoner, A.R., Schrader, D.K., Matson, E.T.: Survey on detection and tracking of UAVs using computer vision. In: First IEEE International Conference on Robotic Computing (IRC), Taichung, pp. 320–325 (2017). https://doi.org/10.1109/irc.2017.15

  9. Budiyanto, A., Cahyadi, A., Adji, T.B., Wahyunggoro, O.: UAV obstacle avoidance using potential field under dynamic environment. In: International Conference on Control, Electronics, Renewable Energy and Communications, ICCEREC 2015, pp. 187–192 (2015). https://doi.org/10.1109/iccerec.2015.7337041

  10. Borenstein, J., Everett, H.R., Feng, L., Wehe, D.: Mobile robot positioning: sensors and techniques. J. Robot. Syst. 14(4), 231–249 (1997)

    Article  Google Scholar 

  11. Jian, L., Xiao-min, L.: Vision-based navigation and obstacle detection for UAV. In: 2011 International Conference on Electronics, Communications and Control, pp. 1771–1774 (2011)

    Google Scholar 

  12. Kwag, Y.K., Choi, M.S., Jung, C.H., Hwang, K.Y.: Collision avoidance radar for UAV. In: 2006 CIE International Conference on Radar, pp. 1–4 (2006). https://doi.org/10.1109/icr.2006.343231

  13. Luo, D., Wang, F., Wang, B., Chen, B.M.: Implementation of obstacle avoidance technique for indoor coaxial rotorcraft with scanning laser range finder. In: Proceedings of the 31st Chinese Control Conference, Hefei, pp. 5135–5140 (2012)

    Google Scholar 

  14. Mader, D., Blaskow, R., Westfeld, P., Maas, H.: UAV-based acquisition of 3D point cloud - a comparison of a low-cost laser scanner and SFM-tools. Int. Arch. Photogrammetry Remote Sens. Spatial Inf. Sci. - ISPRS Arch. 40(3W3), 335–341 (2015). https://doi.org/10.5194/isprsarchives-xl-3-w3-335-2015

  15. Chakravarty, P., Kelchtermans, K., Roussel, T., Wellens, S., Tuytelaars, T., Van Eycken, L.: CNN-based single image obstacle avoidance on a quadrotor. In: IEEE International Conference on Robotics and Automation, pp. 6369–6374 (2017). https://doi.org/10.1109/icra.2017.7989752

  16. Je, C., Park, H.-M.: Optimized hierarchical block matching for fast and accurate image registration. Sign. Process.: Image Commun. 28, 779–791 (2013)

    Google Scholar 

  17. Yang, J., Wang, H., Ding, Z., Lv, Z., Wei, W., Song, H.: Local stereo matching based on support weight with motion flow for dynamic scene. IEEE Access 4, 4840–4847 (2016). https://doi.org/10.1109/ACCESS.2016.2601069

    Article  Google Scholar 

  18. Hirschmüller, H.: Stereo processing by semi-global matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)

    Article  Google Scholar 

  19. Esmaeili, A., et al.: The impact of diversity on performance of holonic multi-agent systems. Eng. Appl. Artif. Intell. 55, 186–201 (2016)

    Article  Google Scholar 

  20. Min, B.-C., et al.: A directional antenna based leader–follower relay system for end-to-end robot communications. Robot. Auton. Syst. 101, 57–73 (2018)

    Article  Google Scholar 

  21. Łągiewka, M., Korytkowski, M., Scherer, R.: Distributed image retrieval with color and keypoint features. In: 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA). IEEE (2017)

    Google Scholar 

  22. Najgebauer, P., Rutkowski, L., Scherer, R.: Novel method for joining missing line fragments for medical image analysis. In: 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE (2017)

    Google Scholar 

  23. Esmaeili, A., et al.: A socially-based distributed self-organizing algorithm for holonic multi-agent systems: case study in a task environment. Cogn. Syst. Res. 43, 21–44 (2017)

    Article  Google Scholar 

  24. Gabryel, M., Damaševičius, R.: The image classification with different types of image features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 497–506. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_44

    Chapter  Google Scholar 

  25. Grycuk, R., et al.: Content-based image retrieval optimization by differential evolution. In: 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE (2016)

    Google Scholar 

Download references

Acknowledgements

The Authors would like to acknowledge contribution to this research from the “Diamond Grant 2016” No. 0080/DIA/2016/45 funded by the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Woźniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivanovas, A., Ostreika, A., Maskeliūnas, R., Damaševičius, R., Połap, D., Woźniak, M. (2018). Block Matching Based Obstacle Avoidance for Unmanned Aerial Vehicle. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10841. Springer, Cham. https://doi.org/10.1007/978-3-319-91253-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91253-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91252-3

  • Online ISBN: 978-3-319-91253-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics