Skip to main content

Relative Stability of Random Projection-Based Image Classification

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10841))

Included in the following conference series:

Abstract

Our aim is to show that randomly generated transformation of high-dimensional data vectors, for example, images, could provide low dimensional features which are stable and suitable for classification tasks. We examine two types of projections: (a) global random projections, i.e., projections of the whole images, and (b) concatenated local projections of spatially-organized parts of an image (for example rectangular image blocks). In both cases, the transformed images provide good features for correct classification. The computational complexity of designing the transformation is linear with respect to the size of images and in case (b) it does not depend on the form of image partition. We have analyzed the stability of classification results with respect to random projection and to different randomly generated training sets. Experiments on the images of ten persons taken from the Extended Yale Database B demonstrate that the methods of classification based on Gaussian random projection are effective and positively comparable with PCA-based methods, both from the point of view of stability and classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66, 671–687 (2003)

    Article  MathSciNet  Google Scholar 

  2. Ailon, N., Chazelle, B.: The fast Johnson-Lindenstrauss transform and approximate nearest neighbors. SIAM J. Comput. 39(1), 302–322 (2009)

    Article  MathSciNet  Google Scholar 

  3. Amador, J.J.: Random projection and orthonormality for lossy image compression. Image Vis. Comput. 25, 754–766 (2007)

    Article  Google Scholar 

  4. Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28(3), 253–263 (2008)

    Article  MathSciNet  Google Scholar 

  5. Breiman, L.: Arcing classifiers. Ann. Stat. 26(3), 801–849 (1998)

    Article  MathSciNet  Google Scholar 

  6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  7. Briand, B., Ducharme, G.R., Parache, V., Mercat-Rommens, C.: A similarity measure to assess the stability of classification trees. Comput. Stat. Data Anal. 53(4), 1208–1217 (2009)

    Article  MathSciNet  Google Scholar 

  8. Brigham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the Conference on Knowledge Discovery and Data Mining, vol. 16, pp. 245–250 (2001)

    Google Scholar 

  9. Fodor, I.K.: A survey of dimension reduction techniques. Technical report, Lawrence Livermore National Lab., CA (US) (2002)

    Google Scholar 

  10. Du, Q., Fowler, J.E.: Low-complexity principal component analysis for hyperspectral image compression. Int. J. High Perform. Comput. Appl. 22, 438–448 (2008)

    Article  Google Scholar 

  11. Frankl, P., Maehara, H.: Some geometric applications of the beta distribution. Ann. Inst. Stat. Math. 42(3), 463–474 (1990)

    Article  MathSciNet  Google Scholar 

  12. Fowler, J.E., Du, Q.: Anomaly detection and reconstruction from random projections. IEEE Trans. Image Process. 21(1), 184–195 (2012)

    Article  MathSciNet  Google Scholar 

  13. Gottmukkal, R., Asari, V.K.: An improved face recognition technique based on modular PCA approach. Pattern Recogn. Lett. 24(4), 429–436 (2004)

    Article  Google Scholar 

  14. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 21(6), 643–660 (2001)

    Article  Google Scholar 

  15. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7138-7

    Book  MATH  Google Scholar 

  16. Jeong, K., Principe, J.C.: Enhancing the correntropy MACE filter with random projections. Neurocomputing 72(1–2), 102–111 (2008)

    Article  Google Scholar 

  17. Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer, NewYork (2002). https://doi.org/10.1007/b98835

    Book  MATH  Google Scholar 

  18. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipshitz mapping into Hilbert space. Contemp. Math. 26, 189–206 (1984)

    Article  Google Scholar 

  19. Lee, K.-C., Ho, J., Driegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)

    Article  Google Scholar 

  20. Matouŝek, J.: On variants of the Johnson-Lindenstrauss lemma. Random Struct. Algorithms 33(2), 142–156 (2008)

    Article  MathSciNet  Google Scholar 

  21. Marzetta, T.L., Tucci, G.H., Simon, S.H.: A random matrix-theoretic approach to handling singular covariance estimates. IEEE Trans. Inf. Theory 57, 6256–6271 (2011)

    Article  MathSciNet  Google Scholar 

  22. Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers: a comparison of logistic regression and Naive Bayes. In: Advances in Neural Information Processing Systems, vol. 14, pp. 841–848 (2002)

    Google Scholar 

  23. Skubalska-Rafajłowicz, E.: Random projections and Hotelling’s T 2 statistics for change detection in high-dimensional data streams. Int. J. Appl. Math. Comput. Sci. 23(2), 447–461 (2013)

    Article  MathSciNet  Google Scholar 

  24. Skubalska-Rafajłowicz, E.: Neural networks with sigmoidal activation functions – dimension reduction using normal random projection. Nonlinear Anal.: Theory Methods Appl. 71(12), e1255–e1263 (2009)

    Article  Google Scholar 

  25. Skubalska-Rafajłowicz, E.: Spatially-organized random projections of images for dimensionality reduction and privacy-preserving classification. In: Proceedings of 10th International Workshop on Multidimensional (nD) Systems (nDS), pp. 1–5 (2017)

    Google Scholar 

  26. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York (2008). https://doi.org/10.1007/978-0-387-77242-4

    Book  MATH  Google Scholar 

  27. Tsagkatakis, G., Savakis, A.: A random projections model for object tracking under variable pose and multi-camera views. In: Proceedings of the Third ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC, pp. 1–7 (2009)

    Google Scholar 

  28. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  29. Vempala, S.: The Random Projection Method. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  30. Yang, J., Zhang, D., Frangi, A.F., Yang, J.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by grant 041/0145/17 at the Faculty of Electronics, Wrocław University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Skubalska-Rafajłowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skubalska-Rafajłowicz, E. (2018). Relative Stability of Random Projection-Based Image Classification. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10841. Springer, Cham. https://doi.org/10.1007/978-3-319-91253-0_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91253-0_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91252-3

  • Online ISBN: 978-3-319-91253-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics