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Abstract. A marked Petri net is lucent if there are no two different reachable
markings enabling the same set of transitions, i.e., states are fully characterized
by the transitions they enable. This paper explores the class of marked Petri nets
that are lucent and proves that perpetual marked free-choice nets are lucent. Per-
petual free-choice nets are free-choice Petri nets that are live and bounded and
have a home cluster, i.e., there is a cluster such that from any reachable state
there is a reachable state marking the places of this cluster. A home cluster in a
perpetual net serves as a “regeneration point” of the process, e.g., to start a new
process instance (case, job, cycle, etc.). Many “well-behaved” process models fall
into this class. For example, the class of short-circuited sound workflow nets is
perpetual. Also, the class of processes satisfying the conditions of the α algorithm
for process discovery falls into this category. This paper shows that the states in
a perpetual marked free-choice net are fully characterized by the transitions they
enable, i.e., these process models are lucent. Having a one-to-one correspondence
between the actions that can happen and the state of the process, is valuable in
a variety of application domains. The full characterization of markings in terms
of enabled transitions makes perpetual free-choice nets interesting for workflow
analysis and process mining. In fact, we anticipate new verification, process dis-
covery, and conformance checking techniques for the subclasses identified.

1 Introduction

Structure theory is a branch in Petri nets [8,20,21,22,23] that asks what behavioral prop-
erties can be derived from it structural properties [10,12,13]. Many different subclasses
have been studied. Examples include state machines, marked graphs, free-choice nets,
asymmetric choice nets, and nets without TP and PT handles. Structure theory also
studies local structures such as traps and siphons that may reveal information about
the behavior of the Petri net and includes linear algebraic characterizations of behavior
involving the matrix equation or invariants [12,13,20].

In this paper, we focus on the following fairly general question: What is the class
of Petri nets for which each marking is uniquely identified by the set of enabled tran-
sitions? We call such nets lucent. A lucent marked Petri net cannot have two different
reachable markings that enable the same set of transitions.

Consider, for example, the Petri net shown in Figure 1. There are four reachable
markings. Marking [p1, p2] enables {t1, t2}. Marking [p1, p3] enables {t3}. Marking
[p2, p4] enables {t4}. Marking [p3, p4] enables {t3, t4}. Hence, the marked net is lu-
cent, because each of the four markings is uniquely identified by a particular set of
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Fig. 1. A perpetual marked free-choice net (i.e., live, bounded, and having a home cluster) that is
lucent (each reachable marking is unique in terms of the transitions it enables).

enabled transitions. The Petri net shown in Figure 2 is not lucent. After firing either
transition t1 or t2 only t3 is enabled, i.e., the two corresponding [p2, p5] and [p2, p6]
markings enable the same set of transitions. The choice between t4 and t5 is controlled
by a token in p5 or p6, and this state information is not “visible” when only t3 is en-
abled. As illustrated by Figure 2, it is easy to construct non-free-choice nets that are not
lucent. Moreover, unbounded Petri nets cannot be lucent. These examples trigger the
question: Which classes of marked Petri nets are guaranteed to be lucent?

In this paper, we will show that perpetual marked free-choice nets are always lu-
cent. These nets are live and bounded and also have a so-called home cluster. A home
cluster serves as a “regeneration point”, i.e., a state where all tokens mark a single clus-
ter. The property does not hold in general. Liveness, boundedness, the existence of a
home cluster, and the free-choice requirement are all needed. We will provide various
counterexamples illustrating that dropping one of the requirements is not possible.

Free-choice nets are well studied [11,12,15,25]. The definite book on the structure
theory of free-choice nets is [13]. Also, see [12] for pointers to literature. Therefore,
it is surprising that the question whether markings are uniquely identified by the set
of enabled transitions (i.e., lucency) has not been explored in literature. Most related to
the results presented in this paper is the work on the so-called blocking theorem [17,26].
Blocking markings are reachable markings which enable transitions from only a single
cluster. Removing the cluster yields a dead marking. Figure 1 has three blocking mark-
ings ([p1, p2], [p1, p3], and [p2, p4]). The blocking theorem states that in a bounded and
live free-choice net each cluster has a unique blocking marking. We will use this result,
but prove a much more general property. Note that we do not look at a single cluster
and do not limit ourselves to blocking markings. We consider all markings including
states (partially) marking multiple clusters.

We expect that the theoretical results presented in this paper will enable new anal-
ysis techniques in related fields such as business process management [14], workflow
management [24], and process mining [4]. Lucency is a natural assumption in many
application domains and should be exploited. For example, the worklists of a work-
flow management system show the set of enabled actions. Hence, lucency allows us to
reason about the internal state of the system in terms of the actions it allows. We also
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Fig. 2. A perpetual marked non-free-choice net that is not lucent because there are two reachable
markings ([p2, p5] and [p2, p6]) enabling the same set of transitions ({t3}).

anticipate that lucency can be exploited in workflow verification, process discovery, and
conformance checking [5]. Event logs used in process mining only reveal the actions
performed and not the internal state [3,4]. Moreover, the class of perpetual marked
free-choice nets considered in this paper is quite large and highly relevant in many
application domains. The existence of a “regeneration point” (home cluster) is quite
general, and liveness and boundedness (or soundness) are often desirable. For example,
the class of short-circuited sound workflow nets is perpetual. Processes that are cyclic,
often have a home cluster. Non-cyclic process often have a clear start and end state
and can be short-circuited thus introducing a home cluster. For example, the represen-
tational bias of the α algorithm (i.e., the class of process models for which rediscovery
is guaranteed) corresponds to a subclass of perpetual marked free-choice nets [9].

The remainder of this paper is organized as follows. Section 2 introduces prelim-
inaries and known results (e.g., the blocking theorem). Section 3 defines lucency as
a (desirable) behavioral property of marked Petri nets. Section 4 introduces perpetual
nets and important notions like partial P-covers and local safeness. These are used to
prove the main theorem of this paper showing that markings are unique in terms of the
transitions they enable. Section 5 concludes the paper.

2 Preliminaries

This section introduces basic concepts related to Petri nets, subclasses of nets (e.g.,
free-choice nets and workflow nets), and blocking markings.

2.1 Petri Nets

Multisets are used to represent the state of a Petri net. B(A) is the set of all multisets
over some setA. For some multiset b ∈ B(A), b(a) denotes the number of times element
a ∈ A appears in b. Some examples: b1 = [ ], b2 = [x, x, y], b3 = [x, y, z], b4 =
[x, x, y, x, y, z], and b5 = [x3, y2, z] are multisets over A = {x, y, z}. b1 is the empty
multiset, b2 and b3 both consist of three elements, and b4 = b5, i.e., the ordering of
elements is irrelevant and a more compact notation may be used for repeating elements.
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The standard set operators can be extended to multisets, e.g., x ∈ b2, b2 ] b3 = b4,
b5 \ b2 = b3, |b5| = 6, etc. {a ∈ b} denotes the set with all elements a for which b(a) ≥
1. [f(a) | a ∈ b] denotes the multiset where element f(a) appears

∑
x∈b|f(x)=f(a) b(x)

times.
σ = 〈a1, a2, . . . , an〉 ∈ X∗ denotes a sequence over X of length n. 〈 〉 is the empty

sequence. Sequences can be concatenated using “·”, e.g., 〈a, b〉 · 〈b, a〉 = 〈a, b, b, a〉. It
is also possible to project sequences: 〈a, b, b, a, c, d〉�{a,c}= 〈a, a, c〉.

Definition 1 (Petri Net). A Petri net is a tuple N = (P, T, F ) with P the non-empty
set of places, T the non-empty set of transitions such that P ∩ T = ∅, and F ⊆ (P ×
T ) ∪ (T × P ) the flow relation such that the graph (P ∪ T, F ) is connected.

Definition 2 (Marking). Let N = (P, T, F ) be a Petri net. A marking M is a multiset
of places, i.e., M ∈ B(P ). (N,M) is a marked net.

For a subset of places X ⊆ P : M�X= [p ∈ M | p ∈ X] is the marking projected
on this subset.

A Petri net N = (P, T, F ) defines a directed graph with nodes P ∪ T and edges

F . For any x ∈ P ∪ T ,
N• x = {y | (y, x) ∈ F} denotes the set of input nodes

and x
N• = {y | (x, y) ∈ F} denotes the set of output nodes. The notation can be

generalized to sets:
N•X = {y | ∃x∈X (y, x) ∈ F} and X

N• = {y | ∃x∈X (x, y) ∈ F}
for any X ⊆ P ∪ T . We drop the superscript N if it is clear from the context.

A transition t ∈ T is enabled in markingM of netN , denoted as (N,M)[t〉, if each
of its input places •t contains at least one token. en(N,M) = {t ∈ T | (N,M)[t〉} is
the set of enabled transitions.

An enabled transition t may fire, i.e., one token is removed from each of the input
places •t and one token is produced for each of the output places t•. Formally: M ′ =
(M \ •t) ] t• is the marking resulting from firing enabled transition t in marking M
of Petri net N . (N,M)[t〉(N,M ′) denotes that t is enabled in M and firing t results in
marking M ′.

Let σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions. (N,M)[σ〉(N,M ′)
denotes that there is a set of markings M0,M1, . . . ,Mn (n ≥ 0) such that M0 = M ,
Mn = M ′, and (N,Mi)[ti+1〉(N,Mi+1) for 0 ≤ i < n. A marking M ′ is reachable
from M if there exists a firing sequence σ such that (N,M)[σ〉(N,M ′). R(N,M) =
{M ′ ∈ B(P ) | ∃σ∈T∗ (N,M)[σ〉(N,M ′)} is the set of all reachable markings.

Figure 3 shows a marked Petri net having 8 places and 7 transitions. Transitions t3
and t6 are enabled in the initial marking M = [p3, p6]. R(N,M) = {[p3, p6], [p6, p7],
[p3, p8], [p7, p8], [p1, p2], [p3, p4], [p5, p6], [p4, p7], [p5, p8]}. For example, the firing se-
quence 〈t3, t6, t7〉 leads to marking [p1, p2], i.e., (N, [p3, p6])[〈t3, t6, t7〉〉(N, [p1, p2]).

A path in a Petri net N = (P, T, F ) is a sequence of nodes ρ = 〈x1, x2, . . . , xn〉
such that (xi, xi+1) ∈ F for 1 ≤ i < n. ρ is an elementary path if xi 6= xj for
1 ≤ i < j ≤ n.

Next, we define a few, often desirable, behavioral properties: liveness, boundedness,
and the presence of (particular) home markings.



Markings in Perpetual Free-Choice Nets 5

t1

t2

t3

t4

t5

t6

t7

p7p1

p2

p3

p4

p5

p6

p8

Fig. 3. A perpetual marked free-choice net [13]. The net is live, bounded, and has so-called “home
clusters” (e.g., {p7, p8, t7}). The net is also lucent.

Definition 3 (Liveness and Boundedness). A marked net (N,M) is live if for every
reachable marking M ′ ∈ R(N,M) and every transition t ∈ T there exists a marking
M ′′ ∈ R(N,M ′) that enables t. A marked net (N,M) is k-bounded if for every reach-
able marking M ′ ∈ R(N,M) and every p ∈ P : M ′(p) ≤ k. A marked net (N,M) is
bounded if there exists a k such that (N,M) is k-bounded. A 1-bounded marked net is
called safe. A Petri netN is structurally bounded if (N,M) is bounded for any marking
M . A Petri net N is structurally live if there exists a marking M such that (N,M) is
live. A Petri net N is well-formed if there exists a marking M such that (N,M) is live
and bounded.

The marked Petri net shown in Figure 3 is live and safe. Hence, it is also well-
formed.

Definition 4 (Home Marking). Let (N,M) be a marked net. A markingMH is a home
marking if for every reachable marking M ′ ∈ R(N,M): MH ∈ R(N,M ′). (N,M) is
cyclic if M is a home marking.

The marked Petri net shown in Figure 3 has 8 home markings: {[p6, p7], [p3, p8],
[p7, p8], [p1, p2], [p3, p4], [p5, p6], [p4, p7], [p5, p8]}. However, the net is not cyclic be-
cause [p3, p6] is not a home marking.

2.2 Subclasses of Petri Nets

For particular subclasses of Petri net there is a relationship between structural properties
and behavioral properties like liveness and boundedness [12]. In this paper, we focus
on free-choice nets [13].

Definition 5 (P-net, T-net, and Free-choice Net). Let N = (P, T, F ) be a Petri net.
N is an P-net (also called a state machine) if |•t| = |t•| = 1 for any t ∈ T . N is a
T-net (also called a marked graph) if |•p| = |p•| = 1 for any p ∈ P . N is free-choice
net if for any for any t1, t2 ∈ T : •t1 = •t2 or •t1 ∩ •t2 = ∅. N is strongly connected
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if the graph (P ∪ T, F ) is strongly connected, i.e., for any two nodes x and y there is a
path leading from x to y.

An alternative way to state that a net is free-choice is the requirement that for any
p1, p2 ∈ P : p1• = p2• or p1•∩p2• = ∅. The Petri net shown in Figure 3 is free-choice.
The Petri net shown in Figure 2 is not free-choice because t4 and t5 shared an input
place (p3) but have different sets of input places.

Definition 6 (Siphon and Trap). Let N = (P, T, F ) be a Petri net and R ⊆ P a
subset of places. R is a siphon if •R ⊆ R•. R is a trap if R• ⊆ •R. A siphon (trap) is
called proper if it is not the empty set.

Any transition that adds tokens to a siphon also takes tokens from the siphon. There-
fore, an unmarked siphon remains unmarked. Any transition that takes tokens from a
trap also adds tokens to the trap. Therefore, a marked trap remains marked.

Definition 7 (Cluster). Let N = (P, T, F ) be a Petri net and x ∈ P ∪ T . The cluster
of node x, denoted [x]c is the smallest set such that (1) x ∈ [x]c, (2) if p ∈ [x]c ∩ P ,
then p• ⊆ [x]c, and (3) if t ∈ [x]c ∩ T , then •t ⊆ [x]c. [N ]c = {[x]c | x ∈ P ∪ T} is
the set of clusters of N .

Note that [N ]c partitions the nodes in N . The Petri net shown in Figure 3 has 6
clusters: [N ]c = {{p1, p2, t1, t2}, {p3, t3}, {p4, t4}, {p5, t5}, {p6, t6}, {p7, p8, t7}}.

Definition 8 (Cluster Notations). Let N = (P, T, F ) be a Petri net and C ∈ [N ]c a
cluster. P (C) = P ∩ C are the places in C, T (C) = T ∩ C are the transitions in C,
and M(C) = [p ∈ P (C)] is the smallest marking fully enabling the cluster.

Definition 9 (Subnet, P-component, T-Component). Let N = (P, T, F ) be a Petri
net and X ⊆ P ∪ T such that X 6= ∅. N�X= (P ∩ X,T ∩ X,F ∩ (X × X)) is the

subnet generated by X . N�X is a P-component of N if
N• p ∪ pN• ⊆ X for p ∈ X ∩ P

and N�X is a strongly connected P-net. N�X is a T-component of N if
N• t ∪ N• t ⊆ X

for t ∈ X ∩ T and N�X is a strongly connected T-net. PComp(N) = {X ⊆ P ∪ T |
N�X is a P-component}. TComp(N) = {X ⊆ P ∪ T | N�X is a T-component}.

The Petri net shown in Figure 3 has four P-components and two T-components (see
Figure 4). These components cover all nodes of the net.

Definition 10 (P-cover, T-cover). LetN = (P, T, F ) be a Petri net.N has a P-cover if
and only if

⋃
PComp(N) = P ∪ T .1 N has a T-cover if and only if

⋃
TComp(N) =

P ∪ T .

Since the early seventies, it is known that well-formed free-choice nets have a P-
cover and a T-cover (first shown by Michel Hack).

Theorem 1 (Coverability Theorem [13]). Let N = (P, T, F ) be a well-formed free-
choice net.

⋃
PComp(N) =

⋃
TComp(N) = P ∪ T .

Moreover, for any well-formed free-choice net N and marking M : (N,M) is live
if and only if every P-component is marked in M (Theorem 5.8 in [13]).

1 ⋃Q =
⋃

X∈QX for some set of sets Q.
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Fig. 4. The Petri net shown in Figure 3 has four P-components and two T-components.

2.3 Workflow Nets

In the context of business process management, workflow automation, and process min-
ing, often a subclass of Petri nets is considered where each net has a unique source place
i and a unique sink place o [1].

Definition 11 (Workflow net). Let N = (P, T, F ) be a Petri net. N is a workflow
net if there are places i, o ∈ P such that •i = ∅, o• = ∅, and all nodes P ∪ T
are on a path from i to o. Given a workflow net N , the short-circuited net is N =
(P, T ∪ {t∗}, F ∪ {(t∗, i), (o, t∗)}).

The short-circuited net is strongly connected. Different notions of soundness have
been defined [6]. Here we only consider classical soundness [1].

Definition 12 (Sound). Let N = (P, T, F ) be a workflow net with source place i. N is
sound if and only if (N, [i]) is live and bounded.

Note that soundness implies that starting from the initial state (just a token in place
i), it is always possible to reach the state with one token in place o (marking [o]). More-
over, after a token is put in place o, all the other places need to be empty. Finally, there
are no dead transitions (each transition can become enabled).

Figure 5 shows a sound workflow net. By adding transition t∗ the net is short-
circuited. The short-circuited net is live, safe, and cyclic.

2.4 Uniqueness of Blocking Markings in Free-Choice Nets

A blocking marking is a marking where all transitions in a particular cluster are en-
abled while all others are disabled. For example, in Figure 3, [p3, p6] is not a blocking
marking, but [p3, p8], [p6, p7], and [p7, p8] are examples of blocking markings.
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t*
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Fig. 5. The free-choice net without transition t∗ is a workflow net. The short-circuited net is
perpetual, i.e., live, bounded, and having a home cluster (e.g., {start , t0}). The short-circuited
net is also lucent.

Definition 13 (Blocking Marking). Let (N,M) be a marked net andC ∈ [N ]c a clus-
ter. A blocking marking for C is a marking MB ∈ R(N,M) such that en(N,MB) =
T (C), i.e., all transitions in the cluster are enabled, but no other transitions.

In [18] Genrich and Thiagarajan showed that unique blocking markings exist for
all clusters in live and safe marked graphs. This was generalized by Gaujal, Haar, and
Mairesse in [17] where they showed that blocking markings exist and are unique in live
and bounded free-choice nets. Note that in a free-choice net all transitions in the cluster
are enabled simultaneously (or all are disabled). There is one unique marking in which
precisely one cluster is enabled. Moreover, one can reach this marking without firing
transitions from the cluster that needs to become enabled. A simplified proof was given
in [26] and another proof sketch was provided in [12].

Theorem 2 (Existence and Uniqueness of Blocking Markings [17]). Let (N,M) live
and bounded free-choice net and C ∈ [N ]c a cluster. There exists a unique blocking
marking for C reachable from (N,M), denoted by BC(N,M). Moreover, there exists a
firing sequence σ ∈ (T \ C)∗ such that (N,M)[σ〉(N,BC(N,M)).

The free-choice net in Figure 6 is live and bounded. Hence, each cluster has a unique
blocking marking. The unique blocking marking of the cluster {p2, t2} is [p2, p5]. The
unique blocking marking of the cluster {p6, p7, t6} is [p6, p7, p8].

The free-choice net in Figure 1 has three clusters. The three blocking markings
are [p1, p2], [p1, p3], and [p2, p4]. Marking [p3, p4] is not a blocking marking because
transitions from different clusters are enabled.

Figure 7 illustrates that the free-choice property is essential in Theorem 2. Cluster
C1 = {p1, t1} has two reachable blocking markings M1 = [p1, p3] and M2 = [p1, p4].
Cluster C2 = {p5, t4} also has two reachable blocking markings M3 = [p3, p5] and
M4 = [p4, p5].
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Fig. 6. A live and safe marked free-choice net that is not locally safe and not perpetual. Neverthe-
less, the net is lucent.
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Fig. 7. A live and locally safe non-free-choice net. Cluster {p1, t1} has two reachable blocking
markings M1 = [p1, p3] and M2 = [p1, p4]. Also cluster {p5, t4} has two reachable blocking
markings M3 = [p3, p5] and M4 = [p4, p5].

3 Lucency

This paper focuses on the question whether markings can be uniquely identified based
on the transitions they enable. Given a marked Petri net we would like to know whether
each reachable marking has a unique “footprint” in terms of the transitions it enables.
If this is the case, then the net is lucent.

Definition 14 (Lucent). Let (N,M) be a marked Petri net. (N,M) is lucent if and
only if for any M1,M2 ∈ R(N,M): en(N,M1) = en(N,M2) implies M1 =M2.

The marked Petri net in Figure 1 is lucent because each of the four reachable mark-
ings has a unique footprint in terms of the set of enabled transitions. The marked Petri
net shown in Figure 2 is not lucent because there are two markings M1 = [p2, p5]
and M2 = [p2, p6] with en(N,M1) = en(N,M2) = {t3} and M1 6= M2. The
marked Petri nets in figures 3, 5, and 6 are lucent. The non-free-choice net in Figure 7
is not lucent (markings [p3, p5] and [p4, p5] enable t4, and [p1, p3] and [p1, p4] enable
t1). Figure 8 shows a free-choice net that is also not lucent (markings [p3, p7, p8] and
[p3, p5, p7] both enable {t1, t4}).

Lemma 1. Let (N,M) be a lucent marked Petri net. (N,M) is bounded and each
cluster has at most one blocking marking.
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t8t7
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p4 p7
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Fig. 8. A live and locally safe free-choice net that is not lucent because reachable markings
[p3, p7, p8] and [p3, p5, p7] both enable t1 and t4.

Proof. Assume that (N,M) is both lucent and unbounded. We will show that this leads
to a contradiction. Since (N,M) is unbounded, we can find markings M1 and M2 and
sequences σ0 and σ such that (N,M)[σ0〉(N,M1)[σ〉(N,M2) and M2 is strictly larger
than M1. This implies that we can repeatedly execute σ getting increasingly larger
markings: (N,M2)[σ〉(N,M3)[σ〉(N,M4)[σ〉(N,M5) . . .. At some stage, say at Mk,
the set of places that are marked stabilizes. However, the number of tokens in some
places continues to increase in Mk+1, Mk+2, etc. Hence, we find markings that enable
the same set of transitions but that are not the same. For example, Mk+1 6= Mk+2 and
en(N,Mk+1) = en(N,Mk+2). Hence, the net cannot be lucent.

Take any cluster C and assume that (N,M) has two different reachable blocking
markings M1 and M2. This means that en(N,M1) = en(N,M2) = C ∩ T . Hence,
(N,M) could not be lucent, yielding a contradiction again. ut

We would like to find subclasses of nets that are guaranteed to be lucent based
on their structure. Theorem 2 and the fact that lucency implies the existence unique
blocking markings, suggest considering live and bounded free-choice nets. However, as
the example in Figure 8 shows, this is not sufficient.

4 Characterizing Markings of Perpetual Free-Choice Nets

Theorem 2 only considers blocking markings, but illustrates that the free-choice prop-
erty is important for lucency. Consider for example Figure 7. M1 = [p1, p3] and
M2 = [p1, p4] both enable t1. M3 = [p3, p5] and M4 = [p4, p5] both enable t4.
Obviously, the property does not hold for non-free-choice nets even when they are live,
safe, cyclic, etc. However, as Figure 8 shows, the property also does not need to hold
for free-choice nets even when they are live, safe, and cyclic. Yet, we are interested in
the class of nets for which all reachable markings have a unique “footprint” in terms of
the transitions they enable. Therefore, we introduce the class of perpetual nets. These
nets have a “regeneration point” involving a so-called “home cluster”.
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4.1 Perpetual Marked Nets

A home cluster is a cluster corresponding to a home marking, i.e., the places of the
cluster can be marked over and over again while all places outside the cluster are empty.

Definition 15 (Home Cluster). Let (N,M) be a marked net with N = (P, T, F ) and
C ∈ [N ]c a cluster of N . C is a home cluster of (N,M) if M(C) is a home marking,
i.e., for every reachable marking M ′ ∈ R(N,M): M(C) ∈ R(N,M ′).

Consider the marked net in Figure 1. There are three clusters:C1 = {p1, p2, t1, t2},
C2 = {p3, t3}, andC3 = {p4, t4}. C1 is a home cluster becauseM(C1) = [p1, p2] is a
home marking. C2 is not a home cluster because M(C2) = [p3] is not a home marking.
C3 is also not a home cluster because M(C3) = [p4] is not a home marking.

The marked net in Figure 7 also has three clusters:C1 = {p1, t1},C2 = {p2, p3, p4,
t2, t3}, and C3 = {p5, t4}. Since [p1], [p2, p3, p4], and [p5] are not home markings, the
net has no home clusters.

Nets that are live, bounded, and have at least one home cluster are called perpetual.

Definition 16 (Perpetual Marked Net). A marked net (N,M) is perpetual if it is live,
bounded, and has a home cluster.

The marked Petri nets in figures 1, 2, 3, and 5 are perpetual. The nets in figures 6, 7,
and 8 are not perpetual. Home clusters can be viewed as “regeneration points” because
the net is always able to revisit a state marking a single cluster.

Lemma 2 (Sound Workflow Nets are Perpetual). Let N be a sound workflow net
with source place i. The short-circuited marked net (N, [i]) is perpetual.

Proof. Soundness implies that (N, [i]) is live and bounded. Moreover, [i] is a home
cluster. It is always possible to enable and fire t∗ due to liveness. After firing t∗, place
i is marked and there can be no other tokens because otherwise (N, [i]) would be un-
bounded. Hence, [i] is a home marking. {i} ∪ i• is a cluster because the transitions in
i• cannot have additional input places (otherwise they would be dead). ut

Next to workflow nets, there are many classes of nets that have a “regeneration
point” (i.e., home cluster). For example, process models discovered by discovery algo-
rithms often have a well-defined start and end point. By short-circuiting such nets, one
gets home clusters.

4.2 Local Safeness

It is easy to see that non-safe Petri nets are likely to have different markings enabling
the same set of transitions. In fact, we need a stronger property that holds for perpetual
marked free-choice nets: local safeness. Local safeness is the property that each P-
component is safe (i.e., the sum of all tokens in the component cannot exceed 1).

Definition 17 (Locally Safe). Let (N,M) be a marked P-coverable net. (N,M) is
locally safe if all P-components are safe, i.e., for any P-component X ∈ PComp(N)
and reachable marking M ′ ∈ R(N,M):

∑
p∈X∩P M

′(p) ≤ 1.
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Note that a safe marked P-coverable net does not need to be locally safe. Con-
sider for example the marked net in Figure 6. The net is safe, but the P-component
{p1, p3, p5, p8, p6, t1, t3, t4, t5, t6} has two tokens. However, all perpetual marked free-
choice nets are locally safe.

Lemma 3 (Perpetual Marked Free-Choice Nets Are Locally Safe). Let (N,M) be
a perpetual marked free-choice net. (N,M) is locally safe.

Proof. Since (N,M) is perpetual, therefore it is live, bounded, and has a home cluster
C. N is well-formed and therefore has a P-cover. A bounded well-formed free-choice
net is only live if every P-component is initially marked (see Theorem 5.8 in [13]).
Hence, also in home marking M(C) the P-components are marked (the number of to-
kens is invariant). Therefore, in any P-component one of the places in P (C) appears.
There cannot be two places from cluster C in the same P-component (this would vio-
late the requirement that transitions in a P-component have precisely one input place).
Hence, each P-component is marked with precisely one token and this number is invari-
ant for all reachable markings. Hence, (N,M) is locally safe. ut

The nets in figures 1, 3, and 5 are free-choice and perpetual and therefore also
locally safe. The net in Figure 2 is locally safe and perpetual, but not free-choice. The
marked Petri net in Figure 6 is not perpetual and also not locally safe. Figure 8 shows
that there are free-choice nets that are live and locally safe, but not perpetual.

4.3 Realizable Paths

Free-choice nets have many interesting properties showing that the structure reveals
information about the behavior of the net [13]. Tokens can basically “decide where to
go”, therefore such nets are called free-choice.

The following lemma from [19] shows that tokens can follow an elementary path in
a live and bounded free-choice net where the initial marking marks a single place and
that is a home marking.

Lemma 4 (Realizable Paths in Cyclic Free-Choice Nets [19]). Let (N,M) be a live,
bounded, and cyclic marked free-choice net with M = [pH ]. Let M ′ be a reach-
able marking which marks place q and let 〈p0, t1, p1, t2, . . . , tn, pn〉 with p0 = q and
pn = pH be an elementary path in N . There exists a firing sequence σ such that
(N,M ′)[σ〉(N,M) and each of the transitions {t1, . . . tn} is executed in the given or-
der and none of the intermediate markings marks pH .

Proof. See [19]. ut

Note that Lemma 4 refers to a subclass of perpetual marked free-choice nets. A
similar result can be obtained for P-components in a perpetual marked free-choice net.

Lemma 5 (Realizable Paths Within P-components). Let (N,M) be a perpetual mark-
ed free-choice net with home cluster C. Let X ∈ PComp(N) be the nodes of some P-
component and M ′ ∈ R(N,M) an arbitrary reachable marking. For any elementary
path 〈p0, t1, p1, t2, . . . , tn, pn〉 ∈ X∗ in N with p0 ∈ M ′ and pn ∈ P (C): there exists
a firing sequence σ such that (N,M ′)[σ〉(N,M(C)) and σ�X= 〈t1, t2, . . . , tn〉.
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Proof. Let (PX , TX , FX) be the P-component corresponding to X . Note that p0 is
the only place of PX that is marked in M ′. Moreover, elements in 〈p0, t1, p1, t2, . . .
, tn, pn〉 ∈ X∗ are unique because the path is elementary. In fact, the places in {p0, p1,
. . . , pn} ⊆ PX belong to different clusters because a P-component cannot have multi-
ple places of the same cluster. As a result also {t1, t2, . . . tn} ⊆ TX belong to different
clusters.

If p0 = pn, then the lemma holds because pn ∈ P (C) is marked and we can also
mark the other places in P (C). Theorem 2 can be applied such that all places in P (C)
can be marked without firing any transitions in T (C). In fact, there exists a sequence σB
such that (N,M ′)[σB〉(N,M(C)) and σB�X= 〈 〉. σB does not involve any transitions
in TX , because T (C) transitions are not needed and all other transitions in TX are
blocked because pn is the only place in PX that is marked. When all places in P (C)
are marked, then all other places need to be empty, otherwise (N,M) is not bounded
(see Lemma 2.22 in [13]). Hence, σB leads indeed to M(C).

If p0 6= pn, then there is a firing sequence removing the token from p0 (because
M(C) is a home marking and p0 6∈M(C)). Let (N,M ′)[σ1〉(N,M1) be the sequence
enabling a transition that removes the token from p0 (for the first time). InM1, transition
t1 ∈ p0• is enabled (becauseN is free-choice all transitions in p0• are enabled). σ1 can-
not fire any transitions in TX , because p0 is the only place of PX that is marked. There-
fore, transitions in [p0]c need to be enabled first. Let M ′1 be the marking after firing t1
((N,M ′)[σ1〉(N,M1)[t1〉(N,M ′1)). Note that p1 is the only place of PX marked inM ′1.
Let (N,M ′)[σ2〉(N,M2) be the sequence enabling a transition that removes the token
from p1. Transition t2 is enabled in the marking reached after σ2: (N,M2)[t2〉(N,M ′2).
Again σ2 cannot involve any transitions in TX and enables all transitions in p1•. M ′2
marks place p2 as the only place in PX . By recursively applying the argument it is
possible to construct the firing sequence σ′ = σ1 · t1 · σ2 · t2 · . . . · σn · tn which
marks pn. From the resulting marking one can fire σB leading to marking M(C). For
the case p0 = pn we explained that such a σB exists. This shows that we can construct
σ = σ′ · σB such that (N,M ′)[σ〉(N,M(C)) and σ�X= 〈t1, t2, . . . , tn〉. ut

4.4 Partial P-covers

Hack’s Coverability Theorem (Theorem 1) states that well-formed free-choice nets have
a P-cover. Our proof that markings are distinguishable based on their enabled transitions
exploits this. In fact, we will construct nets using subsets of P-components. Therefore,
we define a notion of a Q-projection.

Definition 18 (Partial P-cover and Projection). Let (N,M) be a marked P-coverable
Petri net. Any Q ⊆ PComp(N) with Q 6= ∅ is a partial P-cover of N . N �⋃Q is the
Q-projection of N . (N�⋃Q,M�⋃Q) is the marked Q-projection of (N,M).

AQ-projection inherits properties from the original net (free-choice and well-formed)
and the Q-projection is again P-coverable.

Lemma 6. Let N = (P, T, F ) be a P-coverable Petri net, Q a partial P-cover of
N , and N �⋃Q= (PQ, TQ, FQ) the Q-projection of N .

⋃
Q = PQ ∪ TQ, Q ⊆

PComp(N�⋃Q) ⊆ PComp(N), and N�⋃Q has a P-cover.
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Proof. Let Q = {X1, X2, . . . Xn} be P-components of N , Pi = Xi ∩P , Ti = Xi ∩T ,
for 1 ≤ i ≤ n. N�⋃Q= (PQ, TQ, FQ) such that PQ =

⋃
i Pi and TQ =

⋃
i Ti. Hence,

by definition
⋃
Q = PQ ∪ TQ.

Each P-component Xi is fully described by Pi, because in any P-component, place

p is always connected to the transitions in
N• p and p

N• . All the original components in
Q used to form the partial P-cover of N are also components of N �⋃Q, because the
subsets of places are in PQ and all surrounding transitions are included and no new tran-
sitions have been added. However, new combinations may be possible (covering subsets
of the places in PQ). Hence, Q ⊆ PComp(N�⋃Q). PComp(N�⋃Q) ⊆ PComp(N)
because a partial P-cover cannot introduce new P-components. N �⋃Q has a P-cover,
because

⋃
PComp(N�⋃Q) = PQ ∪ TQ. ut

Lemma 7. Let N = (P, T, F ) be a well-formed free-choice net and Q a partial P-
cover of N . The Q-projection of N (i.e., N�⋃Q) is a well-formed free-choice net.

Proof. Let N�⋃Q= NQ = (PQ, TQ, FQ). NQ is free-choice because N is free-choice
and for any added place p ∈ PQ all surrounding transitions •p ∪ p• are also added.
Hence, for any p1, p2 ∈ PQ: p1• = p2• or p1• ∩ p2• = ∅.

NQ is structurally bounded because it is covered by P-components (Lemma 6). The
number of tokens in a P-component is constant and serves as an upper bound for the
places in it.

To show that NQ is structurally live we use Commoner’s Theorem [13]: “A free-
choice marked net is live if and only if every proper siphon includes an initially marked
trap”. Places in N and NQ have identical pre and post-sets, hence, for any R ⊆ PQ:
N•R =

NQ• R and R
N• = R

NQ• . Hence, R cannot be a siphon in N and not in NQ

(or vice versa).
N•R ⊆ R

N• if and only if
NQ• R ⊆ R

NQ• . Also, R cannot be a trap in

N and not in NQ (of vice versa). R
N• ⊆ N•R if and only if R

NQ• ⊆
NQ• R. Take any

proper siphon R in NQ. This is also a proper siphon in N . R contains a proper trap R′

in N . Clearly, R′ ⊆ PQ and is also a proper trap in NQ. By initially marking all places,
R′ is also marked and the net is (structurally) live. Therefore, NQ is well-formed. ut

A partial P-cover of N may remove places. Removing places can only enable more
behavior. Transitions are only removed if none of the input and output places are in-
cluded. Therefore, any firing sequence in the original net that is projected on the set of
remaining transitions is enabled in the net based on the partial P-cover.

Lemma 8. Let (N,M) be a live and locally safe marked free-choice net (with N =
(P, T, F )), Q a partial P-cover of N , and (NQ,MQ) the marked Q-projection of
(N,M) (with NQ = (PQ, TQ, FQ)). For any sequence σ ∈ T ∗ that is executable
in (N,M) (i.e., (N,M)[σ〉(N,M ′)), the projected sequence σQ = σ�TQ

is also exe-
cutable in the marked Q-projection and ends in marking M ′�⋃Q (i.e., (NQ,MQ)[σQ〉
(NQ,M

′�⋃Q)).

Proof. Let (NQ,MQ) be the marked Q-projection of (N,M). NQ has fewer places.
Removing places can only enable more behavior and never block behavior. Therefore, σ
is still possible after removing the places not part of any of the included P-components.
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After removing these places, transitions not in any included P-component become dis-
connected and can occur without any constraints. Hence, σ can be replayed and re-
sults in the projected marking (M ′�⋃Q). Removing these transitions from the sequence
(σQ = σ�TQ

) corresponds to removing them from the net. Therefore, (NQ,MQ)[σQ〉
(NQ,M

′�⋃Q). ut

By combining the above insights, we can show that the Q-projection of a perpetual
marked free-choice net is again a perpetual marked free-choice net.

Lemma 9. Let (N,M) be a perpetual marked free-choice net and Q a partial P-cover
of N . The marked Q-projection of (N,M) (i.e., (N �⋃Q,M �⋃Q)) is a perpetual
marked free-choice net.

Proof. Let N �⋃Q= NQ = (PQ, TQ, FQ) and MQ = M �⋃Q. NQ is a well-formed
free-choice net (see Lemma 7). To prove that (NQ,MQ) is perpetual, we need to show
that it is live, bounded, and has a home cluster.

LetC be a home cluster of (N,M). Every P-component ofN includes precisely one
place of P (C) and holds precisely one token in any reachable state. Any P-component
in NQ is also a P-component in N (Lemma 6) and therefore also has one token in any
reachable state. Hence, (NQ,MQ) is locally safe.

Every P-component of NQ is marked in M and also in MQ. (Lemma 6 shows that
PComp(N �⋃Q) ⊆ PComp(N). This implies that all components of NQ are also
components of N and thus initially marked.) Hence, we can apply Theorem 5.8 in [13]
to show that the net is live.

CQ = C ∩ (PQ ∪ TQ) is a home cluster of (NQ,MQ) because the transitions in
CQ ∩ TQ are live and when they are enabled only the places in P (CQ) are marked.
Hence, M(CQ) is a home marking. ut

4.5 Characterization of Markings in Perpetual Free-Choice Nets

We have introduced perpetual free-choice nets because it represents a large and relevant
class of models for which the enabling of transitions uniquely identifies a marking, i.e.,
these nets are lucent. In such process models, there can never be two different markings
enabling the same set of transitions. Note that this result is much more general than the
blocking marking theorem which only refers to blocking markings and a single cluster.

Theorem 3 (Characterization of Markings in Perpetual Free-Choice Nets). Let
(N,M) be a perpetual marked free-choice net. (N,M) is lucent.2

2 The original proof published in “Wil M. P. van der Aalst: Markings in Perpetual Free-Choice
Nets Are Fully Characterized by Their Enabled Transitions. Petri Nets 2018: 315-336” con-
tains an error that can be repaired, but this makes the proof overly complex. One needs to
consider a sequence of disagreeing P-components. Here, a simpler, and more direct, proof
is given that does not require some of the intermediate results presented before. The earlier
results are still valid and meaningful. The proof now looks more involved, because it is self-
contained and does not use any intermediate results. Interestingly, the proof can be extended
beyond live free-choice nets, but this is out of scope for this corrected proof.
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Proof. Let (N,M) be a perpetual marked free-choice net, i.e., (N,M) is live, bounded,
and has a home cluster C. For any M1,M2 ∈ R(N,M) such that en(N,M1) =
en(N,M2), we need to prove that M1 = M2. We assume that this is not the case,
and show that this leads to a contradiction.

Let M c
1 and M c

2 be such that en(N,M c
1 ) = en(N,M c

2 ) and M c
1 6= M c

2 . Let us
consider the tokens in both markings and partition these into three classes: •©-tokens,
1©-tokens, and 2©-tokens. •©-tokens are tokens where M c

1 and M c
2 agree. These can be

found by taking the maximal submarking contained in both. •©-tokens are also called
“agreement tokens”. 1©-tokens are the tokens in M c

1 , but not M c
2 . 2©-tokens are the

tokens in M c
2 , but not M c

1 . Hence, M c
1 is composed of •©-tokens and 1©-tokens, and

M c
2 is composed of •©-tokens and 2©-tokens. 1©- and 2©-tokens are also called “dis-

agreement tokens”. We will use this notation throughout the proof. Because (N,M) is
safe, each place can have only one of these •©-, 1©-, 2©-tokens. For example, if a place
contains both a 1©-token and 2©-token, then it has a •©-token instead.

Starting from both M c
1 and M c

2 , we synchronously execute transitions using only
•©-tokens. Since we are not using 1© or 2©-tokens, we can do this synchronously. In
this process, each place remains safe (at most one •©-, 1©-, 2©-token). If we try to
move the •©-tokens closer to the home cluster C, there is a point at which this is no
longer possible (use liveness and the free-choice property, and move towards the home
markingM(C)). Hence, we end up in two new markingsM1 andM2, where all enabled
transitions in M1 need to consume both •©- and 1©-tokens, and all enabled transitions
in M2 need to consume both •©- and 2©-tokens. In none of the markings, a transition is
enabled based on only “agreement tokens” or only “disagreement tokens”. Compared
to M c

1 and M c
2 only •©-tokens were moved.

In the remainder, we only consider the markings M1 and M2 just constructed. In
both of these markings, only clusters containing “agreement tokens” and “disagreement
tokens” are enabled, i.e., an enabled cluster has either •©- and 1©-tokens (enabled in
M1), or •©- and 2©-tokens (enabled in M2).

Pick an arbitrary cluster enabled in marking M1. We refer to this cluster as C1. All
places in this cluster are marked with •©- and 1©-tokens, but the cluster is not enabled in
M2. However, there must be a firing sequence starting in M2, putting a token in one of
the places inC1. Take a shortest firing sequence σs starting inM2 and putting a token in
one of the empty places in C1. This sequence must start with an enabled cluster having
only •©- and 2©-tokens. We refer to this cluster as C2. Note that C, C1, and C2 should
be different. (C1 and C2 have “disagreement tokens” and cannot be the same. C cannot
be the same as C1, because C would be enabled in M1 while having still tokens in C2.
Etc.)

Let pmrk be a place in C2 having a •©-token. Based on σs, we can construct a path
ρs in the Petri net starting in C2 leading to one of the unmarked places in C1. This path
ρs “follows a token” from C2 to C1 using only transitions in σs. Just “color” the token
in pmrk and all it descendants to see that such a path exists (also note that to reach
M(C) the agreement tokens in C1 need to be removed). Next, we “compact” path ρs
into another path ρ1 which visits each cluster only once. This is possible because if ρs
visits a cluster multiple times, we can create a short-cut and immediately jump to the
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last occurrence of the cluster (in a cluster all places are connected to all transitions due
to the free-choice property).

To explain the mechanism of compacting the path, assume ρs = 〈ps0, ts1, ps1, . . . ,
psk−1, t

s
k, p

s
k〉 with ps0 = pmrk and psk ∈ C1. We inspect the path from left to right using

a pointer i with 0 ≤ i ≤ k. Initially, i = 0. If place psi is an element of C1, then we
remove the rest of ρs because we have already reached the target cluster C1. If place psi
is not in C1, but there is a later place psj belonging to the same cluster, then we remove
the subsequence 〈tsi+1, p

s
i+1, . . . , t

s
j , p

s
j〉 from ρs and set i to j. In this case, we take j to

be maximal, i.e., the latest visit of ρs to the cluster. (Note that psi is also an input place
of tsj+1, because both belong to the same cluster. Hence, the path remains connected.)
If place psi is the only place of a cluster on the path, then we keep psi and tsi+1 and set i
to i + 1 (i.e., move to the next place). This process can be repeated until we reach C1.
The resulting path is ρ1 and is a subsequence of ρs, but still a path of N .

Using the above construction, we can construct a path ρ1 = 〈pmrk, t1, p1, . . . , pn−1,
tn, p

conn〉 leading from pmrk ∈ C2 to some place pconn ∈ C1 such that the path con-
tains a subset of the transitions in σs and does not visit the same cluster twice, i.e., each
place in P1 = {pmrk, p1, . . . , pn−1, pconn} corresponds to a unique cluster.

There is also a path from pconn to the home cluster C because the net is strongly
connected. Intuitively, we can also “follow a token” from C1 to C. Also this path can
be compacted into another path ρ2 which starts pconn and ends in some place pend ∈ C
and visits each cluster only once. We use the same principle as before: if a cluster
is visited multiple times along the path, we jump immediately to the last occurrence
(using the fact that in a cluster all places are connected to all transitions). Therefore,
we can construct a path ρ2 = 〈pconn, tn+1, pn+1, . . . , pm−1, tm, p

end〉 leading from
pconn ∈ C1 to some place pend ∈ C visiting each cluster at most once, i.e., each place
in P2 = {pconn, pn+1, . . . , pm−1, p

end} corresponds to a unique cluster.
Next to ρ1 = 〈pmrk, t1, p1, . . . , pn−1, tn, pconn〉 and ρ2 = 〈pconn, tn+1, pn+1, . . .

, pm−1, tm, p
end〉, we create two more paths: ρ1+2 = 〈pmrk, t1, p1, . . . , pn−1, tn, pconn,

tn+1, pn+1, . . . , pm−1, tm, p
end〉 and ρ2′ = 〈palt, tn+1, pn+1, . . . , pm−1, tm, p

end〉with
palt ∈ C1 having a •©-token (i.e., marked in both M1 and M2). Also in the paths ρ1+2

and ρ2′, each cluster appears at most once. For ρ2′ this is obvious, because palt and
pconn are in the same cluster and for the rest ρ2′ and ρ2 are identical.

To see that also in ρ1+2 each cluster appears at most once, assume there is a cluster
C ′ that appears at least twice in ρ1+2. This implies there is a place p′1 ∈ P1 ∩ C ′ and
a place p′2 ∈ P2 ∩ C ′. If one of these places is pconn, then this is impossible, because
cluster C ′ did not appear twice in the shorter sequences ρ1 and ρ2. Moreover, also when
both are different from pconn, this is still not possible. Consider a transition t′ ∈ σs
that consumed a token from p′1 while executing σs. Due to the free-choice property,
transition t′ also consumed a token from p′2. Transition t′ occurred before the cluster
C1 got enabled, i.e., there was still a •©-token in palt. However, this implies that there
is a marking M ′ in which the places p′1, p′2, and palt are marked at the same time.

Now consider path ρ2′ = 〈palt, tn+1, pn+1, . . . , pm−1, tm, p
end〉 in the markingM ′

just described. At least two places on this path contain a token (p′2 and palt). Starting
from this marking M ′, move these two tokens along the path ρ2′ towards place pend.
Because the net is free-choice, we can control the clusters visited on this path and each
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Fig. 9. A live and locally safe marked free-choice net that is not perpetual. The model is also not
lucent since there are two reachable markings M1 = [p1, p3, p6] and M2 = [p1, p4, p6] that
both enable t1 and t4.

transition in one of these clusters consumes precisely one token from path ρ2
′, and

produces at least one token for path ρ2′. Hence, the number of tokens on the path does
not decrease. Since the net has a home cluster containing pend, we can continue to do
this until there are multiple tokens in pend or until one of the transitions in C fires. If a
transition on the path is enabled, we fire it. If no transition on the path is enabled and
we did not reach the home marking M(C) yet, we can execute transitions towards the
home marking M(C). By following this process, we can put two tokens in pend or fire
a transition from cluster C while there are still tokens in the rest of the net. This leads to
a contradiction (the net is safe and cannot have two tokens in a place or reach markings
strictly larger than M(C)). Therefore, also ρ1+2 has the property that each cluster is
visited at most once (like ρ1, ρ2, and ρ2′).

Now consider the status of path ρ1+2 = 〈pmrk, t1, p1, . . . , pn−1, tn, pconn, tn+1,
pn+1, . . . , pm−1, tm, p

end〉 (which visits clusters at most once) in marking M1. In this
marking, pmrk and pconn are marked. pmrk has a •©-token and pconn a 1©-token.
Hence, at least two places on path ρ1+2 contain a token and all places on the path
belong to different clusters. Therefore, we can use again the strategy to move tokens
along the path towards place pend. Each transition in ρ1+2 consumes precisely one to-
ken from the path and produces at least one token for the path. As long as none of the
transitions in C occurs, we can ensure that the number of tokens on the path does not
decrease and move tokens towards pend. This leads to a contradiction the moment there
are two tokens in pend or the transitions inC are enabled while having additional tokens
(the net is safe). Since ρ1+2 cannot exist, also M1 and M2 cannot exist.

M1 and M2 were constructed using M c
1 and M c

2 . Hence, there cannot be M c
1 and

M c
2 be such that en(N,M c

1 ) = en(N,M c
2 ) and M c

1 6=M c
2 . Hence, the initial assump-

tion leads to a contradiction, showing that the net must be lucent. ut

For the class of perpetual marked free-choice nets, markings are uniquely identified
by the set of enabled transitions. As shown before, the free-choice property is needed
and liveness and boundedness are not sufficient. The above theorem also does not hold
for live and locally safe marked free-choice nets (see for example Figure 8). The re-
quirement that the net has a home cluster seems essential for characterizing marking in
terms of enabled transitions.
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Table 1. Overview of the examples used: Marked PN = figure showing a marked Petri net, FreC
= free-choice, Live = live, Boun = bounded, Safe = safe, LocS = locally safe, PC = number of P-
components, HClu = net has at least one home cluster, Perp = perpetual, UnBM = net has unique
blocking marking for each cluster, Lucent = lucent, Pls = number of places, Trs = number of
transitions, and RM = number of reachable markings.

Marked PN FreC Live Boun Safe LocS PC HClu Perp UnBM Lucent Pls Trs RM
Figure 1 Yes Yes Yes Yes Yes 2 Yes Yes Yes Yes 4 4 4
Figure 2 No Yes Yes Yes Yes 2 Yes Yes No No 6 6 6
Figure 3 Yes Yes Yes Yes Yes 4 Yes Yes Yes Yes 8 7 9
Figure 5 Yes Yes Yes Yes Yes 6 Yes Yes Yes Yes 11 10 11
Figure 6 Yes Yes Yes Yes No 5 No No Yes Yes 9 6 8
Figure 7 No Yes Yes Yes Yes 2 No No No No 5 4 6
Figure 8 Yes Yes Yes Yes Yes 3 No No Yes No 8 8 12
Figure 9 Yes Yes Yes Yes Yes 3 No No Yes No 6 4 8

Consider for example the live and locally safe marked free-choice net in Figure 9.
There are three P-components: {p1, p2, t1, t2}, {p3, p4, t2, t3}, and {p5, p6, t3, t4}.
These always contain precisely one token. However, there are two reachable markings
M1 = [p1, p3, p6] and M2 = [p1, p4, p6] that both enable t1 and t4. This can be
explained by the fact that the net is not perpetual. There are four clusters, but none of
these clusters is a home cluster. Note that the counter-example in Figure 9 is actually
a marked graph. This illustrates that the home cluster requirement is also essential for
subclasses of free-choice nets.

5 Conclusion and Implications

We started this paper by posing the question: “What is the class of Petri nets for which
the marking is uniquely identified by the set of enabled transitions?”. This led to the
definition of lucency. The main theorem proves that markings from perpetual marked
free-choice nets are guaranteed to be lucent. Moreover, we showed that all requirements
are needed (in the sense that dropping any of the requirements yields a counterexample).
Table 1 provides an overview of the examples used in this paper. For example, even live
and safe free-choice nets may have multiple markings having the same set of enabled
transitions.

Other characterizations may be possible. An obvious candidate is the class of Petri
nets without PT and TP handles [16]. As shown in [2] there are many similarities be-
tween free-choice workflow nets and well-structured (no PT and TP handles) work-
flow nets when considering notions like soundness and P-coverability. Moreover, it
seems possible to relax the notion of a regeneration point by considering simultane-
ously marked clusters.

Structure theory aims to link structural properties of the Petri net to its behavior. The
connection between lucency and home clusters in free-choice nets could be relevant for
verification and synthesis problems. The ability to link the enabling of transitions to
states (i.e., lucency) is particularly relevant when observing running systems or pro-
cesses, e.g., in the field of process mining [4] where people study the relationship be-
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tween modeled behavior and observed behavior. If we assume lucency, two interesting
scenarios can be considered:

– Scenario 1: The system’s interface or the event log reveals the set of enabled ac-
tions. At any point in time or for any event in the log, we know the internal state
of the system or process. This makes it trivial to create an accurate process model
(provided that all states have been visited).

– Scenario 2: The system’s interface or the event log only reveals the executed ac-
tions. The internal state of the system is unknown, but we know that it is fully
determined by the set of enabled actions (some of which may have been observed).

It is easy to create a discovery algorithm for the first scenario. The second scenario is
more challenging. However, the search space can be reduced considerably by assuming
lucency (e.g., learning perpetual marked free-choice nets). Hence, Theorem 3 may lead
to new process mining algorithms or help to prove the correctness and/or guarantees of
existing algorithms.

Assume that each event in the event log is characterized by e = (σpref , a, σpost)
where σpref is the prefix (activities that happened before e), a is the activity executed,
and σpost is the postfix (activities that happened after e). The result of applying a process
discovery algorithm can be seen as a function state() which maps any event e onto a
state state(e), i.e., the state in which e occurred (see [5,7] for explanations). Hence,
events e1 and e2 satisfying state(e1) = state(e2) occurred in the same state and can
be viewed as “equivalent”. This way discovery is reduced to finding an equivalence
relation on the set of events in the log. Given such an equivalence relation, we can
apply the approach described under Scenario 1. Viewing process discovery as “finding
an equivalence relation on events” provides an original angle on this challenging and
highly relevant learning task.
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