MANCHESTER

1824
The University of Manchester

The University of Manchester Research

Issues in Automated Urban Train Control: ‘Tackling’ the Rugby
Club Problem

DOl:
10.1007/978-3-319-91271-4_12

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Banach, R. (2018). Issues in Automated Urban Train Control: ‘Tackling’ the Rugby Club Problem. In Proceedings
of the 6th International ABZ Conference 2018 (pp. 171-186) https://doi.org/10.1007/978-3-319-91271-4_12

Published in:
Proceedings of the 6th International ABZ Conference 2018

Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester's Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

OPEN ACCESS

Download date:26. Apr. 2024

https://doi.org/10.1007/978-3-319-91271-4_12
https://research.manchester.ac.uk/en/publications/35a61d11-55d7-4827-97f2-f31b3ea91720
https://doi.org/10.1007/978-3-319-91271-4_12

Issues in Automated Urban Train Control:
‘Tackling’ the Rugby Club Problem

Richard Banach?

!School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.
banach@cs.man.ac.uk

Abstract. Normally, the passengers on urban rail systems remain fairly station-
ary, allowing for a relatively straightforward approach to controlling the dynamics
of the system, based on the total rest mass of the train and passengers. However
when a mischievous rugby club board an empty train and then run and jump-stop
during the braking process, they can disrupt the automatic mechanisms for align-
ing train and platform doors. This is the rugby club problem for automated urban
train control. A simple scenario of this kind is modelled in Hybrid Event-B, and
sufficient conditions are derived for the prevention of the overshoot caused by the
jump-stop. The challenges of making the model more realistic are discussed, and
a strategy for dealing with the rugby club problem, when it cannot be prevented,
is proposed.

1 Introduction

With profuse apologies to Clement Clarke Moore: ‘Twas early in the morning, when
all thro’ the house, Not a creature was stirring, not even a mouse ... aside, that is, from
the stout adherents of a rugby club, who were bent on making their way to the Métro
station, to board the otherwise empty first service of the day on the fully automated,
unmanned line.!

As the train pulls out of the station, the dynamical variables are measured by the
train system,” in order to gauge the weight of the passengers that have got on board —
this, in order to be able to accurately predict the braking force that will be needed when
the train pulls into the next station. The train becomes cognisant of the weight of the
rugby club, at this point standing at the back of the train.

As the train starts to approach the next station, the rugby club start a run up the
empty train towards the front. The velocity feedback control law governing the train’s
travel detects a shortfall in velocity and commands additional acceleration to bring the
train up to speed, thereby adding to the momentum of the whole train. The train starts to
brake as it enters the next station. As the train is coming to a stop, the rugby club com-
plete their run with a jump-stop, impulsively imparting their momentum to the train
body. The train has calculated its braking force on the basis of the earlier, stationary
rugby club, and has not taken into account the additional momentum. As a result of the

! Such as the Paris Météor Line 14, engineered using the B-Method.
2 Acceleration, time taken to reach cruising speed, etc.

jump-stop, the train’s braking force is inadequate, and the train overshoots its intended
stopping point ... by a sufficient distance for the misalignment with the platform side
doors to exceed the permitted safety margin. The only option for such excess misalign-
ment (taking into account the demands of rush-hour throughput) is that the train does
not stop but continues to the next station. Having given a cheer, the rugby club make
their way to the back of the train, which still works on the basis of the original weight
estimate. As the next station is approached, they start a run ... you can guess the rest.
On a circular line, the rugby club can amuse themselves this way all day long, with
the train never stopping until the end of service. This is the Rugby Club Problem for
automated urban railways.*

The problem of a moderate, but nevertheless unacceptable overshoot of the door
position by an automated urban train is easily solved if the train doors are equidistantly
spaced. Then, it is enough to have an additional door or two at the front end of the
platform. The train then aims for its normal position, and if an overshoot happens, the
train can carefully, but quite quickly, inch along to the next spare door position, the
equidistant spacing guaranteeing that all train doors will thereby be correctly aligned.’
But the equidistant design is not widely adopted. To have enough doors per carriage to
cope with a busy rush hour in an urban environment that is populated enough to justify
an urban rail solution in the first place, puts considerable demands on the structural
integrity of the carriages, leading to additional costs.®

Putting aside levity, the aim of this paper is to demonstrate that Hybrid Event-B
[8,9] can deal fluently with the problem of modeling the kind of impulsive physics
exhibited by the Rugby Club Problem. By now there are quite a number of existing
case studies using Hybrid Event-B [7,6,2,3, 11,5, 4], but none of the ones published
hitherto has focused on impulsive physics.

The remaining sections of the paper are as follows. In Section 2, we outline Hybrid
Event-B, emphasising the elements that are useful in modelling impulsive physics. In
Section 3, for lack of space, we present a very simple model of the Rugby Club Prob-
lem, displaying its essential characteristics, including how the impulsive elements are
handled. In Section 4, we consider various alternatives and enhancements, which we
discuss more briefly. Section 5 discusses how the Rugby Club Problem might be solved
in the context of the modelling of this paper. Section 6 concludes.

2 Hybrid Event-B, and Modelling Impulsive Physics

In this section, we outline Event-B and Hybrid Event-B for a single machine. Because it
is more complex, we describe Hybrid Event-B first via Fig. 1, and show how it reduces
to Event-B (which of course came earlier) by erasing the more recently added elements.

Fig. 1 shows a schematic Hybrid Event-B machine. It starts with declarations of
time and of a clock. Time is a first class citizen in that all variables are functions of

% 0.K. The Météor line is not circular, but you get the idea.

* I am indebted to Thiérry Lecomte of ClearSy [14] for this delightful story [19].

3 Such a design is visible on the Shanghai Metro’s circular line 4, as well as on some other, older
Shanghai Metro lines, built when train door alignment control was less precise than today.

® The robustness of the carriages on the Shanghai line 4 would put much heavy rail to shame.

MACHINE HyEvBMch e e
TIME ¢ MoEv PliEv
CLOCK clk STATUS ordinary STATUS pliant
PLIANT x,y ANY i?,1,0! INIT iv(x,y, t, clk)
VARIABLES u WHERE WHERE grd(u)
INVARIANTS grd(x, y, u, i?, 1, 1, clk) ANY 7,1, 0!
x,y,u € R,R,N THEN COMPLY
EVENTS x,y,u,clk,o! :| BDApred(x,y, u,
INITIALISATION BApred(x,y,u,i?,1,0!, i?7,1,0!,t, clk)
STATUS ordinary 1k, x Y ul ek SOLVE
WHEN END Dx=
t=20 d(x,y,u,i?, 1,0, t,clk)
THEN y,0! =
clk,x,y,u = E(x,u,i?,1,1t,clk)
1,x0, Y0, 4o END
END END

Fig. 1. A schematic Hybrid Event-B machine.

time (which is read-only), explicitly or implicitly. Clocks are assumed to increase like
time, but may be set during mode events. Variables are of two kinds. There are mode
variables (like u) which take their values in discrete sets and change their values via
discontinuous assignment in mode events. There are also pliant variables (such as x, y),
declared in the PLIANT clause, which typically take their values in topologically dense
sets (normally R) and which are allowed to change continuously, such change being
specified via pliant events.

Next are the invariants. These resemble invariants in discrete Event-B, in that the
types of the variables are asserted to be the sets from which the variables’ values at any
given moment of time are drawn. More complex invariants are similarly predicates that
are required to hold at all moments of time during a run.

Then, the events. The INITIALISATION has a guard that synchronises time with the
start of any run, while all other variables are assigned their initial values as usual.

Mode events are analogues of events in discrete Event-B. They can assign all ma-
chine variables (except time). The schematic MoEv of Fig. 1, has parameters i?,1, 0!,
(input, local, and an output), and a guard grd. It also has the after-value assignment
specified by the before-after predicate BApred, which can specify the after-values of all
variables (except time, inputs and locals).

Pliant events are new. They specify the continuous evolution of the pliant variables
over an interval of time. Fig. 1 has a schematic pliant event PliEv. There are two guards:
iv, for specifying enabling conditions on the pliant variables, clocks, and time; and grd,
for specifying enabling conditions on the mode variables (in [8] there is a detailed
discussion justifying such a design).

The body of a pliant event contains three parameters i7, /, 0!, (input, local, and out-
put, again) which are functions of time, defined over the duration of the pliant event.
The behaviour of the event is defined by the COMPLY and SOLVE clauses. The SOLVE
clause contains direct assignments, e.g. of y and output o! (to time dependent functions);
and differential equations, e.g. specifying x via an ODE (with D as the time derivative).

The COMPLY clause is used to express any additional constraints that are required
to hold during the pliant event via the before-during-and-after predicate BDApred. Typ-
ically, constraints on the permitted ranges of the pliant variables, can be placed here.

The COMPLY clause can also specify at an abstract level, e.g. stating safety properties
for the event without going into detail.

Briefly, the semantics of a Hybrid Event-B machine consists of a set of system
traces, each of which is a collection of functions of time, expressing the value of each
machine variable over the duration of a system run.

Time is modelled as an interval 7 of the reals. A run starts at some initial mo-
ment of time, ¢y, say, and lasts either for a finite time, or indefinitely. The duration
of the run 7T, breaks up into a succession of left-closed right-open subintervals: T =
[to...t1),[t1...12),[t2...13),.... Mode events (with their discontinuous updates) take
place at the isolated times corresponding to the common endpoints of these subinter-
vals t;, and in between, the mode variables are constant, and the pliant events stipulate
continuous change in the pliant variables.

We insist that on every subinterval [f; .. .#.1) the behaviour is governed by a well
posed initial value problem Dxs = ¢(xs...) (where xs is a relevant tuple of pliant
variables). Within this interval, we seek the earliest time #;; at which a mode event be-
comes enabled, and this time becomes the preemption point beyond which the solution
to the ODE system is abandoned, and the next solution is sought after the completion
of the mode event.

In this manner, assuming that the INITIALISATION event has achieved a suitable
initial assignment to variables, a system run is well formed, and thus belongs to the
semantics of the machine, provided that at runtime:

o Every enabled mode event is feasible, i.e. has an after-state, and on its comple- (1)
tion enables a pliant event (but does not enable any mode event).’

e Every enabled pliant event is feasible, i.e. has a time-indexed family of after- (2)
states, and EITHER:

(1) During the run of the pliant event a mode event becomes enabled. It pre-
empts the pliant event, defining its end. ORELSE
(i) During the run of the pliant event it becomes infeasible: finite termination.
ORELSE
(iii) The pliant event continues indefinitely: nontermination.

Thus in a well formed run mode events alternate with pliant events. The last event (if
there is one) is a pliant event (whose duration may be finite or infinite). In reality, there
are several semantic issues that we have glossed over in the framework just sketched.
We refer to [8] for a more detailed presentation (and to [9] for the extension to multi-
ple machines). The presentation just given is quite close to the modern formulation of
hybrid systems. See e.g. [23,22], or [13] for a perspective stretching further back.

The mode events of Hybrid Event-B, which permit the discontinuous state changes
of the computational world to be represented, also allow impulsive physics to be con-
veniently modelled. For example, a billiard cue strikes a ball, changing its velocity

7 If a mode event has an input, the semantics assumes that its value only arrives at a time strictly
later than the previous mode event, ensuring part of (1) automatically. By this means we can
ensure a mode event executes asynchronously — and if the only purpose of having an input
would be to ensure this asynchronous scheduling, we can introduce the ‘async’ status and omit
the input altogether, as in in Fig. 2.

discontinuously, or a capacitor discharges, instantaneously reducing the electrical po-
tential across its plates to zero. However, unlike the computational world in which the
programmer is at liberty to decide what discontinuous state changes take place, the
physical world is governed by immutable laws, which must be adhered to to yield a
useful model. Thus, in the billiard ball example, it is the conservation of momentum
that determines the relationship between the physical states before and after the strike.
We might say that ‘Hybrid Event-B cannot do your physics for you; but it can faithfully
represent the physics that you know from elsewhere.’

Connected with the preceding is the fact that discontinuous state changes in the
physical world are stimulated by forces which are ‘pure impulses’. And whereas discon-
tinuous change can be represented quite directly in Hybrid Event-B, these pure impulses
cannot. Physicists and engineers speak of such impulses as ‘delta functions’ — ‘zero
everywhere except at a single point, were they are infinite, but with a finite integral’.
Mathematically, that last phrase is meaningless; delta functions are not functions, but
so-called distributions [25, 24, 18]. The nearest we get in Hybrid Event-B (or any other
similar formalism) to the representation of a pure impulse is the (syntactic) description
of the mode event that encapsulates the discontinuous change that results from the im-
pulse. The occurrence of the mode event (at runtime) corresponds to the occurrence of
the physical impulse causing the discontinuous change of state.

3 A Simple Rugby Club Problem Scenario

In this section, we present a very simple model of the rugby club scenario, formalised
in Hybrid Event-B and, in particular, utilising the insights about impulsive physics just
discussed. The model itself is in Fig. 2.

The model depends on a number of constants (which would be declared in a CON-
TEXT, which we do not show). There are: the phases of the model stored in the mode
variable: STATionary; ACCELerating; CRUISEing; DECELerating. There is also: BIGT,
an intial value for a clock that is bigger than any value that could trigger the enabledness
of any mode event; M7, the mass of the train; M,., the mass of the rugby club; V,, the
cruising speed of the train; V,., the rugby club’s running speed relative to the train’s
speed (when the members of the rugby club are, in fact, running).

A number of variables contain the state of the model. There is mode, already men-
tioned. There are a number of variables representing mass: m;,, the inertial mass of the
system at any time; m,,,, the mass perceived by the train at any time (based on the
dynamical properties that it measures and the moments in time that it does s0); Vi,
the rugby club’s running speed relative to the train at any time (regardless of whether
the rugby club are, in fact, running or not at that time); brTime, the train’s concept of
the needed duration for the braking period, at the start of the braking period. These
variables are mode variables, because they only need to get updated via mode events.

There are also pliant variables: meg, the effective mass of the system, i.e. the point
mass which, when traveling at the train’s velocity, would possess the same momentum
as the whole train plus rugby club system, thus offering the same resistance to change
in momentum as the whole system — it changes continuously when the rugby club
is running during acceleration or braking, due to the continuously changing relative

MACHINE RugbyClub_1
CLOCK clk-A
VARIABLES mode, miy, Mpey, Vi, brTime
PLIANT meg¢s, vr, brDist
INVARIANTS
mode € {STAT, ACCEL, CRUISE, DECEL}
Miny Mpey s Vier, brTime € R+, RT s Rt
megs, vr, brDist € R,R, R, R
EVENTS
INITIALISATION
BEGIN
clk_A = BIGT
mode = STAT
Miny Mpey = Mr, M7
Vier = 0
mege 1= Mr
vr = 0
brDist =
brTime =
END
TrainStationary pliant
WHEN mode = STAT
THEN
COMPLY CONST (megs, vr, brDist)
END
RugbyClubBoards async
WHEN mode = STAT
THEN
miy, = Mr + My
Mmegr = My + My
END
TrainStarts async
BEGIN
mode = ACCEL
clk_A = 0
END
TrainAccelerating pliant
WHEN mode = ACCEL
COMPLY CONST(meff)

0
0

THEN
D vy = Fa/min
brDist = 0
END
TrainAtSpeed

WHEN mode = ACCEL N\ vi = V,,
THEN
mode = CRUISE

Mpey = (Fa clk-A) [Ver /... = my,
Megp = My
END
TrainCruising pliant
WHEN mode = CRUISE
THEN
Dvr = —K(vr — Ver)
brDist = 0 M
Mege = (Mr + M) + %
END !

Fig. 2. A simple Hybrid Event-B model of the urban rail Rugby Club Problem.

RugbyClubStartsRun

WHEN mode = CRUISE
THEN

Veer = Vier

Mic Vyer
vr o= Vo — —————
Mr + M.
(M7 + M)
Meff =

Vier Myt
-l]
Ver M.
END

TrainBrakes

WHEN mode = CRUISE
INIT |vp — Ve | < €

THEN
mode = DECEL
prpist = — e Yer
’ Fp 2
brTime = Mpev Ver Ver
: "
END

TrainDecelerating
WHEN mode = DECEL

THEN r
Dvp = -2
My + M.
D brDist = vy
M,.v,
megr = (Mr + M) + %
T
END
RugbyClubJumpStop

WHEN mode = DECEL A\ vi > 0
THEN
Vier = 0
Meff
vr = vr
My
Mgt = Mpey
END
TrainStopSucceed
WHEN mode = DECEL A vi = 0 A
| brDist | < BRTOL

THEN
clk_A = BIGT
mode = STAT
Mipy Mpey = Mr, Mr
brDist := 0
brTime = 0

END

TrainStopFail

WHEN mode = DECEL A\ vi = 0 A
| brDist | > BRTOL

THEN
clk A
mode
My Mpey
brDist
brTime = 0

END

END

0
ACCEL
= Mr, Mr

async

async

pliant

async

proportions that the train and the rugby club contribute to the overall momentum during
the accelerating or braking episodes; vr, the speed of the train at any time; brDist, the
current remaining distance during the braking period until the train comes to a standstill,
as computed by the train according to the the dynamical properties that it measures.

In reality, not all of these variables are strictly necessary. Many can be dispensed
with as they can be re-expressed in terms of constants and other variables. The variables
in this category are: mj,, Mpey, Vier, Mo and brTime. We nevertheless retain them in
order to make the ensuing explanation of the model easier to follow.

The invariants are trivial typing invariants in this simple model: mode is as described
earlier, and the others are all either reals or non-negative reals. We discuss some possi-
bilties for more complex invariants later.

We turn to what the model actually does. In order to save space in Fig. 2, we have
economised on some notational matters. Thus: We have decanted events’ STATUS dec-
larations to a decoration at the end of the line containing the event name (where the
STATUS is not ‘ordinary’). We have used the ‘async’ STATUS to ensure a mode event
does not execute eagerly.> We have slightly generalised the CONST declaration of [2]
to cover a list of (pliant) variables that are to stay constant during the execution of a
pliant event.

INITIALISATION starts the model with the train stationary in a station with no one
on board. A clock clk_A, is set to an innocuous value BIGT; the mode is STAT; all the
masses are set to be the train’s inertial mass Mr; the train’s velocity and the rugby club’s
relative velocity are set to zero; and all other variables are of no interest and are also set
to zero.

The ensuing pliant event TrainStationary just perpetuates this state of affairs —

all mode variables cannot change, and the pliant variables are held constant via the
CONST declaration.

At some point during this phase the async event RugbyClubBoards is executed.
Although boarding clearly does not take place instantaneously, only the overall change
in mass makes any difference, and so there is no harm in modelling the process as an
impulsive change to the mass during this event. The inertial mass m;,, becomes My+M,,,
as does the effective mass meg (since the train system behaves as a single mass at
this stage). Everything else stays the same. In particular, the train’s perceived mass
mMpe, Temains unchanged since the train is, as yet, unaware of the rugby club. After this
the TrainStationary event resumes, all variables maintaining their values, whether old
values or newly acquired values.’

At some point after this the dynamics starts, and for this, we assume an conven-
tionally idealised setup. Thus we assume the track is straight and level, the movement
of the train is frictionless and suffers no other impediment (such as air resistance), and
the train can be treated as one (or several) point mass(es) for the purpose of dynamical
calculations.

8 Thus, ‘STATUS async’ is an abbreviation for the semantic device of giving the mode event an
external input which is not used in the event’s body. See footnote 7.

® In fact, RughyClubBoards remains enabled during the resumed TrainStationary event, so could
execute again. But RugbyClubBoards is async and idempotent, so no harm would be done.

In complex situations, dynamics is best treated via the d’ Alembert-Lagrange ap-
proach, or an equivalent. See e.g. [17, 15]. The foundations are not in fact as uncompli-
cated as the ancient pedigree of this subject might suggest; [12] gives a good discussion,
not to mention the gargantuan [21]. For us, it will suffice to stick to a fairly low-level
approach, provided we remember that Newton’s Second Law equates force to rate of
change of momentum, and not to mass times acceleration, as is usually stated, and to
which the more accurate form usually reduces.

So, async event TrainStarts executes. It changes the mode to ACCELerating and
starts the clock. It thus enables the TrainAccelerating pliant event which states how the
pliant variables change. Since the rugby club are stationary, the effective mass meg re-
mains CONSTant at its value at the start of TrainAccelerating. The braking distance
variable brDist is not needed yet, so is kept at zero.'® The nontrivial element of the
TrainAccelerating event is the ODE that equates the rate of change of the train’s mo-
mentum D (m;, vr) to the force applied by the train. The latter is assumed to be a con-
stant accelerating force F4. Since there is no relative motion between the train and rugby
club, and all the train and rugby club mass is treated as concentrated at the centre of
gravity, we can take the mass element to be the intertial mass m;,, and we derive the
statement found in Fig. 2.

Acceleration continues until the train achieves cruising velocity, detected by the
guard vy = V., of the mode event TrainAtSpeed. This turns off the accelerating force
and changes the mode to CRUISEing. This also enables the train to calculate its over-
all perceived mass my,,, from the information it has, namely clock value clk_A, applied
force F, and cruise velocity V,,. Of course, since the motion has been so simple thus
far, a straightforward application of Newtonian mechanics (namely, that change of mo-
mentum #1,., X V., equals duration of applied force F4 x clk_A) shows that the answer
Mpey, 1S My, as noted in the accompanying comment, but the train can only use the
information available to it, so we show the assignment to m,,, expressed using those
quantities.

TrainAtSpeed enables the TrainCruising pliant event. brDist is still not needed, so
is assigned as previously. The train velocity vy is controlled by a linear constant coef-
ficients ODE, impelling vy towards the stable equilibrium value V,,. Since vy = V,,
immediately after TrainAtSpeed, there is no change in velocity at this time. Similarly,
the effective mass meg remains as before, which is easy to see in the direct assignment
to mesr When we notice that v, = 0 during this period.

During TrainCruising, async mode event RugbyClubStartsRun is enabled, and at
some point is executed. Now the dynamics gets more interesting. Again we idealise
the change of state as an impulsive change, since only the overall change in momentum
matters, and the dynamics is completely lossless. The rugby club’s relative velocity with

10 This could also have been handled via a CONST declaration. In fact, that would have been
more convenient, since assignment to a (time dependent, in general) expression generates a
verification condition to check that the initial value of the expression agrees with the value on
entry to the pliant event, in order to ensure right continuity of the variable’s history at the entry
point to the pliant event, as required by the semantics [8]. Not mentioning brDist at all would
entail the default behaviour for pliant variables during pliant events, namely of constraining
them to simply obey any relevant invariants. This would be inappropriate here.

respect to the train v,.,, becomes V,... Since momentum is conserved, using primes for
after-values, we can write:

(MT + MVL')VT = (MT + Mrc)v;“ + Mrchcr (3)

from which, noting that vy = V,,, we derive the assignment to vy that we see in
RugbyClubStartsRun. The train effective mass meg becomes the mass that is needed to
generate the momentum on either side of (3) when the velocity is the new train velocity.
A slightly longer calculation, equating (3) to m_ V7, is needed to derive the expression
for meg (given in terms of the cruise velocity V,,) that appears in RugbyClubStartsRun.

After RugbyClubStartsRun, TrainCruising is still enabled. Since the train velocity is
no longer V,,, the feedback control law in TrainCruising now has work to do. Implicitly,
an accelerating force is applied to impel the train velocity vy towards V,,, and it does
work that adds to the total momentum of the system. Note that as v, is non-zero,
having become V,.,, and given that vy changes, so does m.g, as can be derived from
(3), reflecting the changing proportion of the overall momentum that the rugby club’s
relative run velocity contributes.

When vy has returned close enough to V,,, the async mode event TrainBrakes be-
comes enabled — we are assuming that the train velocity has recovered before the train
starts to brake. We assume the train knows where it is relative to the next stopping po-
sition, and initiates braking at a point where, according to the train’s perception about
its dynamics, applying its fixed braking force F, for an appropriate time will bring it to
a halt just where needed. We assume that the train still imagines its overall mass is the
originally calculated m,,,, and taking the velocity to be V.., a simple Newtonian me-
chanics calculation of the (quadratic) displacement generated by a constant force yields
the brDist value assigned in TrainBrakes, assuming further that the next stopping po-
sition is the origin of distance measurements, and that positive distances are oriented
beyond the stopping position. The time taken to come to a halt is recorded in brTime —
it is just the time needed to consume all of the assumed momentum m,,., V., by applying
a force of magnitude Fp,.

TrainBrakes changes the mode to DECELerating, and thus enables pliant behaviour
TrainDecelerating. During this period, it is the laws of physics, and not the train’s per-
ceptions, that determine what happens. Thus, the rate of change of velocity is governed
by the momentum form of Newton’s Law:

D ((MT + Mrc)VT + Mrchcr) =—Fp “4)

In (4), only vy can vary, the other symbols being constants. Thus we derive the ODE for
vy in TrainDecelerating. And vy gives the time derivative of brDist. The effective mass
Meg 18 given by the same formula as in TrainCruising, for exactly the same reasons.

At some point during TrainDecelerating, but while the velocity is still positive, the
rugby club come to the end of their run. The momentum that they ‘stole’ from the train
when they initiated their run, and which was unknowingly made up by the feedback
control law during TrainCruising, is now suddenly dumped back into the train when
they do their jump-stop.

The physical consequences of this process are described in the async mode event
RugbyClubJumpStop. The rugby club relative run velocity v, changes from V., to

zero. Since the train system now behaves once more like a point mass, the effective mass
must likewise become m;,. The process is governed by conservation of momentum,
which, using primes for after-values as usual, yields the following:

/ ! / /
Mo VT = MgV = Mpe,Vp = MgV (®)]

This explains the assignments to the variables in RugbyClubJumpStop.

Once RugbyClubJumpStop has executed, TrainDecelerating is enabled once more.'!
But now, the train velocity which the decelerating phase has to deal with is suddenly
greater than before. So the braking phase is extended compared with its previously an-
ticipated duration.

It is intuitively clear that if the rugby club consists of extreme lightweights, and that
if they run extremely slowly, the effect on the braking episode will be small due to the
small amount of momentum at issue. Equally, if the rugby club are all very heavy, and
they run very fast, then the effect on the braking episode will be more appreciable.

Mode events TrainStopSucceed and TrainStopFail handle these two possibilities.
One or other is triggered when vz hits zero (and the mode is still DECELerating). The
ideal stopping position is at brDist = 0. So if the discrepancy between the ideal and
actual stopping positions when vy hits zero does not exceed BRaking7OLerance, then
TrainStopSucceed executes, and the train stops at the station, as it should. The state
returns to its initial configuration and the rugby club can alight (presumably disap-
pointed). The whole scenario can then repeat.

However, if the discrepancy between the ideal and actual stopping positions when
vr hits zero exceeds BRakingTOLerance, then the train returns to ACCELerating mode,
and the train moves towards the next station, with the (presumably elated) rugby club on
board. In this case we have the classic rugby club problem which can then also repeat.

3.1 Analysis of the Jump-Stop Phenomenon

In this section we analyse more precisely the distinction between the TrainStopSucceed
and TrainStopFail cases.

During an execution of TrainDecelerating, if the intial velocity of the train is v,y and
the pliant event executes for a time #gx, then after this period, the velocity and distance
travelled become:

Fptex Fp t12EX

- and tegx — ——————
VIN (VIN lEX 9 (My + Mrc)

MT +Mrc) (6)

respectively. To work out the implications of the jump-stop, we need to consider two
such episodes, separated by a RugbyClubJumpStop.

The braking period starts with the train moving forward with velocity V,,. Suppose
the rugby club do their jump-stop #;s later than the start of braking. Then, substituting

" 'While TrainDecelerating executes, RughyClubJumpStop is (more or less) always enabled, but

as in other cases, it is an async event and its effect is idempotent, so executing it again would
have no discernible effect.

10

into (6), after the first braking episode, the velocity and distance travelled become:

Fpt Fpt?
ﬁ and djs = Vertys — =85
T rc

Then comes the jump-stop. According to RugbyClubJumpStop, the velocity needs to be
rescaled by mieg /m;,, which increases the velocity expression in (7) to:

—1
Mo Ve Fpts My /
v mj, + my, = Vcr - + Vrcr 1+ =V
» [Vs }/ (M7 + M,.) { M, =
(®

Braking is then completed by another TrainDecelerating episode. This time the initial
velocity is v}. Using (6) with this intial value, the pliant behaviour executes until the
velocity drops to zero. Naming this duration #g4,7, it is given by:

@)

vis = Ver —

Fp tharr (Mr + My.) V)
Vig— ———"— =0 thus tharr = ~———— IS ©)
B (Mr + M) Fp
and therefore, the distance covered in the second TrainDecelerating episode is, by (6):
Fp 13
duarr = Vistaarr — 5okl 10
HALT Js tHALT — 5 (My + M) (10)

The total distance travelled during braking is therefore dyor = djs + dparr, subject
to the constraint that vy > 0. If we call brDistror, the value of brDist assigned by
TrainBrakes, it is the discrepancy between dror and brDistror that must be compared
to BRTOL to determine whether TrainStopSucceed or TrainStopFail will be enabled.
We find:

drop = Vortys— —t20s oy Pl
70T er lis oMy + My) S HALT 2(My + My
v Fp t?s (M7 + M, v92 - FD((MTJr[i‘ZH-)VJs)Z
ST oMy + My) Fp 2(Mr + M)
v Fp tjg (M7 + M) v
- erljs —
2(Mr + M) 2Fp
Fp s
= Vcrt T AaTAr o ar N\
ST2(Mr + M,y
1\ 2
(M7‘+Mn-) Fpts Mr
I — Vcr - Vrcr 1 11
* 2FD (MT+Mrc) * * Mrc ()
After a bit more working we get:
-2 -1
(Mr + M) | o 2 My My
dror= ————= |V, + Ve |1 2V Ver |1
TOT 2Fp or T Vo 1 - + + M.
-1
Fpt M
_2Vrcr¢ 1+ L (12)
(MT + Mrc) Mrc

11

So

(MT + Mrc)
2Fp

dror <

rc rc

-2 -1
M M
V24 V2, [1 + MT] +2 Ve Ver [1 + MT}] (13)

The last step follows, because in the last two terms of (12), the negative one cannot
exceed the positive one in magnitude because of the constraint on #;5 coming from
vys > 0, which implies that #;5 reaches its maximum when v;g = 0, at which point these
last two terms cancel.

Therefore, if we can arrange it that | brDistror + dror | < BRTOL, we will always
execute TrainStopSucceed at the end of the braking process, and will never execute
TrainStopFail. We will have surmounted the rugby club problem.

We can express this insight as an additional, nontrivial invariant, where HYP denotes
the relationships between the various constants of the model that have to be true in order
that | brDistror + dror | < BRTOL holds:

HYP + mode = DECEL A\ vy =0 = |brDist| < BRTOL (14)

Thus, the enabledness of TrainStopSucceed at the crucial moment becomes provable.
Regarding brDistyor +dror, which equals the last two terms of (13), we note that the
V2, term will be negligible in magnitude compared with the V,., V., term. This enables
us to derive a simple criterion that will be adequate for most engineering purposes:
Vrcr Vcr M rc

brDistror + dror < ——— (15)
Fp

4 The Rugby Club Problem — Further Discussion

The details of the control strategy actually used for urban rail control are commercially
confidential, for obvious reasons. Nevertheless, it seems clear that the fact that there is a
rugby club problem at all, signals a likely cause of it as being the discrepancy between
a control strategy based on pure kinematics and one based on the complete dynamics.
In this section, we briefly some discuss issues for more realistic modelling.

Several factors would need to be taken into account in a more realistic model: the
track will not be straight and level; it will not sustain frictionless train travel; the train’s
wheels will not always make perfect rolling contact with the track (there will be some
skidding at times); the control laws will not be as simple as we have chosen them to
be in our models; in the confines of an underground tunnel, air resistance will cause
significant drag on the train. And so on.

All these things will soak up some of the momentum of the train as it travels, re-
quiring work from the engine to maintain speed. Simple realistic models of these phe-
nomena will not be available. The best one might hope for, would be phenomenological
models that predicted the relevant losses, based on tabulated data taken over many jour-
neys under a variety of conditions. These data would have to be specific to each section
of the route, and dealing with these aspects could seriously complicate the design of the
critical code controlling the train’s motion.

12

S5 ‘Tackling’ the Rugby Club Problem

Above, we suggested that if appropriate relationships could be made to hold between
the various constants that characterised our model, then the rugby club problem might
be overcome. In this section, we discuss how the rugby club problem may be addressed
when such choices of constants are not available for whatever reason, while remaining
within the simple modelling framework of Fig. 2.

In our model, the principal cause of the loss of coherence between the train’s view
of the dynamics and the physical reality could be attributed to the fact that the control
law for the cruise phase was based exclusively on the train’s velocity, whereas the true
physics of the situation requires the accounting of momentum.

The obvious suggestion then, would be to change the control laws for the various
phases of the dynamics to account for momentum more accurately. In our extremely
idealised models this would not be hard to do, because in such simple models, the
relationships between velocity and momentum are straightforward, and the cruise phase
could easily detect how much momentum it had given away as it brought the train back
up to speed. The train could then approach the stopping point more cautiously, knowing
that the momentum it had given away would have to be given back soon.

However, when we consider doing the same thing in the context of the more realistic
models contemplated in Section 4, this is easier said than done. The rugby club steals
momentum from the train, but so do all the other sources of non-ideal motion that
we mentioned. Distinguishing between ‘natural losses’ and ‘unnatural losses’ becomes
nontrivial. Nevertheless, if natural and unnatural could be distinguished clearly enough,
an optional ‘more cautious stopping strategy’ offers a potential way forward.

6 Summary and Conclusions

In the preceding sections we outlined the essentials of Hybrid Event-B, with a special
focus on how impulsive physics can be handled. Then we constructed a Hybrid Event-B
model of the rather engaging rugby club problem scenario described in the Introduction.
For the purposes of arriving at a reasonably clear exploration of the rugby club problem
which nevertheless fitted in a fairly short paper, our model had to simplify and idealise
the situation rather severely. It was thus suffused with point mass and lossless dynamics
in the familiar style of classical mechanics. The precision of the model allowed us to
derive conditions that distinguished between the non-disruptive and disruptive case of
the rugby club dynamics, and we discussed some options for adding more complex
invariants to the model, based on these. We then discussed possibilities for reducing the
degree of idealisation in the model, and thus the prospects for making it more realistic,
thereby bringing it closer to applicability in practice.

It is worthwhile, at this point, making an observation about how the stated provabil-
ity of the additional invariants that were mentioned came about. Most of the analysis
of this paper was performed in a fairly ad hoc manner. When dealing with a situation
described by physical theories, this is, more or less, unavoidable. It follows in turn be-
cause physical theories are almost always expressed using a family of equalities. As
such, any of the participating variables may (in the given situation) carry input values,

13

with the other variables acquiring their values from the demanded equalities, as outputs.
So the derivation process is not structured in a manner that is fixed at the outset, in the
way that formal development processes tend to be. However, once the ad hoc reasoning
has yielded its fruits, we can take a step back, and restructure what has been discovered
in a manner that better fits a formal development process. It is in this manner that the
provability that is claimed of the additional invariants emerges.

In the last section, we addressed how this modelling exercise could be used to over-
come the rugby club problem, in cases where it could not be prevented by choosing
appropriate constants. The crux of the matter would be to centre the control system for
the train more firmly on the momentum dynamics of the physical system, than on purely
kinematic aspects. Confidence in this assertion is supported by the fact that although a
rugby club may be able to outwit a train control system whose design is insufficiently
suspicious, they cannot cheat the laws of physics.

It is instructive to note the very major role played by physics knowledge in the ex-
ercise undertaken in this paper. Although computer scientists often find it convenient
to downplay or neglect the influences of non-computing disciplines in the design of
cyberphysical systems [16, 13] (see, for example, the balance of content in references
such as [20, 1]), the importance of such influences cannot be denied, and the present
exercise shows this eloquently. Cyberphysical systems are truly multidisciplinary and
it is unwise to neglect any of the disciplines that contribute to a given system while
emphasising just one (e.g. just the computing viewpoint). See [10] for a review of some
of the less obvious elements that impact cyberphysical systems, discussed from a math-
ematical viewpoint.

References

1. Alur, R.: Principles of Cyberphysical Systems. MIT Press (2015)

2. Banach, R.: Pliant Modalities in Hybrid Event-B. In: Liu, Woodcock, Zhu (eds.) Proc. Jifeng
He Festschrift 2013. LNCS, vol. 8051, pp. 37-53. Springer (2013)

3. Banach, R.: The Landing Gear System in Multi-Machine Hybrid Event-B. Int. J. Soft. Tools
for Tech. Trans. (2015), to appear

4. Banach, R.: Formal Refinement and Partitioning of a Fuel Pump System for Small Aircraft in
Hybrid Event-B. In: Bonsangue, Deng (eds.) Proc. IEEE TASE-16. pp. 65-72. IEEE (2016)

5. Banach, R.: Hemodialysis Machine in Hybrid Event-B. In: Butler, Schewe, Mashkoor, Biro
(eds.) Proc. ABZ-16. vol. 9675, pp. 376-393. Springer, LNCS (2016)

6. Banach, R., Butler, M.: A Hybrid Event-B Study of Lane Centering. In: Aiguier, Boulanger,
Krob, Marchal (eds.) Proc. CSDM-13. pp. 97-111. Springer (2013)

7. Banach, R., Butler, M.: Cruise Control in Hybrid Event-B. In: Liu, Woodcock, Zhu (eds.)
Proc. ICTAC-13. LNCS, vol. 8049, pp. 76-93. Springer (2013)

8. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core Hybrid Event-B I: Single Hybrid
Event-B Machines. Sci. Comp. Prog. 105, 92-123 (2015)

9. Banach, R., Butler, M., Qin, S., Zhu, H.: Core Hybrid Event-B II: Multiple Cooperating
Hybrid Event-B Machines. Sci. Comp. Prog. 139, 1-35 (2017)

10. Banach, R., Su, W.: Cyberphysical Systems: A Behind-the-Scenes Foundational View. In:

Mashkoor, Thalheim, Wang (eds.) Proc. Klaus-Dieter Schewe Festschrift 2018. College Pub-
lications (2018), to appear.

14

11.

12.

13.

14.

15.
16.

17.
18.
19.
20.
21.
22.
23.

24.
25.

Banach, R., Van Schaik, P., Verhulst, E.: Simulation and Formal Modelling of Yaw Control
in a Drive-by-Wire Application. In: Proc. FedCSIS IWCPS-15. pp. 731-742 (2015)

Bloch, A., Krishnaprasad, P., Murray, R., Baillieul, J., Crouch, P., Marsden, J., Zenkov, D.:
Nonholonomic Mechanics and Control. Springer (2015)

Carloni, L., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.: Languages and Tools for
Hybrid Systems Design. Foundations and Trends in Electronic Design Automation 1, 1-193
(2006)

ClearSy: http://www.clearsy.com/

Fasano, A., Marmi, S.: Analytical Mechanics. Oxford University Press (2013)

Geisberger, E., Broy (eds.), M.: Living in a Networked World. Integrated Research Agenda
Cyber-Physical Systems (agendaCPS) (2015), http://www.acatech.de/fileadmin/user_
upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Projektberichte/
acaetch_STUDIE_agendaCPS_eng_WEB.pdf

Goldstein, H., Poole, C., Safko, J.: Classical Mechanics. Addison Wesley (2001)

Horvarth, J.: Topological Vector Spaces and Distributions. Dover (2012)

Lecomte, T.: Atelier B has Turned 20. In: Proc. ABZ-16. vol. 9675, p. XVI. Springer, LNCS
(2016)

Lee, E., Shesha, S.: Introduction to Embedded Systems: A Cyberphysical Systems Approach.
LeeShesha.org, 2nd. edn. (2015)

Papastavridis, J.: Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Con-
strained Systems. World Scientific, 2nd. edn. (2014)

Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.
Springer (2010)

Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer
(2009)

Treves, F.: Topological Vector Spaces, Distributions and Kernels. Dover (2007)

Zemanian, A.: Distribution Theory and Transform Analysis: An Introduction to Generalized
Functions, with Applications. Dover (2003)

15

