
Verifiable Code Generation from Scheduled
Event-B Models

MohammadSadegh Dalvandi, Michael Butler, Abdolbaghi Rezazadeh, and
Asieh Salehi Fathabadi

University of Southampton, Southampton, United Kingdom
{md5g11, mjb, ra3, asf08r}@ecs.soton.ac.uk

Abstract. Scheduled Event-B (SEB) augments Event-B with a schedul-
ing language to make the control flow in an Event-B model explicit and
facilitate derivation of algorithmic structure in Event-B refinement. A
concrete SEB model has a concrete algorithmic structure associated with
it. Although this structure reduces the difficulty of code generation, there
is still some gap between the model and executable code. This work for-
mulates the translation of SEB models to a programming language called
Dafny and proposes an approach in which a number of assertions are gen-
erated from the model that allows the verification of the generated code
in a static program verifier.

1 Introduction

Event-B is a general purpose formal method which is designed to target a set
of different domains including distributed systems, sequential programs, and
embedded systems. This generality is achieved by not fixing the behavioural se-
mantics of Event-B models [11]. Although this approach provides a great degree
of freedom in using the method, the process of using Event-B in some domains
(e.g. sequential program development) remains underdeveloped and not always
easy to follow. In our previous work [6] we introduced Scheduled Event-B (SEB).
SEB augments Event-B with a scheduling language and provides a number of
refinement rules to facilitate derivation of algorithmic structure in Event-B re-
finement. It allows the modeller to introduce the algorithmic structure using
the scheduling language from the very abstract level. The model, together with
its algorithmic structure, is then refined towards a concrete level. The final re-
finement step results in a concrete Event-B model (i.e. a model with concrete
data structures and no non-determinacy) and a concrete algorithmic structure
(i.e. a deterministic algorithmic structure). It is assumed that this final refine-
ment level is the closest possible model to the final implementation, i.e. a one to
one mapping between the model constructs and the target language constructs
exists. The most basic building block of a SEB model is an event. An event
may have multiple actions (i.e. assignments) which model state changes and are
executed simultaneously. If we consider assignments to be the most basic ex-
ecutable building blocks of an executable program, then each event should be

2

broken down to a number of assignments in the target language. Since event
actions are considered to be executed at the same time, the syntactic ordering
between them is not important. However, in a programming language, the order
in which the assignments are sequentially executed may change the final state
of the program. Due to this fact, when an event is sequentialised (i.e. its actions
are translated to sequentially composed assignments), then the imposed order-
ing on assignments should be verified to prove that the sequential execution of
the assignments will change the state in the same way that the execution of the
atomic event changes it. This verification task can be carried out at the Event-
B level. However, the problem with doing this in Event-B is a huge overhead
caused by the introduction of new auxiliary variables, program counters, new
invariants and events required for modelling and verification of the sequential
execution of the actions of a single event. To avoid the aforementioned overhead,
we can delegate this verification task to a program verifier which is much more
sequential composition friendly than Event-B. This can be achieved by placing
assertions in the program generated from an Event-B model in a way that prov-
ing the assertions implies that the sequentialised assignments change the state
in the same way that the original atomic event does.

The above proposed approach takes advantage of abstraction and refinement
offered by Event-B in developing an algorithm correctly and also benefits from
modern and powerful program verifiers for verification of low level properties
of the final implementation in order to prove that the final generated program
implements the Event-B model correctly. In this paper we use the Dafny pro-
gramming language and its verifier as our target language for implementing
Event-B models.

This paper has two main contributions. First, it provides a set of rules for
transforming a SEB model to an executable code in Dafny. Second, it introduces
an approach for sequentialisation of atomic events and verifying its correctness
using Dafny verifier. The rest of this paper is organised as follows: Section 2
provides background information required for understanding this work including
an introduction to Event-B, Scheduled Event-B, and Dafny. Section 3 provides a
set of transformation rules for transforming a SEB model to Dafny code. Section
4 discusses the verification of sequentialised model using Dafny verifier. Finally
Section 5 discusses the future work and concludes the paper.

2 Background

2.1 Event-B

Event-B is a formal modelling language based on set theory and predicate logic
for modelling and reasoning about systems, introduced by Abrial [2]. Event-B
is greatly inspired by Action Systems [4] and the B-Method [1]. Modelling in
Event-B is facilitated by an extensible platform called Rodin [3]. A model in
Event-B usually has two main parts: a context and a machine. A context is the
static part (types and constants) of a model which is specified using carrier sets,
constants and axioms. A machine is the dynamic part (variables and events)

3

of a model which is specified by means of variables, invariants and events. An
event models the state change in the system. Each event may have a number of
assignments called actions which are executed simultaneously. Each event may
also have a number of guards. Guards are predicates that describe the necessary
conditions which should be true before an event can occur. An event can be
parametrised by means of event parameters. A general Event-B event has the
following form:

Evt , any t when P(t,v) then S(t,v) end

where Evt is the name of the event, t is a set of parameters, v is the set of model
variables, P (t, v) is a set of guards and S(t, v) is a set of actions. Modelling a
complex system in Event-B can largely benefit from abstraction and refinement.
Refinement is a stepwise process which starts from an abstract level and contin-
ues towards a more concrete level by a series of successive steps in which new
details of functionality are added to the model in each step [5]. The abstract
level models the general purpose of the system by specifying what the system is
supposed to achieve. Each refinement level adds more details on how the goal of
the system can be achieved. It is essential that the correctness of each refinement
is proved, i.e. proving that each refinement “displays the same behaviour” as the
abstract one [15].

Refinement of an Event-B model may consist of refining existing events
and/or adding new events, variables and invariants. The new events must not
diverge. This means that they should not be enabled for ever. Each refinement
may involve introducing new variables to the model. This usually results in ex-
tending abstract events or adding new events to the model. It is also possible to
replace abstract variables by newly defined concrete variables (data refinement).
Concrete variables are related to abstract variables through gluing invariants.
A gluing invariant associates the state of the concrete machine with that of its
abstraction. All invariants of a concrete model including gluing invariants should
be preserved by all events. All abstract events may be refined by one or more
concrete event.

2.2 Scheduled Event-B

In Event-B the control flow between events are implicitly encoded using event
guards. Whenever the guards of an event are true, the event is considered to be
enabled and can be executed. The lack of explicit control flow in Event-B can
make algorithm and sequential program development difficult. To deal with the
problem of control flow, in our previous work we introduced Scheduled Event-B
(SEB) [6]. SEB augments Event-B with an explicit control flow construct called
a schedule. Each refinement level has an associated schedule. A schedule pro-
vides the modeller with a set of abstract and concrete programming-like control
constructs and allows the introduction of the control flow to a model from the
very abstract level. SEB also provides a number of rules for schedule refinement.
The rules allow the modeller to refine the abstract schedule along with the ab-
stract model to a more concrete level. The final level of refinement will result in

4

a concrete algorithm with only deterministic control constructs left in it. Figure
1 shows the abstract and concrete control structures provided by SEB.

⟨Schedule⟩ ::= Event
| ⟨Schedule⟩ ; ⟨Schedule⟩
| ⟨Schedule⟩ 2 ⟨Schedule⟩
| ⟨Schedule⟩*
| if(⟨Cond⟩){⟨Schedule⟩}, {elseif(⟨Cond⟩){⟨Schedule⟩}},[else{⟨Schedule⟩}]
| while(⟨Cond⟩){⟨Schedule⟩}

⟨Cond⟩ ::= Predicate

1Fig. 1. The Scheduling Language. The language is presented in EBNF [18].

The simplest form of a schedule is a single event. Event denotes an event
in the schedule. A schedule may contain one or more Event-B events. A se-
quential order can be imposed by the sequential composition operator (;). Non-
deterministic choice (S1 2 S2) and iteration (S∗) are the abstract control struc-
tures. Iteration is required to be finite. This is enforced by proving convergence
of events. The aforementioned control structures allow us to retain the event
structure (guards and actions together) so that data refinement reasoning is lo-
calised to pairs of corresponding abstract and refining events using the standard
definition of the Event-B refinement. The concrete control structures include de-
terministic if..else branches and while loops with explicit conditions (Cond).
The branch and loop conditions should be valid Event-B predicates as defined
in [2]. Non-deterministic choices and iterations can be refined to deterministic
branches and loops, respectively. Schedule refinement rules are defined in [6].
Figure 2 depicts how a schedule is refined alongside with the Event-B model. To
illustrate scheduled Event-B, we use the binary search algorithm presented in [6]
here. We only provide the most concrete Event-B model of the search algorithm:

Machine m3 refines m2 Sees c0
Variables r, k, i, j
Initialisation r := 0, k := (n− 1)/2, i := 0, j = n− 1

Event search inc
refines search
where

grd1: f(k) < v
then

act1: k := (k+j+1)/2
act2: i := k + 1

End

Event search dec
refines search
where

grd1: f(k) > v
then

act1: k := (i+k−1)/2
act2: j := k − 1

End

Event found
refines found
where

grd1: f(k) = v
then

act1: r := k
End

5

In the above model, f represents an array modelled as a total function in Event-
B (f ∈ 0..n− 1→ Z). The concrete schedule associated with the above model is
as follows:

initialisation;
while(f(k) 6= v){if(f(k)<v){search inc} else{search dec}};

found

The above schedule defines the control flow of the Event-B model. The schedule
contains a while loop and an if..else branch with explicit conditions. The
explicit conditions in the schedule allow the guards in the events to be eliminated
when generating the code (see Section 3). Variables r, k, i, and j are of type
integer. f is a sorted array defined in the context c0. The above model does not
include the context c0 or any of the abstract machines.

Fig. 2. Event-B and Schedule Refinement
2.3 Dafny

Dafny is an imperative, class-based language [13], which allows both strong and
weak typed variables. Dafny implements the verification method of Hoare logic
where a program can be specified with pre- and post-conditions. In the Dafny
language, pre- and post-conditions are influenced by the Eiffel language [16] and
the concept of design-by-contract [17]. Dafny is an object-oriented programming
language with generic classes and allows creation of objects which gives rise to
pointers [14]. Despite the fact that Dafny is a class-based language, it does not
support subclasses and inheritance. However, there is a built-in object type
that is a super-type of all class types. Dafny supports inductive datatypes and
has its own specification constructs. Standard pre- and post-conditions, framing
constructs and termination metrics are included in the specifications. In this
paper we call these specification constructs, code contracts. The language also
offers recursive functions, sets, sequences and some other features to support
specification. Dafny allows the definition of ghost variables. A ghost variable is
a variable that is used by the Dafny verifier and ignored at run time. A ghost
variable is used for specification purposes only and does not appear in any part
of the implementation. Specifications and ghost variables are omitted by the
compiler and are used just during the verification process.

The Dafny verifier attempts to verify different parts of a program locally
(modular verification) and infer the correctness of the whole system from those

6

locally verified parts. The Dafny verifier translates a Dafny program to an im-
mediate verification language known as Boogie 2 [12]. This is done in a way
that the correctness of the generated Boogie program implies the correctness of
the Dafny program. First-order verification conditions then are generated by the
Boogie tool and passed to the Z3 SMT solver [8].

3 Translating Concrete SEB Models to Dafny

A scheduled Event-B model, in its final refinement level, has a concrete schedule
(i.e. the schedule has only events, ;, while and/or if..else) associated with
it. It is assumed that all constructs in the model are refined to a concrete level
and all non-deterministic assignments are replaced with deterministic ones. The
concrete schedule is assumed to be a correct refinement of the abstract one with
respect to the refinement rules introduced in [6]. This section explains how a
SEB model is translated to Dafny implementation. We will use the model of
the binary search algorithm presented in Section 2.2 as an example to illus-
trate the translation. To formulate the translation of SEB models to Dafny, we
define a function called SEB2DFY . The function accepts an Event-B model
(M)(consisting of a machine and the context it sees) and a schedule (S) and
returns generated code and contracts:

SEB2DFY (M,S) , SEB2DFY class(M,S) (1)

Function SEB2DFY class defines a class including a method implementing
the algorithm. They are discussed in the following sections. The input model M
and schedule S are expected to be refined to a concrete level as explained earlier.

3.1 Dafny Method Generation

The focus of SEB is on development and verification of sequential algorithms.
SEB does not yet cover concepts like method calls or recursions. With this in
mind, for the purpose of code generation, it would be an appropriate decision to
map a SEB model to a class with a method implementing the algorithm based
on the provided schedule S. Based on this decision, function SEB2DFY class will
return a class with a single method with the same name as the model which was
passed to it:

SEB2DFY class(M,S) , class mchn{
SEB2DFY mtd(M,S)

}
(2)

Function SEB2DFY mtd(M,S) defines the way that the method should be
generated:

7

SEB2DFY mtd(M,S) , method mchn(SEB2DFY args(M))

SEB2DFY pre(M)

{
SEB2DFY var(v1, invv1)

SEB2DFY var(v2, invv2)

...

SEB2DFY var(vn, invvn)

SEB2DFY alg(M,S)

}

(3)

In the above class and method mchn is a placeholder for the name of the machine
being translated. If there is a value that the algorithm needs to receive in order
to perform a specific task on it such as an unsorted array to be sorted, it is
usually declared and specified in the model context using constants and axioms.
In this case the constant is mapped to an input argument which is passed to the
method and the axioms specifying it are transformed to method pre-conditions.
Functions SEB2DFY args(M) and SEB2DFY pre(M) are used to generate the
method’s input arguments and its necessary pre-conditions. Assume that we have
a model containing machine mchn and a context with constants a1, ..., ak where
each constant is of type T 1, ..., T k, respectively. Function SEB2DFY args(M)
has the following definition:

SEB2DFY args(M) , a1 : T 1, ..., ak : T k (4)

If the context of model M has n axioms specifying input arguments then function
SEB2DFY pre(M) has the following definition:

SEB2DFY pre(M) , requires SEB2DFY pred(axm1)

...

requires SEB2DFY pred(axmn)

(5)

The requires keyword is used in Dafny to declare method pre-conditions. The
function SEB2DFY pred transforms an Event-B predicate to its Dafny equiv-
alent. Function SEB2DFY var gives rise to generation of variable declarations
including typing invariants. Finally, SEB2DFY alg(M,S) generates the imple-
mentation and necessary contracts. This function will be discussed in detail in
the rest of this paper.

3.2 Algorithm Generation

An important step in transforming a SEB model to Dafny code is the gener-
ation of the code implementing the algorithm. Function SEB2DFY alg(M,S)
formulates this step. Schedule S contains key information about the algorithmic
structure of model M . A schedule is usually comprised of a number of sub-
schedules (which are either a control structure or a single event) ordered using
sequential composition operator:

8

S , S1 ; ... ; Sn

If a schedule is comprised of a number of sub-schedules like the above, then
function SEB2DFY alg(M,S) is defined as follows:

SEB2DFY alg(M,S) , SEB2DFY alg(M,S1)

...

SEB2DFY alg(M,Sn)
(6)

As mentioned before, a sub-schedule may be a control structure (branch or
loop) or an event. The general form of a branch sub-schedule is as follows:

Si , if(c1){ s1 } elseif(c2){ s2 } ... else{ sn }

where c1, ..., cn-1 are branch conditions (in the form of Event-B predicates) and
s1, ..., sn are schedules. In this case the definition of SEB2DFY alg(M,Si) is as
follows:

SEB2DFY alg(M,Si) , if(SEB2DFY pred(c1)){
SEB2DFY alg(M, s1)

}
elseif(SEB2DFY pred(c2)){
SEB2DFY alg(M, s2)

}
...

else{
SEB2DFY alg(M, sn)

}

(7)

If sub-schedule Sj is a loop then it has the following general form:

Sj , while(c){ s }

where c is the loop condition and s is a schedule representing the body of the
loop. The definition of SEB2DFY alg(M,Sj) is as follows:

SEB2DFY alg(M,Sj) , while(SEB2DFY pred(c)){
SEB2DFY alg(M, s)

}
(8)

Now that we defined SEB2DFY alg for branches and loops, we need one more
definition for the case that a (sub-)schedule is a single event. This case will be
discussed in the next section in detail.

9

3.3 Events to Sequential Statements

The most basic component of a schedule is an event. Event-B events usually have
a number of guards and actions. In [6] we showed that a correct schedule allows us
to eliminate event guards because guards should follow explicit schedule guards.
Elimination of event guards is facilitated through a number of guard propagation
and elimination rules. These rules allow us to propagate explicit schedule guards
(loop or branch conditions) to events and eliminate event original guards safely.
As an example consider the following schedule:

while(a){if(b){evt}}

where a and b are predicates and evt is an event. If the control reaches event evt
then the schedule guarantees that the following condition holds right before the
execution of evt:

a ∧ b

Guards of evt can be eliminated safely in the program if the following con-
dition holds:

a ∧ b ⇒ grd(evt)

where grd(evt) denotes evt guards. Guard propagation and elimination rules are
discussed in detail in [6].

If we eliminate event guards then we are left with event actions. Since event
actions are assumed to be executed simultaneously in Event-B, no ordering is
assumed between them. Translation of an event to code involves sequentialisation
of event actions and imposing a suitable sequencing on execution of them using
sequential composition.

As explained before, since Event-B events are executed atomically, the syn-
tactic ordering between the actions are not important. However when actions of
an event are translated to a series of assignments in a programming language,
the order in which they appear in the program can change the outcome. For
instance, consider the following event from the model of binary search algorithm
introduced earlier:

Event search inc
refines search
where

grd1: f(k) < v
then

act1: k := (k+j+1)/2
act2: i := k + 1

End

If the actions of the event are translated to sequentially composed assign-
ments in Dafny with the same order that they have in the event, the resulting
program will change the state in a different way than the event. This is due
to the fact that the right-hand side of action act2 is dependent on variable k
whose value is being updated by action act1. In this case the problem disappears

10

if we re-order the actions since act1 is independent of variable i. However this
is not a general solution since action may be mutually dependent. We can use
auxiliary variables to make the right-hand side of actions independent from the
left-hand side of the other actions. To do this, one auxiliary variable should be
introduced for each variable that is being modified and used by the event. The
auxiliary variable needs to be initialised with value of its associated variable. All
the occurrences of the left-hand side variables in the right-hand side expressions
of the actions should then be replaced by the auxiliary variables. For instance,
the actions of the above event should be translated to the following code:
var aux k := k ;
k := (aux k + j + 1) / 2 ;
i := aux k + 1 ;

As can be seen in the above code, the ordering between third and fourth as-
signments, with the help of auxiliary variables, does not matter any more. To
formulate this, assume that we have the following general event:
Event evt
where

G(v)
then

act1: v1 := E1(v)
...
actn: vn := En(v)

End

The definition of SEB2DFY alg(M,S) when S is a single event evt (S , evt)
is as follows:

SEB2DFY alg(M, evt) , SEB2DFY ghost(M, evt)

SEB2DFY aux(v1)

...

SEB2DFY aux(vn)

SEB2DFY act(v1 := E1[v\aux v])

...

SEB2DFY act(vn := En[v\aux v])

SEB2DFY post(M, evt)

(9)

where v and aux v are sets of model variables and auxiliary variables, respec-
tively. E[v\aux v] is the result of substituting aux v for all occurrences of v in
E. Functions SEB2DFY ghost and SEB2DFY post which appeared on the first
and last lines of the above definition, are used for contract generation purposes
which will be discussed in the next section. Function SEB2DFY aux receives a
variable and generates an auxiliary variable declaration and initialisation:

SEB2DFY aux(v) , var aux v := v; (10)

11

Function SEB2DFY act receives an action (a) in the form of v := E(v) and
has the following definition:

SEB2DFY act(a) , v := SEB2DFY exp(E); (11)

SEB2DFY exp transforms an Event-B expression to Dafny based on a set
of translations rules for translating Event-B expressions to Dafny. Due to space
limitation, we omit expression and predicate translation rules here.

4 Verification of Event Sequentialisation

In the previous section we discussed the sequentialisation of an event in detail.
This section discusses how we can prove its correctness. In order to be able
to verify the sequentialisation, along with the translation of the actions of each
event, we generate assertions representing the expected behaviour of the program
based on before-after predicate of those actions.

Before we continue to explain our approach for verifying the correctness of
event sequentialisation, we justify why this step is done at Dafny level. Although
it is possible to sequentialise an event in Event-B and to impose a sequential
order on the execution of its actions and prove its correctness, it involves the
overhead of adding a number of new events, guards, and program counters and
also extending the scheduling language and refinement rules proposed in [6] to
accommodate sequentialisation. Due to this, performing event sequentialisation
in a programming language designed for development of sequential programs
seems to be a more appropriate choice than trying to sequentialise actions in
Event-B level which involves the aforementioned overhead.

Previously, we discussed how an event is translated to a number of of sequen-
tial statements in Dafny. A program (or part of a program) in Dafny may be
specified (annotated) using code contracts (method’s pre- and post-conditions
and assertions). The Dafny verifier checks an annotated program text against its
specification in order to prove that the program behaves as intended. In order
to prove that an event is correctly transformed to Dafny code (sequentialised
correctly), a number of code contracts should be generated from the event in the
form of assertions.

The way that the state is changed by an Event-B event can be expressed
by a before-after predicate. By transforming an event’s before-after predicate to
Dafny assertions, we will be able to verify the correctness of event sequentialisa-
tion. Functions SEB2DFY ghost and SEB2DFY post will generate the necessary
ghost variables and assertions for verification of sequentialisation.

To illustrate the generation of required assertions, recall event search inc
from the model of the binary search algorithm introduced in the previous sec-
tions:

12

Event search inc
refines search
where

grd1: f(k) < v
then

act1: k := (k+j+1)/2
act2: i := k + 1

End

After the execution of the above event, the value of variables k and i are
changed in the following way:

k′ = (k + j + 1)/2 ∧ i′ = k + 1 (12)

where k′ and i′ are the value of variables k and k after the execution of the event
and k and i are the value of variable k and i before the execution of search inc. A
block of code implements event search inc correctly, if it has the same behaviour
as the event, i.e. it changes the state in the same way. If we want to verify that a
block of code sequentialises the event actions correctly, then we need to generate
assertions like (12) in Dafny based on event before-after predicates.

The challenge here is how to refer to the before and after values (unprimed
and primed variables) in an assertion in Dafny. A variable in a Dafny assertion
always refers to the current value of the variable. So to be able to transform a
before-after predicate like (12) to an assertion, we need to have access to the value
of variables before execution of the block of code implementing the event. We
transform the event search inc and its before-after predicate to Dafny code and
assertions using ghost variables for storing the before values (unprimed variable)
of variables k and i:

1 ghost var old k = k ;
2 ghost var old i = i ;
3 var aux k := k ;
4 var aux i := i ;
5 k := (aux k + j + 1) / 2 ;
6 i := aux k + 1 ;
7 a s s e r t k == (old k + j + 1) / 2 ;
8 a s s e r t i == old i + 1 ;

Variables old k and old i are ghost variables and are used to keep the before
value of variables k and i, respectively. A ghost variable is a variable that is
used by the Dafny verifier and ignored at run time. Function SEB2DFY ghost

facilitates the generation of the required ghost variables. It receives the model
and a specific event, and works directly on the event before-after predicate and
generates one ghost variable for every unprimed variable that appeared in the
event before-after predicate and initialises it with the value of the unprimed
variables. For practical reasons, we decided to generate one assert statement
per each action. The assertions are yielded by replacing unprimed variables in the
before-after predicate with their ghost counterparts and primed variables with

13

the original variables. Function SEB2DFY post generates assertions required for
verification.

In the above code, lines 1-2 and 7-8 are required for verification only. Lines
3-6 are the code implementing the event. The guard of the event is not used here.
This is because the guard is available to the Dafny verifier since it would be a
condition in the if statement generated based on the schedule given in Section
2.2. Any code that can satisfy the assertions (lines 7-8) can replace lines 3-6.

Apart from the verification of sequentialisation, having assertions in the gen-
erated code is useful for another purpose as well. The embedded assertions make
it possible to verify further amendments to the implementation at the code level
to prove that the new code complies with its abstract specification (event). For
instance in the above code, any implementation that satisfies the assertions (lines
7-8) can replace the code implementing the abstract event (lines 3-6).

5 Conclusion and Future Work

In this paper, we proposed an approach for generation of verifiable implemen-
tation from Scheduled Event-B [6] models. The paper outlined the necessary
rules for translating the algorithmic structure of a model together with rules
for sequentilisation of Event-B atomic events in Dafny. We also introduced a
way for generating Dafny assertions that allows us to verify the correctness of
the sequentialisation phase. Overall, our approach benefits from combining the
verification power of Dafny together with abstraction and refinement offered by
Event-B. We have applied this approach to a number of examples, including
the model of Schorr-Waite algorithm introduced in [6] and generated code and
contracts required for verification.

In our previous work [7], we introduced another approach for generating
Dafny code contracts from Event-B models. The proposed approach generates
Dafny method pre- and post-conditions from a group of atomic Event-B events
in a way that any implementation that satisfies the generated pre- and post-
conditions is considered to be a correct implementation of the Event-B abstract
model. There are two main differences between the approach presented in this
paper and the one presented in our previous work. First, the previous approach
only focuses on contract (method’s pre- and post-conditions) generation and no
implementation is generated while in this work, both implementation and code
contracts (i.e. assertions) are generated. The second difference is the granularity
of generated contracts. In the previous work we generated contracts at method
level in a way that the overall behaviour of the method was annotated, while in
this work, the contracts are generated in a lower granularity where the behaviour
of small blocks of code (sequentially composed assignments) inside a method are
annotated.

In [10], we extended Event-B code generation tool [9] and applied it to an
Event-B model of a learning-based RTM (Runtime Management system) in em-
bedded system design to generate C implementation from the model. The code
generation tool supports portability of the platform-independent model from

14

which platform-specific implementations are automatically generated. However,
our experience shows that there are a number of limitations with the current
Event-B code generation tool. The first limitation is that the algorithmic struc-
ture of the program can only be introduced at the final level of refinement and the
modeller cannot benefit from refinement in derivation of algorithmic structure.
The other limitation is that the current structuring language is too restrictive
and does not allow the modeller to define nested programs. Another limitation
is that the verification is only done at the Event-B level and no verification is
performed on the generated code.

In future, we want to mechanise the process of generation of the code and con-
tracts from scheduled Event-B models. We also envisage to apply the approach
presented in this paper to other case studies including the Event-B model of
RTM introduced in [10] to further validate our approach.

Acknowledgments. This work was funded in part by the EPSRC PRiME
Project (EP/K034448/1), www.prime-project.org.

References

1. J. R. Abrial, M. K. O. Lee, D. S. Neilson, P. N. Scharbach, and I. H. Sørensen.
The B-method. In Søren Prehn and Hans Toetenel, editors, VDM ’91 Formal
Software Development Methods, volume 552 of LNCS, pages 398–405. Springer
Berlin Heidelberg, 1991.

2. Jean-Raymond Abrial. Modeling in Event-B: system and software engineering.
Cambridge University Press, 2010.

3. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, ThaiSon Hoang, Farhad
Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and reasoning
in Event-B. International Journal on Software Tools for Technology Transfer,
12(6):447–466, 2010.

4. R. J. R. Back and F. Kurki-Suonio. Distributed cooperation with Action Systems.
ACM Trans. Program. Lang. Syst., 10(4):513–554, October 1988.

5. Michael Butler. Mastering system analysis and design through abstraction and
refinement. 2013.

6. Mohammadsadegh Dalvandi, Michael Butler, and Abdolbaghi Rezazadeh. Deriva-
tion of algorithmic control structures in Event-B refinement. Science of Computer
Programming, 148(Supplement C):49 – 65, 2017. Special issue on Automated Ver-
ification of Critical Systems (AVoCS 2015).

7. Mohammadsadegh Dalvandi, Michael J. Butler, and Abdolbaghi Rezazadeh.
Transforming Event-B models to Dafny contracts. ECEASST, 72, 2015.

8. Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer,
2008.

9. Andrew Edmunds and Michael Butler. Tasking Event-B: An extension to Event-B
for generating concurrent code. Event Dates: 2nd April 2011, February 2011.

10. Asieh Salehi Fathabadi, Michael J. Butler, Sheng Yang, Luis Alfonso Maeda-Nunez,
James Bantock, Bashir M. Al-Hashimi, and Geoff V. Merrett. A model-based
framework for software portability and verification in embedded power manage-
ment systems. Journal of Systems Architecture, 82:12 – 23, 2018.

15

11. Stefan Hallerstede. On the purpose of Event-B proof obligations. In Egon Börger,
Michael Butler, JonathanP Bowen, and Paul Boca, editors, Abstract State Ma-
chines, B and Z, volume 5238 of LNCS, pages 125–138. Springer Berlin Heidelberg,
2008.

12. K Rustan M Leino. This is Boogie 2. Manuscript KRML, 178:131, 2008.
13. K Rustan M Leino. Dafny: An automatic program verifier for functional cor-

rectness. In Logic for Programming, Artificial Intelligence, and Reasoning, pages
348–370. Springer, 2010.

14. K. Rustan M. Leino and Rosemary Monahan. Dafny meets the verification bench-
marks challenge, 2010.

15. Grant Malcolm and Joseph A Goguen. Proving correctness of refinement and im-
plementation. Oxford University. Computing Laboratory. Programming Research
Group, 1994.

16. Bertrand Meyer. Eiffel: The Language. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1992.

17. Bertrand Meyer. Design by contract. Prentice Hall, 2002.
18. Niklaus Wirth. Extended Backus-Naur Form (EBNF). ISO/IEC, 14977:2996, 1996.

