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Abstract. We demonstrate diagrammatic Event-B formal modelling of
a hybrid, ‘fixed virtual block’ approach to train movement control for the
emerging European Rail Traffic Management System (ERTMS) level 3.
We perform a refinement-based formal development and verification of
the no-collision safety requirement. The development reveals limitations
in the specification and identifies assumptions on the environment. We
reflect on our team-based approach to finding useful modelling abstrac-
tions and demonstrate a systematic modelling method using the UML-
like state and class diagrams of iUML-B. We suggest enhancements to the
existing iUML-B method that would have benefitted this development.

1 Introduction

Railway control systems are safety-critical, and it is common for railway safety
standards (e.g. CENELEC EN-50126, EN-50128/9 ) to recommend the use of
formal modelling and verification to certify their correctness. We present our
application of a diagrammatic formal modelling method to such a system.

The European Rail Traffic Management System (ERTMS)1 [6] will comprise
a single ATP (automatic train protection) system and a single GSM radio com-
munication system train-to-trackside, to replace the variety of current national
train control solutions. Hybrid ERTMS Level 3 [8] - a compromise between full
ERTMS Levels 2 and 3 - aims to increase network capacity at reduced cost, using
existing trackside train detection equipment together with radio communication.

This case study concerns a physical environment of trains, and communica-
tion by radio and trackside equipment. The case study concerns the control of
trains moving on a linear track which is part of a wider network controlled by
an interlocking system which is out of scope of this case study. A train move-
ment controller called the Radio Block Centre (RBC) manages the Movement
Authority (MA) granted to each train in mission. The focus of this work, called
the Virtual Block Detector (VBD), conservatively estimates train locations to a
finer granularity than physically detected track sections, and thus reports free
virtual track sub-sections available for train movement. Trains and trackside re-
port location data to the VBD. In turn the VBD reports free track sections to

1 http://ertms.net
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RBC. The MA granted to each train consists of a set of sections that the train
is permitted to move into. A controlled train is instructed that the MA sections
are free; a trusted train is instructed that they might not be free. The key safety
property which we verify is that controlled trains do not run into trains that are
ahead of them.

Motivation and Contribution The case study presents challenges - addressed
by our contribution - for a formal development method, typical of challenges
arising in safety-critical cyber-physical systems. First is the development of a
useful model reflecting the component architecture of the target system (VBD)
interacting with its physical environment and other system components. The
model enables us to verify functional safety properties of the specification. Sec-
ond, we need readable models so that domain experts are able to validate the
model. While we do not focus on validation in this paper (other than for our
own sanity checks of the model), future work will include running scenarios in
a form of model acceptance test. Third, we describe how we tackle the diffcult
process of turning a detailed and complex specification that contains ambiguity
and relies on tacit domain knowledge, into a formally precise model containing
useful abstractions. (We view this contribution as particularly useful for indus-
trial partners to enable them to adopt formal modelling techniques). Fourth, we
have the emergent critique of the specification document: assumptions on the
environment, omissions, ambiguities, errors etc.

The refinement-based Event-B modelling method [1] is an appropriate choice
since it allows us to verify key properties while leaving certain features, and
interacting components, abstract and underspecified. The architecture can be
layered through the refinement: each layer can focus on an abstract component
interface, the environment, or a specific feature of the target system. Event-B
has strong tool support [2] for verification and validation in the form of theorem
provers and model-checkers. Diagrammatic modelling notations and tools are
available which help in conceptual modelling: we use iUML-B class diagrams
and state-machines [17,16,14]. One of our goals is to show that using iUML-B
leads to a readable formal specification (or at least more readable than plain
Event-B), which is easier for domain experts to validate.

Structure The paper is structured as follows. We next recall Event-B and iUML-
B basics in sec. 2. Sec. 3 reviews our development process, and sec. 4 gives our
system analysis. The refinement strategy is then summarised (sec. 5), followed by
a detailed account of modelling in sec. 6. Next is related work (sec. 7), followed
by the conclusion in sec. 8.

2 Event-B and iUMLB

Event-B [1,9] is a refinement-based formal method for system development.
An Event-B model contains two parts: contexts for static data, and machines
for dynamic behaviour specified by variables v, invariant predicates I(v) that
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constrain the variables, and events. An event comprises a guard denoting its
enabling-condition and an action describing how the variables are modified when
the event is executed. In general, an event e has the following form, where t are
the event parameters, G(t, v) is the guard of the event, and v := E(t, v) is
the action of the event.

e == any t where G(t,v) then v := E(t,v) end

Event-B is supported by the Rodin platform (Rodin) [2], an extensible toolkit
which includes facilities for modelling, verifying the consistency of models using
theorem proving and model checking techniques, and validating models with
simulation-based approaches.

iUML-B [14,16,17] provides a diagrammatic modelling notation for Event-B
in the form of state-machines and class-diagrams. The diagrammatic elements
share the repository of an Event-B model, and contribute to that model. For
example a state-machine will automatically generate the Event-B data elements
(sets, constants, axioms, variables, and invariants) to implement the states, and
contribute additional guards and actions to existing events. Class diagrams pro-
vide a way to visually model data relationships. Classes, attributes and associa-
tions are linked to Event-B data elements (carrier sets, constants, or variables)
and generate constraints on those elements.

3 Process

Formal models are often presented as if they were developed in perfect inexorable
steps when, in practice, they never are. We give an overview of our informal team-
based process illustrating the iterations that involved many misunderstandings
failures and re-work. Although we had some feedback from domain experts on
terminology and detailed clarifications, this was not substantial as we wanted the
case study to test our ability to use formal methods to understand and interpret
the specification. The domain experts were not involved in the process described
in this section. The team consisted of research and academic staff who had some
experience of formal modelling of railway applications such as interlockings and
crossings, but no previous experience of communications-based, virtual section
train control.
Systems Analysis While the Hybrid ERTMS Level 3 (HLIII) specification is
quite well presented in terms of explanatory scenarios, its focus makes it a de-
tailed requirements specification for the VBD. It does not explain the overall sys-
tem aims and principles so well. We therefore started by reverse engineering our
understanding of the system in order to understand its purpose and the concepts
that it is based on. This involved analysis of the information in the specification,
discussions and sketching whiteboard diagrams such as components, entity rela-
tionship and state-machine diagrams. The diagram-based analysis naturally led
into the iUML-B modelling. The systems analysis identifies the main components
in the system and the information flow between them. This is necessary for the
model to reflect the appropriate responsibilities of the VBD verses assumptions
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it makes upon other components. As with most stages of the modelling process,
the analysis was iterative. The modelling helped our understanding of the system
and our new understanding helped us choose better abstractions for modelling.
For example initially we assumed that only connected trains were ‘in-mission’.
However, when modelling we realised that when a connection is lost the system
relies on the fact that the train will continue to respect its MA and this implies
that the train is still in-mission. This new understanding of the system led us to
revise our models so that the in-mission state-machine was independent of (i.e.
parallel with) the connected state-machine.

Refinement Strategy The refinement strategy provides a plan for how we
intend to build the model, choosing abstractions, adding details in refinement
steps and introducing invariant properties at appropriate stages. We considered
two alternative approaches, a) start from an abstract safe system or b) start
from an unsafe system and make it safe. For this example we chose the second
approach. While the first approach is perhaps more traditional, in this case, the
safety properties were not so obvious and were complicated by unsafe, albeit mit-
igated, scenarios. So we wanted to capture the essence of train movement before
introducing assumptions and progressing towards details that can distinguish
between safe scenarios and mitigated unsafe scenarios. Again, the refinement
strategy evolved as we discovered difficulties and adapted our approach.

Modelling In modelling we used iUML-B for its diagrammatic notation which
follows on from the diagrams used in our analysis and review stages. As usual,
we used the provers to verify models and when they fail, and we cannot be sure
why, the ProB model checker helps to find counter examples. We also animated
the models to check that the model behaves as expected.

Review We held regular reviews to discuss problems with the modelling. As
indicated in the previous steps, the reviews led to significant iterations to our
understanding of the system, revisions to our refinement plan and consequent
changes to the model. Problems fell into the following categories:

– We cannot prove this PO - look for a better modelling approach. Example:
contiguity of next VSS relationship - We found it difficult to prove contiguity
properties about Virtual Sub-Section (VSS) using abstract properties. While
this should, in principle, be possible, we decided it was not worth the effort
and introduced numeric indexing of VSS (relying on the contiguity of a
range of integers). We retained the next function for elegance of expression
in guards and actions.

– This is not a useful refinement - change refinement strategy. Example: We
wished to introduce features such as timers as soon as it was possible to do
so (i.e. when the triggering functionality was available). However, we had
not yet introduced the relevant VSS state changes to utilise the timeout. To
rectify this we altered our refinement strategy to introduce abstract versions
of VSS states and associated transitions.
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– This is not a true data refinement - change systems analysis. Example: As we
modelled the flow of information through the control components we found it
difficult to reconcile the reported train positions and controlled MA with the
safety properties of the abstract environment. It seemed that we would need
to introduce some form of responsiveness assumptions to limit the difference
between actual and control variables. However, the specification implied that
the VSS states were asynchronously updated. As our understanding of the
MA principle improved we realised that the position inaccuracy is of no
consequence and we adjusted our systems description.

4 System Analysis

The HLIII specification is a detailed description of one component (the VBD) of
a wider system that controls train movements. The other components involved
in the system are the trains and trackside equipment, which we refer to as
environment (ENV), and the RBC that calculates movement authorities limiting
the movement of trains.

The VBD receives messages from trains and train detectors. It also receives
information about the output of the RBC. It calculates a set of sections that it
believes to be free of any trains and sends these to the RBC. The RBC sends to
each train, a movement authority consisting of a set of sections that the train
may move into. The train is either instructed that the sections are all free or
that they might not be free. We wish to model and verify item 3, the VBD. To
do this we also need to consider (and model) the other 2 items.

The environment consists of a linear track divided into fixed sections (Vir-
tual Sub-Section (VSS)) with trains moving in one direction on the track. Detec-
tors (Trackside Train Detection (TTD)) report when a train is present. However,
there is only one TTD for a group of VSS. There are 2 kinds of trains; those
that communicate with the control system, and those that do not. Trains that
communicate send three items of information to the VBD:

– their current position (in finer granularity than track sections),
– the length of the train,
– whether the train is confirmed as integral.

Communicating trains are able to receive information about the range of sec-
tions they are allowed to move through and whether the authorised track is
guaranteed to be free (full-supervision) or not (on-sight). For the purpose of this
description we partition trains into three kinds: ghost trains (not communicat-
ing), controlled trains (communicating with guaranteed free sections authorised)
and trusted2 trains (communicating with possible non-free sections authorised).
Trains that do not communicate can only be detected by TTD and may move

2 Controlled and trusted (trains) are terms that we have introduced, they are not
terms from the specification.
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freely according to some assumptions concerning physical limitations and those
imposed by train design regulations.

The RBC grants movement authority (permissions) to the communicating
trains. The RBC uses information it receives from the VBD about which VSS are
free. An MA consists of a set of track sections that the train is allowed to move
through. The train is also instructed as to whether it needs to be responsible for
avoiding collisions with trains in front (On-Sight Movement Authority (OSMA))
or whether it can assume the track sections are free (Full Supervision Movement
Authority (FSMA)). We assume the RBC always issues safe FSMA in accordance
with the information it receives from the VBD. I.e all sections in an FSMA are
ones that the VBD has calculated to be free.

The VBD is responsible for deciding which VSS are free based on information
it receives from the TTD and from Positive Train Detection (PTD) communi-
cations received from communicating trains. It sends information about which
VSS it believes are free to the RBC. Since PTD reports may be intermittent or
interrupted and some trains do not communicate at all, the estimate of free VSS
is cautious in these circumstances.

The positions of trains that are communicating are known fairly accurately
(subject to some lag in communications) from the PTD data sent by the train
(position, length and integrity) as well as physical limits on possible train move-
ment in between communications. The position of the train may cover a range
of sections from that occupied by the rear to that occupied by the front. Some
robustness is necessary to accommodate limitations of the communication mech-
anisms such as temporary loss of communication etc.

The position of a train that is not communicating (i.e. a ghost train) is
difficult to determine. The possible positions of a ghost train are estimated as a
range of sections based on the following:

– its last known position (from a PTD or a loss of integrity),

– how far it could possibly have travelled since its position was known,

– information from trains and free TTD that delimits its movement range.

A ghost train is created in the VBD by one of the following means: a com-
municating train stops communicating, a TTD spontaneously and unexpectedly
detects a train, or a communicating train reports that it has lost integrity.

For loss of integrity, a ghost train is created just behind the communicating
train to represent the detached section of carriages. A communicating train is
converted to a ghost train if the train’s mute timer expires (after communication
is lost) or if it sends a mission end message and terminates communication. A
ghost train is removed (i.e. destroyed) by sweeping. Sweeping is the movement of
a trusted train (with OSMA) through the sections where the ghost train may be.
If the trusted train is able to pass through the sections the ghost train does not
exist. A ghost train may also be converted to a communicating train if it starts
communicating with the VBD (either by sending a mission start communication
or by re-starting previous communication).
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5 Refinement Strategy

Through system analysis and iterative modelling, the original outline refinement
strategy evolved into the following. The target VBD model interacts with the
physical environment of trains and trackside: the first refinement layers ENV.
Next is the RBC component, followed by lower layers which elaborate the VBD.

ENV-M-1 Trains: Defines a linked list of trains to keep track of train order
and prevent overtaking. Trains are created at the rear of the linked list and
removed from its front. We also allow adding a new train in the middle of
the linked list as a result of train split.

ENV-M0 Train movement, VSS: Introduces the train movement in terms
of VSS section updates, where a VSS section is either free or occupied by
a train. The train movement is modelled as an independent update of the
position of the train front and rear.

ENV-M1 Ghost vs connected trains: Distinction between connected and
ghost (i.e., non-connected) trains, where all new trains join as ghost.

ENV-M2 TTD: Introduces TTD sections which can be either free (no train
on any of its VSS) or occupied (a train on at least one of its VSS). The TTD
state is immediately updated by train movement events.

RBC-M3 RBC: RBC can grant trains MA. We call trains with MA inMission,
where the RBC may extend or shrink their MA while connected.

VBD-M4 Position reporting: Presents the VSS four states (free, occupied,
ambiguous, unknown). Also introduces the reported versus actual train po-
sition with the associated MA trimming. Disconnection related timers are
also introduced.

VBD-M5 Controlled vs trusted trains: Fully supervised FS (controlled) vs
on-sight OS (trusted) trains are introduced. An OS train has unsafe MA and
is assumed not to crash into the back of other trains. An FS train has safe
MA and therefore cannot crash into the back of other trains. In addition to
Ghost train timers.

VBD-M6 Integrity loss If a train reports either integrity loss or changed
length, the train is split. Additionally, integrity loss propagation timers to
control availability of adjacent VSS are introduced.

VBD-M7 Lower levels Full VSS state transition as per specification, includ-
ing all timers.

6 Modelling

The model consists mainly of two parts: the ENV and the VBD. The RBC pro-
vides an intermediate layer for moving from the ENV to the VBD.

Modelling the Environment In the first part of the model, we focus on
modelling the ENV and the possible trackside events, such as train movement,
splitting and loss of communication.
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In the context, we model the network topology using iUML-B class diagrams
(Fig. 1). First we introduce the TRAIN class (not shown in figures), then the
VSS with their linear layout enforced by indexing via attribute, VSS i , Fig. 1a.

(a) VSS Properties (b) TTD Properties

Fig. 1: Class Diagram representing the track in the context

At the abstract level, we introduce how trains can join and leave the network
or in other words how trains can be created and destroyed. The variable class
train, with superset TRAIN , represents the trains that currently exist in the
network. There are two cases for creating trains, either a train can join from
the beginning of the network or in the middle as a result of splitting behind an
existing train. An important property at this level is: trains cannot overtake,
which is why we introduce the relative ordering of the trains, represented by
the variable association next train in Fig. 2. Therefore, a train can only leave
the network if there is no train in advance, this is represented by the guard
tr /∈ dom(next train) added to the method ENV leave network of class train.

In the next refinement, we model train movement. A train’s position is given
by the VSS that it occupies: variable association occupiedBy in Fig. 2. We only
model trains moving forward, hence a train can only leave a VSS if it occupies
the next one. In order to ensure the no overtaking property, a train can only
move forward if it doesn’t share a VSS with its next train. Apart from splitting,
a train can only join the network from the first VSS and trains can only leave
from the last VSS. Since the no-overtaking property is fundamental to the safety
of the system, we ensure the model does not break it by introducing the following
invariant, which states that a train cannot occupy a vss with an index higher
than the lowest indexed VSS of the next train:
∀tr1 , tr2 · (tr2 7→ tr1 ) ∈ next train =⇒

max(VSS i [occupiedBy ∼ [{tr2}]]) ≤ min(VSS i [occupiedBy ∼ [{tr1}]])
To distinguish between trains that are communicating and those that are

not, we introduce sub-states connected and ghost , of train (Fig.3).
Next, we introduce the TTD which group sets of contiguous VSS via as-

sociation Sections (Fig. 1b). Class occupiedTTD , which is a sub-class of TTD ,
represents those TTD that have at least one of their VSS occupied by a train.
At this level, we distinguish two cases when a train is leaving the last VSS of
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Fig. 2: Class diagram representing dynamic aspects of the environment

Fig. 3: Train communication statemachine

the TTD: i) no other train occupies the TTD and the TTD becomes free (and is
removed from occupiedTTD) or ii) it remains occupied and not free. The same
applies to a train leaving the network which can also free a TTD.

In the final environment model, we introduce the RBC role which paves the
way for the VBD part. The RBC provides movement authorities (MA) which
we assume trains will respect. The MA is modelled as a variable association ma
between train and VSS . We refine the train statemachine further by introduc-
ing a parallel state-machine (Fig. 4). The sub-states, inMission and noMission,
distinguish the mission status of trains. inMission represents trains that have
performed a Start of Mission (SoM) (transition ENV start of mission), while
noMission represents trains that either did not start or performed an End of
Mission (EoM) (transition ENV end of mission). The mission state-machine was
introduced as a parallel state-machine to the communication state-machine so
that trains that lose communication retain their mission status. All connected
trains have a mission. This is ensured by the invariant: connected ⊆ inMission
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Fig. 4: Parallel statemachines for communication and movement authority

We also split the radio connection/disconnection transitions in Fig. 3 into
two cases to distinguish between SoM and reconnection and connection loss and
EoM. The transitions ENV start of mission and ENV end of mission are common
to the two statemachines. Note that when a train first joins a network, it joins
as a ghost train with no mission, and when leaving the network it also has to
leave as a ghost train with no mission.

When a train performs SoM, it is immediately granted an MA for the VSS
it occupies. However, this does not allow the train to move to new VSS sections.
In order to move forward, the RBC should extend the MA as shown by the
self transition RBC extend ma of the connected state in Fig. 4. Our assumption
that trains with a mission respect their MA is enforced by the inMission class
invariant: occupiedBy ∼ [{tr}] ⊆ ma[{tr}] 3. However, when the RBC shrinks
the ma (e.g. due to propagation of an unknown VSS state) the actual train po-
sition may have progressed sufficiently to violate this invariant. We believe this
is a limitation of the system and therefore introduce a boolean attribute unsafe
of class train to indicate that the train has entered an unsafe scenario (to be
detailed in later refinements), and the invariant can be violated in this scenario:
occupiedBy ∼ [{tr}] ⊆ ma[{tr}] ∨ unsafe(tr) = TRUE. In Fig. 2, RBC trim ma
in the connected class plays the role of a garbage collector, removing the VSS
the train has left behind.

Modelling the VBD The VBD cannot see directly what is happening in the
ENV; it depends on periodic reports (PTD) sent by the train and it then asyn-
chronously updates the VSS states. Similarly, the RBC receives information
about VSS state from the VBD. This asynchronous behaviour relies on the fact
that the actual position cannot be behind the reported position and is some-
where within the MA. I.e. reported position is only used to free VSS after a
train has passed. This is embodied in the following invariants of class inMission
which relate the actual position occupiedBy with the reportedPosition seen by
the VBD.
min(VSS i [reportedPosition[{tr}]]) ≤ min(VSS i [occupiedBy ∼ [{tr}]])

3 Note that class invariants are implicitly quantified over instances of the class, hence
the antecedent ∀tr · trεinMission is added automatically
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max(VSS i [reportedPosition[{tr}]]) ≤ max(VSS i [occupiedBy ∼ [{tr}]])
We also refine loss of connection with mute timer expiry. We model time ab-
stractly without introducing a clock, giving timeouts a non-deterministic op-
portunity to expire. When a mute timer expires this will enable the disconnect
propagation timer whose expiry will affect the VSS state in later refinements.

In the next refinement of the VBD, we distinguish between the two different
modes of MA: FSMA and OSMA. In FSMA mode the RBC only uses free VSS
to extend ma. In OSMA mode, the RBC can extend ma with any VSS since
we trust the OSMA trains not to crash. This behaviour is modelled in Fig. 5
by partitioning inMission into two different sub-states, controlled and trusted
representing FSMA and OSMA modes respectively. The choice between the two
transitions, RBC extend os ma and RBC extend fs ma, is non-deterministic and
determines the mode of the train.

Fig. 5: Introducing sub-states to represent FSMA and OSMA modes

We can now introduce a safety invariant concerning the separation of con-
trolled trains; the ma of controlled trains do not overlap:
∀tr1 , tr2 · tr1 εcontrolled∧tr2 εcontrolled \{tr1} =⇒ ma[{tr1}]∩ma[{tr2}] = ∅

Hence, the RBC can only extend the ma of controlled trains using VSS sec-
tions that are free and not part of any ma. We introduce a sub-class availableVSS
of VSS to represent the free vss sections. This will be refined to the VSS state
free in future refinements as we introduce the state-machine of the specification.
However, extending the ma for trusted trains does not have these restrictions.

At this level we add and remove availableVSS abstractly with the general
conditions that apply for all cases. Therefore for adding a new availableVSS , it
either belongs to a free TTD or no train has reported its position in this VSS,
while for now the only condition for removing a VSS from availableVSS is that
it belongs to an occupied TTD.

Next we introduce the concept of train integrity. We partition connected
into two sub-states: integral and nonIntegral . We also refine the PTD posi-
tion reports to include integrity information. Therefore, we split the method
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VBD receive position report into different cases for confirming integrity, integrity
loss, integrity not available and train length change. We also introduce the in-
tegrity waiting and propagation timers.

At this stage, it became clearer to us that availableVSS is insufficient, and
it would have been better to introduce different sub-states of VSS as soon as we
started the VBD part. Most timers result in a change to state unknown when
they expire, hence there is no great benefit from having the timers without
showing their effect. Moreover, this would have the advantage of introducing
the different transitions of the VSS statemachine earlier, with the four states
(free, unknown, ambiguous, occupied) and gradually building towards the spec-
ification. Such decision requires a new iteration of the Event-B modelling in
accordance with the refinement strategy described in sect. 5.

Proof Statistics The current modelling approach (before the next iteration
in accordance with sect. 5) contains 8 machines. Our modelling resulted in 246
proof obligations, where about 66% (162) were proved automatically with the
default Rodin prover configuration. However, most of the proof obligations that
were not discharged automatically were related to well-definedness of min/max
operators. We then changed our Rodin configuration to include SMT solvers, this
increased the number of automatically discharged proofs to 226 (92%). Finally,
we added the relevance filter (but excluding newPP), which is a meta prover that
improves the efficiency of the predicate prover by selecting relevant theorems.
This improved our automatic percentage to about 99%. However, when recalcu-
lating auto-status, we found that this sometimes dropped to 97%. Presumable
this is due to fluctuations in the processor resources available to the prover. We
managed to get the auto-status back to 99% by increasing the timeout limits of
the provers. This high percentage of automation depends on the modelling style
applied. For example, we used indexing to avoid abstract models of sequences
whose transitive properties are difficult to prove. In our models, we used iUML-B
class diagrams and state-machines. The iUML-B state-machines plugin provides
two alternative translations, one representing the states as an enumerated set
and the other representing states as subsets of the statemachine instances. We
used the latter translation, lifting the state-machine to a set of instances (train).
Therefore, the generated state-machine type invariants are based on subsets of
the instance set (train). In future work we will assess whether the use of iUML-B
and the choice of state-machine translation affect the degree of automatic proof.

7 Related Work

Various approaches have been made during the development of the Event-B
method, to integrating it into the broader Software Engineering process. The
original interpretation of UML class diagrams and statemachines in classical B
[17] have been presented - and tool-supported - as iUML-B [16] for Event-B.
More recently Event-B refinement has been extended [14] to this diagrammatic
modelling method. Example applications - of which this work is one - include
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[11]. CODA [3] is a tool-supported framework extending iUML-B for component-
based embedded systems.

Train control is a familiar domain for Formal Methods, and specifically for B
and Event-B-based approaches. Butler et al [4] give a methodical treatment of
the diagrammatic modelling of the rail interlocking system Railground with both
iUML-B and Event Refinement Structures [15]. In [7], the authors present the
Event-B development of a Communications-based Train Control (CBTC) system
from Hitachi Ltd. Their focus is on the use of Abstract Data Types (ADTs) to
manage the complexity of modelling a graph-based rail network and its dynam-
ics. This example is comparable to ERTMS Level 3 and uses moving blocks. The
authors further proposed [10] the extension of iUML-B to support diagrammatic
modelling of ADTs, using the same Railground case study as [4].

Other related work such as [13] on Hybrid ERTMS Level 3 is based on moving
blocks. These models are hybrid, being concerned with continuous modelling of
exact train position and speed reporting. This ABZ2018 case study is the first
formal examination of fixed virtual blocks that we are aware of.

8 Conclusion

The specification is a rich and detailed source of information but is written as
a functional specification of the VBD component rather than a systems require-
ments document. While trying to formalise and abstract a model of the sys-
tem, we discovered several ambiguities. For example, when modelling the mute
and disconnect propagation timers we found that section 3.4.2.2 describes the
start event of the disconnect propagation timer to be expiry of the mute timer.
However, in scenario 4, EoM also starts the disconnect propagation timer. One
possible explanation is that the mute timer also operates for trains when they
perform EoM. On the other hand, transition 7A in the VSS statemachine dis-
tinguishes between mute timer expiry and EoM, implying that these are two
different cases. In addition, section 3.4.2.2 states that the mute timer is stopped
once the train re-connects, but doesn’t describe the EoM case. Does the VBD
need to keep a history of train positions with ended mission? Or is the mute
timer not stopped in this case? This example illustrates how formal modelling
can reveal ambiguities in the specification. Collaboration and interaction with
domain experts is crucial to resolve such questions as it would be dangerous to
model our own assumptions.

Formal modelling and the need to make abstractions and refine them, helped
to develop our understanding of the system and to gain insights into the princi-
ples of the design. The main example of this is the link between: what it does -
prevents certain kinds of collisions; how it does it - allocates movement authori-
ties; why it works - movement authorities cannot be entered by another train. It
also made us very aware of limitiations to the safety of the system such as the
case where carriages could roll backwards which could break the why it works.



14 Authors Suppressed Due to Excessive Length

We intend to continue developing and improving the formal model as part
of the Enable-S3 project4. The model will form a demonstrator for the Rail use
case and will be used in conjunction with MoMuT for test case generation [12].
An acceptance test specification will be developed using ‘Cucumber for iUML-
B’ [5] which is a formalised notation for describing test scenarios for iUML-B
models. The acceptance tests provide a rigorous, repeatable validation accessible
to domain-experts with limited formal methods expertise.

Some suggestions for improvements to the iUML-B notation and tools arose
from modelling the HLIII. For example, it is often convenient to initialise class
attributes/associations and have a complete mapping of their instances to val-
ues rather than specify a common value for each instance. Similarly, we often
needed to specify ‘class-wide’ invariants in which case the Event-B generator
adds an unnecessary universal instance quantifier. These improvements will be
incorporated in a future release.

Classes represent a set of instances with state represented by attributes and
associations and behaviour described in methods. Lifted statemachines represent
a set of instances with state represented by the statemachine state and behaviour
described in transitions. It is often useful to use both visualisations for the same
set of instances. While the diagrams can be linked to the same set of instances,
the integration is not very strong and the tooling sometimes conflicts in Event-
B generation. We experienced difficulties for example when modelling connected
(trains) as both a class and a state. A first improvement would be to allow state-
machines to be placed inside classes (an existing feature request) and rectify the
problems with generation. However, a more fundamental integration might be
possible: a common underlying record-based notation for the iUML-B model. In
this case the diagrams would be alternative views of a common model. A text
representation of the record-based model could also be provided. This would
align well with our plans to provide a text based version of iUML-B to improve
team-based development (where model diff and merge are essential).

All data supporting this study are openly available from the University of Southampton repository
at http://doi.org/10.5258/SOTON/D0403
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