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Abstract. Stylometry is a statistical technique used to analyze the vari-
ations in the author’s writing styles and is typically applied to author-
ship attribution problems. In this investigation, we apply stylometry to 
authorship identification of multi-author documents (AIMD) task. We 
propose an AIMD technique called Co-Authorship Graph (CAG) which 
can be used to collaboratively attribute different portions of documents 
to different authors belonging to the same community. Based on CAG, 
we propose a novel AIMD solution which (i) significantly outperforms 
the existing state-of-the-art solution; (ii) can effectively handle a larger 
number of co-authors; and (iii) is capable of handling the case when some 
of the listed co-authors have not contributed to the document as a writer. 
We conducted an extensive experimental study to compare the proposed 
solution and the best existing AIMD method using real and synthetic 
datasets. We show that the proposed solution significantly outperforms 
existing state-of-the-art method. 

Keywords: Stylometry, Authorship Identification, Co-Authorship Graph, Multi-
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1 Introduction 

Authorship attribution (AA) aims to infer authorship information from docu-
ments [6]. Authorship attribution has several variations depending upon the 
type of information to be inferred. One of the extensively investigated variation 
is authorship identification [5]. “Authorship identification aims at identifying the 
true author of a disputed document from a set of candidate authors” [15]. The 
main idea of authorship identification is that, by computing stylometric feature 
from documents and building a classification model on them, we can distinguish 
between documents written by different authors [15]. 

One useful generalization of authorship identification problem that has re-
ceived relatively little attention is authorship identification of multi-author docu-
ments (AIMD) [5]. The AIMD problem can be defined as follows. Given a corpus 
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of multi-author documents labeled with their authors, identify the authors of an 
anonymous multi-author document from a set of authors of a given corpus [16]. 

Existing authorship identification techniques designed to handle single-author 
documents are not applicable to multi-author documents [5]. This is because, 
single-author authorship attribution techniques rely on the assumption that ev-
ery text sample (document) has only one single label (author). However, the 
AIMD problem requires the ability to (i) infer the writing style of each individ-
ual author from a corpus of multi-author documents; and (ii) make a multi-label 
prediction for each document. 

One prominent application domain of AIMD is bibliometrics, in which AIMD 
can help improve the processes of measuring and analyzing the collaborative 
natures among a community of researchers [18]. Instead of attributing the entire 
paper to all the listed authors, one can use AIMD techniques to perform a 
more fine-grained analysis. Specifically, different parts of the same document 
can be attributed to different authors on the author list. Such an authorship 
identification capability can help the information retrieval system in the following 
ways: (i) scholarly search engines may implement an author specific search in 
which the researchers can look for text sample written by a particular author; 
and (ii) a researcher may wish to construct individual author profiles reflecting 
the contributions of each author in different scientific fields. In addition, AIMD 
techniques can also be used to identify researchers who had been involved actively 
in writing and mentors who are giving feedback and providing ideas. Another 
aspect of the AIMD is the peer-review system of the academic conferences where 
both the reviewers and the authors of the paper stay anonymous. This notion 
can be challenged by showing that it is possible for a reviewer to reveal the 
identity of the authors of scientific papers by using the AIMD framework. 

Several existing studies [4, 9] on authorship identification of multi-author doc-
uments (AIMD) have shown some success on corpora consisting of scientific 
papers using the citations included in each paper. However, their success was 
achieved mostly in constrained scenarios, e.g., identifying the authors of papers 
sharing the self-citations. Along with the citation information, Payer et al. [16] 
have also made use of topic-information and some common stylometric features 
such as the frequencies of most common words. 

The main difference between our work and a great majority of existing studies 
is that we make use of only the stylometric features. (see Section 2.2 for more 
details). Specifically, our features are topic-independent [19, 7]. Hence, unlike 
most of the existing studies, our solution is also applicable to corpora where 
citation information is not available and the documents have different topics. 

In summary, existing AIMD studies have the following limitations. (i) The 
accuracy levels of existing AIMD techniques can still be greatly improved. For 
example, the state-of-the-art stylometry based technique [5] reports an accu-
racy level less than 30% on a corpus containing over 360 candidate authors. 
(ii) Existing techniques are adversely affected by an increase in the number of 
co-authors. For example, Dauber et al. [5] reported a drop in accuracy level from 
25% to 16% as the number of authors had increased from 2 to 7. (iii) To the 



best of our knowledge, existing AIMD techniques do not tackle the issue of non-
writing authors (NWA) [5, 16]. However, NWAs do exist in real world scenarios. 
For example, in a scientific/engineering article, it is not necessary that all listed 
co-authors had contributed as writers. 

In this investigation, we propose a solution to overcome the aforementioned 
limitations. The main challenge of AIMD is the lack of “ground truth” informa-
tion. That is, most documents in the training set are associated with multiple 
authors. Hence, we need the ability to attribute different parts of the same doc-
ument to different authors on the author list. In order to address this challenge, 
we propose a method which collaboratively learns individual writing styles from 
multiple co-authored documents called Co-Authorship Graph (CAG). 

Figure 1 illustrates the basic concept behind our CAG method. It shows four 
documents where each document contains three fragments. Each edge linking two 
fragments denotes that they are stylistically similar to each other. We initially 
assume that each fragment is associated with all listed authors. For example, 
the author list of three fragments D1.1, D1.2 and D1.3 is [A, B, C]. That is, D1.1, 
D1.2, and D1.3 could have been written by A, B, or C. The figure also shows that 
D1.1 is stylistically similar to D3.3 and D4.2, which could have been written by 
[C, D, A] and [D, A, B], respectively. Since D3.3 must have been written by one 
of the authors in [A, B, C], we can see that A is the only author common to the 
three author lists. As a result, we can deduce that D1.1 must have been written 
by A. Following the same principle, we can also deduce that the author of D1.2 is 
B and the author of D1.3 is C. The full result is given in the table on the right side 
of Fig. 1. In order to adopt the basic concept illustrated in Fig. 1 to a real-world 

D1 : Author List: [A, B, C]

D1.3

D2: Author List: [B,C, D]

D3 : Author List: [C, D, A] : Author List: [D, A, B]D4

D1.2D1.1 D2.3D2.2D2.1

D3.3D3.2D3.1 D4.3D4.2D4.1

B {D1.2}

C 

Results

D 

{D1.3}

{D2.3, D3.2, D4.1}

A {D1.1, D3.3, D4.2}

AB {D4.3}

AC {D3.1}

Fig. 1. Co-Authorship Graph 

corpus we have to address the following issues. First, the intersection between 
multiple author lists (obtained from stylistically similar fragments) may not 
result with exactly 1 author. Second, the intersection between multiple author 



lists may result with no author at all being identified. Third, a number of listed 
authors may not have contributed as writers. In this paper, we formulate an 
AIMD solution that can handled these stated issues in a real world corpus. 

In order to demonstrate the effectiveness of our method, we apply it to one 
synthetic dataset and two real datasets. We also compare our method against 
the best-existing AIMD solution [5]. Results from our experimental studies show 
that our method outperforms the best existing technique in all three datasets. 
The contributions of this investigation can be summarized as follows. 

– We propose an AIMD technique called Co-Authorship Graph (CAG) which 
can be used to collaboratively attribute text fragments in a set of documents 
to distinguish authors in the same community. 

– Based on the CAG technique, we propose a novel AIMD solution which (i) 
significantly outperforms the existing state-of-the-art solution; (ii) can effec-
tively handle a larger number of co-authors; and (iii) is capable of handling 
NWAs. 

– We conducted an extensive experimental study comparing the proposed 
method and the best existing AIMD method [5] using real and synthetic 
datasets. 

The rest of the paper is organized as follows. Section 2 reviews previous stud-
ies on authorship attribution for single- and multi-author documents. Section 3 
presents the proposed solution. Section 4 reports results from our extensive ex-
perimental studies. Section 5 contains our concluding remarks. 

2 Literature Review: 

2.1 Stylometry 

Stylometry is a statistical technique used to analyze variations in the writing 
styles of the authors. It has been used extensively in solving authorship attribu-
tion problems such as authorship identification and authorship profiling [15]. 

Stylometric features are stylistic markers/attributes of the writing style that 
can help discriminate between texts written by different authors. There are dif-
ferent types of stylometric features, e.g., lexical, structural, and syntactic fea-
tures [16, 5, 7, 11, 14]. The lexical features are statistical measures of lexical varia-
tions such as word length distributions [11] and vocabulary richness [7]. Examples 
of lexical features are character-based and word-based measures of lexical varia-
tions [16]. Structural features are markers related to the layout of the text, e.g., 
the average number of words in a sentence or in a paragraph [11]. The examples 
of the syntactic features are part-of-speech tags and function words [14]. 

Payer et al. [16] proposed a solution for AIMD and applied it on a corpus 
of academic papers. They calculated a set of 10,727 features from the academic 
papers out of which 399 were stylometric and 2,374 content based, while the rest 
of the features 7,954 were based on citations. Later on, Dauber [5] proposed a 
solution for AIMD using the “Writeprints Limited features set” [1]. It includes 
content-specific, lexical, structural, syntactic and idiosyncratic features. 



Comparison to our work. In this investigation, we use a set of 56 stylo-
metric features which can be categorized into three types, namely, syntactic, 
lexical and structural features [7, 11, 14]. Specifically, we use 27 lexical [7, 11], 
2 structural [11], and 27 syntactic features [14]. These features are explained 
in Appendix A. The features used in this investigation differ those adopted in 
existing studies in several ways. Unlike the existing feature sets [4, 9, 16, 5], our 
set of features contains only stylometric features. Specifically, these features are 
topic-independent [19, 7]. As a result, our solution is also applicable to corpora in 
which citations information is not available and the documents address different 
topics. Moreover, we use a set of 56 features which is smaller than feature sets 
used in existing AIMD studies [16, 5, 4, 9]. As a result, in comparison to existing 
studies, the proposed solution requires less storage and is computationally less 
expensive. 

2.2 Authorship Identification 

From the viewpoint of the context of this investigation, existing studies on au-
thorship identification can be categorized into two types (i) authorship identi-
fication of single-author documents (AISD); and (ii) authorship identification 
of multi-author documents (AIMD). The main idea behind AISD is to identify 
the true author of a disputed document from a set of candidate authors. Exist-
ing studies of AISD have reported good results [17, 3]. However, as already ex-
plained in the introduction section, existing authorship identification techniques 
designed to handle single-author documents are inapplicable to multi-author 
documents [5]. Since this investigation focuses on AIMD, we limit the discussion 
on AISD in interest of brevity. 
AIMD. The AIMD problem can be defined as follows. Given a corpus of multi-
author documents labeled with their co-authors, identify the co-authors of an 
anonymous multi-author document from the authors in the given corpus [16]. 
Several existing studies [4, 9] on AIMD have shown some success for corpora 
that consist of scientific papers using only the citations made in each paper. 
However, their success was achieved mostly in a constrained scenario, e.g., iden-
tifying the authors of papers sharing the self-citations or in a specific domain 
such as Physics [9] or Machine Learning [4]. Specifically, Bradley et. al. [4] 
reported less than 71% accuracy while Hill el. al. [9] reported less than 50% ac-
curacy. Later, Payer et al. [16] proposed a solution for AIMD and applied it on 
a corpus that consists of academic papers. Their method made use of citations-
based features, stylometric features, and topic-based features. Hence, most of the 
existing solutions for AIMD are inapplicable to a corpus where the documents do 
not have citations such as novels or harassment letters, in addition their perfor-
mance may turn worse when the corpus contains documents on multiple topics 
or may be performing topic classification. Our proposed solution is based purely 
on stylometric features. We do not make use of any other information such as 
topic information or citation information for the AIMD task. As a result, the 
feature set used in this investigation is topic-independent [19, 7]. 



There are several other variations of AIMD which are comparatively easier to 
implement than the aforementioned variation and have shown promising results. 
For example, one of the AIMD variations used a training set of single-author 
documents which makes this variation easy to tackle. However, this requirement 
may not be realistic in real-world scenarios in which the training sample them-
selves are also multi-author documents [8]. In addition, the study reported a 
drastic accuracy drop as the number of co-authors in one document increases, 
i.e., from 50% to 30% after increasing the number of co-authors from 2 to 3 [5]. 
Another variation of AIMD assumed that each co-author group had a sufficient 
number of writing samples for training [5]. Due to the combinatoric nature of col-
laborative patterns of researchers in a community, we consider this assumption 
to be unrealistic. 

Since in the AIMD task, each document is associated with more than one 
author, where each author can be considered as a label, one can also consider 
this problem as a multi-label (ML) classification task. One of the popular ML 
classifiers is the multi-label k-nearest neighbor (MLkNN) classifier [22]. As with 
the regular kNN method, MLkNN identifies the k nearest neighbors with respect 
to a given test instance. To make a multi-label prediction, MLkNN derives sta-
tistical information from the label sets of identified kNNs, e.g., the number of 
neighbors for each label. Finally, it applies the Maximum A Posteriori (MAP) 
principle to determine the label set of the given test instance [22]. It can be seen 
that this multi-label classification task naturally fits the AIMD problem defi-
nition. However, existing AIMD studies have reported that transforming each 
multi-label sample into multiple single-label samples improves the classification 
accuracy [16, 5]. 

3 Proposed Solution 

In this section, we show how the collaborative authorship prediction concept in-
troduced in Section 1 can be realized. Our proposed solution consists of two 
preprocessing steps: feature extraction and co-authorship graph training. After 
the preprocessing steps, the trained data is used to make a multi-authorship 
prediction for any query document. Our design principle is based on the con-
cept of probabilistic multi-class, multi- label classification. That is, each training 
sample is associated with multiple labels where each label is associated with a 
probability. Given a query sample Q, probabilistic labels of stylistically similar 
samples with respect to Q are used to derive a probabilistic prediction. In this 
way, we can accurately capture the multi-author nature in both training samples 
and test samples. 

3.1 Preprocessing: Feature Extraction 

In this subsection, we discuss the feature extraction process. Each document 
is represented as a collection of fragments where each fragment is represented 
as a set of points. Each point is calculated from 1,000 tokens (sequences of 



characters separated by white spaces) using the stylometric feature described 
in Appendix A. In this way, authorship predictions are made per fragment and 
the prediction for an entire document is an aggregation over multiple fragments 
associated with the same document. 

The main motivation of this “collection of point sets” representation is two-
fold. First, a point set can capture how one’s writing style varies within the same 
document. Second, different parts of the same document can be associated with 
different authors. Note that in order to obtain reliable stylometric information 
for each data point, the number of tokens for each data point should be set 
to at least 1,000 [20]. However, with this number of tokens, we can have only 
12 data points for each 12,000-token document, which is insufficient for our 
analysis. Hence, we apply the sliding window method to generated data points 
from overlapping token sequences. This process is illustrated in Fig. 2(a) with 
a sliding window increment of 100 tokens and the window size of 1,000, which 
are the value we use in this paper. In this way, we can generate, 111 data points 
from a 12,000-token document. The same principle is also applied to fragments 
in order for us to obtain a sufficient number of fragments for our analysis as 
shown in Fig. 2(b) with a fragment sliding window increment of 2 data points 
and a fragment size of 6 data points. In this way, we can generate 53 fragments 
from a 12,000-token document. 

12,000

1,000
1,00 1,100

C1 C2 .  .  .  .  .  .  .  .  .  .  .  .  .  

2,00 1,200

C3

1

F1 F2  .  .  .  .  .  .  .  .  . 

1

C1 C2 C3 CnC4 C5 C6

6
3 8

C7 C8 C9 C10  . . .

5 10

F2
(a) Chunk-Level Sliding Window (b) Fragment-Level Sliding Window 

Fig. 2. Feature Extraction 

3.2 Preprocessing: Co-authorship Graph Training 

As stated in the introduction, the main challenge of the AIMD problem is that 
each document in the corpus at hand can be associated with multiple authors. 
Due to its combinatoric nature, the same list of authors may not be repeated 
in the corpus. In addition, some of the authors on the author list may not have 
contributed as writers to the document, making the AIMD problem more compli-
cated. Hence, an AIMD predictive method must be able to infer the authorships 
of each document without relying on the absolute ground truth information. 

In this investigation, we propose a novel AIMD solution based on the obser-
vation that stylistically similar fragments should have been written by a similar 



group of authors. As a result, we propose a data structure called Co-authorship 
Graph (CAG) to capture the stylistic similarity between these fragments. We 
also propose an iterative algorithm which attempts to identify the true writer of 
each fragment. 

The structure of the CAG construction process is given in Algorithm 1. Re-
call that after the feature extraction process, each document is represented as a 
collection of point sets (fragments), where each data point corresponds to one 
feature vector. The algorithm iterates through all fragments from all documents 
(Lines 4 to 9). CAG edges can be constructed by identifying k stylistically sim-
ilar fragments for each document fragment. We use modified Hausdorff distance 
(MHD) [12] as the distance between two fragments. Specifically, the procedure 
GetKNN(F , Fragments) finds k fragments in “Fragments” with the smallest 
MHDs from F (Line 5). These neighbors are the graph’s edges, while the dis-
tances (MHDs) are edge weights. We assume that each fragment F is associated 
with the list of document authors F .AuthorList which may include one or more 
non-writing authors (NWA). The probability mass function (PMF) over the au-
thor list is initialized by giving each author on the list the same probability 
(Lines 8 to 9). After iterating through all fragments from all documents, the 
CAG is returned (Line 10). 

Algorithm 1 CAGConstruction 
1: procedure CAG Construction 
2: Vertices ← [] 
3: Edges ← [] 
4: for F in Fragments do 
5: Neighbors ← GetKNN(F , Fragments) 
6: for N in Neighbors do 
7: Edges.Append((F, N)) 

8: F .PMF ← GenerateUniformPMF(F .AuthorList) 
9: Vertices.Append(F ) 

10: return G(Vertices, Edges) 

We illustrate now, how a CAG can be constructed using the example given 
in Fig. 3. The example contains 4 documents and each document is associated 
with 4 listed authors as shown in the figure. In this example, we set the ground 
truth as follows. First, only the first three authors contributed as writers to the 
respective document, e.g., only authors A, B, and C wrote different parts of 
D1, while author W is an NWA. Similarly, authors X, Y , and Z are NWAs of 
D2, D3, and D4, respectively. Note that this ground truth information is hidden 
from the model. 

Figure 3 also illustrates the initial PMF of each document fragment. Since 
the ground truth regarding the non-writer authors is hidden from the model. All 
fragments of all documents are associated initially with all listed authors with 
the equal probability. For example, the author PMFs of D1.1, D1.2, D1.3 are 



uniform, e.g., {A : 0.25, B : 0.25, C : 0.25,W : 0.25}. The initial PMFs of the 
other fragments in the figures are derived in the same fashion. 

After executing the CAG construction algorithm (Algorithm 1) we obtain the 
edges connecting stylistically similar fragments together. For example, according 
to the edges identified, we can see that the fragment D1.1 is stylistically similar 
to D3.3 and D4.2. Similarly, D1.2 is stylistically similar to D2.1 and D4.3. As can 
be seen, although all fragments in the same document are associated initially 
with the same authors with equal probability, they are connected to different 
sets of stylistically similar fragments with different author lists. Next, we will 
show that these differences can be used to collaboratively identify the author 
who had contributed as a writer of each fragment through Algorithm 2. 

D1 : Author List: [A, B, C, W]

D1.3

D2: Author List: [B,C, D, X]

D3: Author List: [C, D, A, Y] : Author List: [D, A, B, Z]D4

D1.2D1.1 D2.3D2.2D2.1

D3.3D3.2D3.1 D4.3D4.2D4.1

D1.1 {A:0.25, B:0.25, C:0.25, W:0.25}

D1.2 

PMFFrag.

D1.3 

{A:0.25, B:0.25, C:0.25, W:0.25}

{A:0.25, B:0.25, C:0.25, W:0.25}

D3.1 {C:0.25, D:0.25, A:0.25, Y:0.25}

D3.2 

PMFFrag.

D3.3 

{C:0.25, D:0.25, A:0.25, Y:0.25}

{C:0.25, D:0.25, A:0.25, Y:0.25}

D2.1 {B:0.25, C:0.25, D:0.25, X:0.25}

D2.2 

PMFFrag.

D2.3 

{B:0.25, C:0.25, D:0.25, X:0.25}

{B:0.25, C:0.25, D:0.25, X:0.25}

D4.1 {D:0.25, A:0.25, B:0.25, Z:0.25}

D4.2

PMFFrag.

D4.3

{D:0.25, A:0.25, B:0.25, Z:0.25}

{D:0.25, A:0.25, B:0.25, Z:0.25}

Fig. 3. Co-Authorship Graph: Each vertex represents a document fragment and each 
edge represents the 2 nearest neighbors of each fragments. The dotted and dashed 
patterns are used to only help distinguish overlapping crossing edges.Initial PMFs of 
all fragments are given in the corresponding tables. 

The purpose of Co-Authorship Graph (CAG) training is to alter the PMF 
of each fragment in order to better reflect the true writer(s) of that fragment. 
Algorithm 2 shows how the PMF of each CAG vertex can be updated. The same 
algorithm is executed at each vertex in multiple iterations (called supersteps). In 
the algorithm, each vertex corresponds to a document fragment and each edge 
denotes the stylistic similarity between two fragments. Each vertex (fragment) 
keeps track of the top−k most similar fragments as neighbors. The algorithm 
contains three main parts: Receive, Compute and Send. 
– Receive (Lines 5 to 10). The vertex receives the PMFs from its neighbors. 
– Compute (Line 11). The vertex PMF is updated as the weighted average 

of all neighbors’ PMFs. These weights are obtained from the distances of 
the neighbors through the Probabilistic k Nearest Neighbor method with the 
radial basis function (Gaussian) kernel [10]. The total weight is assumed to 
have been normalized to 1. 

– Send (Lines 12 to 13). The updated PMF is sent to the neighbors. 



Algorithm 2 CAG Training 
1: procedure UpdateCAGVertex 
2: NeighborPMFs ← [] 
3: NeighborDistances ← [] 
4: V ← ThisVertex 
5: for N in V .GetNeighbors() do 
6: PMF ← ReceivePMF(N) 
7: PMF ← RemoveNonAuthors(PMF, V .AuthorList) 
8: PMF ← Renormalize(PMF) 
9: NeighborPMFs.Append(PMF) 
10: NeighborDistances.Append(Distance(V , N)) 

11: V .PMF ← ComputeWeightedAvg(NeighborPMFs, NeighborDistances) 
12: for N in V .GetNeighbors() do 
13: SendPMF(N, V .PMF) 

At each superstep, the same process described in Algorithm 2 is repeated in all 
vertices and supersteps are repeated until all PMFs converges. 

Consider now how Algorithm 2 operates in the context of the example given 
in Fig. 3. Consider the fragment D1.1. The vertex receives 2 PMFs from its 2 
neighbors D3.3 and D4.2 as {C : 0.25, D : 0.25, A : 0.25, Y : 0.25} and {D : 
0.25, A : 0.25, B : 0.25, Z : 0.25}, respectively (Line 4). Each PMF is compared 
against the author list [A, B, C, W ] to remove the authors that do not appear 
in the author list of D1 (Line 5). In this case, D and Y are disregarded for 
D3.3. Similarly, D and Z are disregarded for D4.2. After re-normalization, we 
obtain {C : 0.5, A : 0.5} and {A : 0.5, B : 0.5} as the PMFs for D3.3 and 
D4.2, respectively. For ease of exposition, we assume that all 2 NNs have the 
same distance to its respective fragment and hence contributes to the fragment’s 
PMF equally. As a result, the weighted average of the two PMFs is {A : 0.5, B : 
0.25, C : 0.25} after the first superstep. 

Following the same process we obtain {A : 0.25, B : 0.5, C : 0.25} for D1.2, 
{A : 0.25, B : 0.25, C : 0.5} for D1.3, {B : 0.5, C : 0.25, D : 0.25} for D2.1, 
{B : 0.25, C : 0.5, D : 0.25} for D2.2, {B : 0.25, C : 0.25, D : 0.5} for D2.3, 
{C : 0.5, D : 0.25, A : 0.25} for D3.1, {C : 0.25, D : 0.5, A : 0.25} for D3.2, 
{C : 0.25, D : 0.25, A : 0.5} for D3.3, {D : 0.5, A : 0.25, B : 0.25} for D4.1, 
{D : 0.25, A : 0.5, B : 0.25} for D4.2, and {D : 0.25, A : 0.25, B : 0.5} for 
D4.3. We can see that all PMFs are becoming less uniform after only the first 
superstep. 

For each document, the PMFs will converge to the following values. 
– Document D1: {A : 1} for D1.1, {B : 1} for D1.2, and {C : 1} for D1.3. 
– Document D2: {B : 1} for D2.1, {C : 1} for D2.2, and {D : 1} for D2.3. 
– Document D3: {C : 1} for D3.1, {D : 1} for D3.2, and {A : 1} for D3.3. 
– Document D4: {D : 1} for D4.1, {A : 1} for D4.2, and {B : 1} for D4.3. 

As can be seen, the NWAs of each document are not included in the PMFs and 
the author lists of D1,D2, and D3 are correctly identified as [A, B, C], [B, C, D], 
[C, D, A], and [D, A, B], respectively. 



3.3 Multi-authorship Prediction 

In this subsection, we explain how we can make a multi-authorship prediction 
for a query document Q using the trained document fragments obtained from 
the two preprocessing steps. Algorithm 3 provides the structure of this process. 
The query document Q is decomposed into multiple query fragments. For each 
query fragment Q (Lines 4 to 11), we find the k nearest neighbors using the same 
GetKNN() function introduced in the CAG construction step (cf. Algorithm 1). 
In a fashion similar to that in the CAG training process (cf. Algorithm 2), 
the PMFs of the neighboring fragments and their distances with respect to Q 
are used to compute the weighted average to make a single prediction. After 
obtaining the PMFs of all query fragments (Line 12), we compute the average 
PMF to make a final prediction for the entire document. 

Algorithm 3 Authorship Identification 
1: procedure Multi-AuthorshipPrediction 
2: FragmentPMFs ← [] 
3: QueryFragments ← GetDocumentFragments(Q) 
4: for Q in QueryFragments do 
5: Neighbors ← GetKNN(Q, Fragments) 
6: NeighborPMFs ← [] 
7: for N in Neighbors do 
8: NeighborPMFs.Append(PMF) 
9: NeighborDistances.Append(Distance(Q, N)) 

10: Q.PMF ← ComputeWeightedAvg(NeighborPMFs, NeighborDistances) 
11: FragmentPMFs.Append(Q.PMF) 

12: return GetDocumentPMF(FragmentPMFs) 

According to Fig. 3, given that there is a query document Q1 with Q1.1 and 
Q1.2 as its fragments. We assume that D1.1 and D3.3 are identified as the 2 
NNs of Q1.1, D1.3 and D3.1 are identified as the 2 NNs of Q1.2. We can then 
obtain Q1.1 and Q1.2 predictions as the following PMFs: {A : 1.0} and {C : 1.0}, 
respectively. As a result, the document prediction for Q1 is {A : 0.5, C : 0.5}, 
i.e., A and C are the authors of Q1. 

4 Performance Evaluation 

In this section, we report results from our experimental studies. We compare the 
performance of the proposed solution against the best existing stylometry-based 
method for authorship identification in multi-author documents (AIMD) [5] and 
its improved version. 
Competitive methods. The competitive method presented in stylometric au-
thorship attribution of collaborative documents (AICD) [5] is based on a linear 
support vector machine (SVM) classifier. For the training documents, AICD 



makes use of copy transformation in which m single-label samples is created 
from each training sample associated with m labels. In this way, we can asso-
ciate each single-label sample to one label at a time [21]. As for the features, 
AICD extracts the “Writeprints Limited Features Set” [1] from multi-author 
documents using the JStylo tool [13]. The output from the linear SVM classifier 
is converted into a probabilistic distribution. AICD uses the most probable m 
authors as their result, where m is the given number of co-authors. 

Furthermore, we formulate an improved variant of the AICD, named as I-
AICD in this paper. In I-AICD, we use the sliding window method to generate 
chunks of 1,000 tokens and follow the same procedure as used in AICD. To this 
end, we aggregate our chunk level predictions by having each chunk vote for its 
most likely author. As for both of the techniques mentioned above, the 5-fold 
cross-validation is used for evaluation. 

4.1 Experimental Setup 

In this subsection, we describe the datasets used in this investigation along with 
the performance measures and parameters settings. One synthetic dataset and 
two real datasets are used to evaluate the three methods. 
Synthetic dataset. To generate a corpus of multi-author documents, we re-
trieved a collection of 23,096 single-author documents written by a set of 8,698 
authors from online Project Gutenberg4. We first found a set A of authors such 
that each author ai ∈ A had 15 or more single-author documents, where each 
document had at least 6,000 tokens. Assume that Da is a document written 
by m authors in A. The document Da is generated by randomly selecting m 
authors {a1, ..., am} from A. For each author ai, we obtained a text sample of 
L/m tokens where L is the synthetic document length. In this way, each au-
thor in the same document has the same number of tokens. Note that once a 
single-author document had been used in a multi-author document, it was never 
used again in any other document to avoid any possible training-testing sample 
contamination. Furthermore, each co-author set {a1, ..., am} was unique. 
Real Datasets. As for real datasets, we retrieved two sets of research papers 
from arXiv.org: (i) Computer Sciences; and (ii) Social Sciences. Specifically, 
we sampled a set of papers from the real word datasets such that each author 
had his/her name appear in 5 papers. As can be seen from Table 1, for the 
Computer Science papers, we got a resulting dataset of 1,957 papers from a set 
of 707 authors. As for Social Sciences papers, we got a dataset of 616 papers 
from a set of 300 authors. 
Parameter Settings. We tested different values for each parameter in order to 
find the most appropriate value. In the interest of conciseness, we display only 
the final results of this test. For synthetic dataset, the size of each synthetic 
document(L) was fixed at 12,000 tokens. The chunk size was set at 1,000 tokens 
and the fragment size at 6,000. Chunk-level and fragment-level sliding window 

4 https://www.gutenberg.org 
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Table 1. Statistics of the Datasets 

Synthetic 
Dataset 

Real Dataset 
(Computer Science) 

Real Dataset 
(Social Sciences) 

#Authors 1,360 707 300 
#Documents 3,600 1,957 616 
#Tokens 43,200,000 22,139,274 15,613,718 

increments were set to 100 and 2,000 tokens, respectively. The k value of 10 was 
used for the top-k retrieval. 
Evaluation Measures. Two types of measures were used in this experiment. 
(i) Accuracy (A): The accuracy indicates the discrepancy of a prediction with 
respect to the ground truth, which was defined as the number of correctly pre-
dicted authors divided by the size of the true co-author set. (ii) Guess-one (G): 
A document was considered correct if the prediction contains at least one of the 
true authors. 

4.2 Experimental Results 

Our experimental studies were designed to verify whether our proposed method 
can handle (i) a larger number of co-authors (than those used in existing studies); 
and (ii) non-writing authors (NWAs). To control the number m of co-authors and 
the number φ of NWAs, these studies were conducted on our synthetic dataset. 
In addition, we also conducted experimental studies on two real datasets to 
show that our method can handle real-world corpora. Results from the studies 
are reported as follows. 
Effect of Number m of Authors. We studied the effect of number m of co-
authors on accuracy by varying m between 2 and 5. The number φ of NWAs 
was set to the default value of 0. These m values were chosen because they 
conformed with the numbers of co-authors in the real datasets used in these 
experimental studies. Moreover, the bibliometric analysis of different disciplines 
shows that mostly the average number of authors per paper are 5 or less [2]. 
Figure 4(a) shows that our method was the best performer, while the improved 
variant of the competitive method I-AICD performed slightly better than AICD. 
Furthermore, the performance gap between our proposed method and I-AICD 
increases as the number m of co-authors increases. Our method can handle a 
larger number of authors better than the two competitive methods. We can also 
see that our method had maintained the perfect guess-one accuracy in all cases. 
Effect of Number φ of Non-writing Authors We study the effect of number 
φ of non-writing authors (NWA) on the accuracy as we vary φ from 0 to 2. The 
number m of co-authors is set to the default value of 3. As can be seen from 
Table 4(b), including non-writing (NWA) authors into the list of actual authors 
negatively affects the prediction accuracy. Specifically, the accuracy level drops 
from 83.24 to 74.05 as we increase the value of φ from 0 to 1, while further 
increasing φ to 2 has no significant effect on the accuracy. The figure also shows 
that our method continues to be the best performer in this study, while I-AICD 



performs substantially better than AICD. Since AICD and I-AICD are not 
designed to handle NWAs, the accuracy levels of the two methods drastically 
drop as the φ is increased from 0 to 2. We can also see that our method had 
maintained the perfect guess-one accuracy in all cases. 
Real Datasets. We evaluated the proposed method on real datasets. Note that 
unlike the synthetic dataset, the real datasets do not contain the ground truth 
regarding the number of NWAs of each document. As a result, for accuracy 
measurements, we assumed that all listed authors are assumed to be the writ-
ing authors. This assumption makes the measured accuracies of all methods 
lower than their actual values. However, it allows us to compare the three meth-
ods using real-world data. As can be seen from Table 2, the proposed method 
significantly outperformed the two competitive methods. Note that due to the 
unknown NWAs in the corpora, the accuracy level of our method reported here 
was lower than those of the synthetic datasets. We can also see that our method 
maintained the perfect guess-one accuracy in all cases. 
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Fig. 4. Comparison of CAG Performance against competitors: Method[G] denotes 
Guess-one Accuracy and method[A] denotes the accuracy. 

Table 2. Real Dataset Results 

Computer Science Social Science 

Method Accuracy Guess-one Accuracy Guess-one 

CAG 72.17 100 42.46 100 

I-AICD 26.02 48.21 29.41 54.49 

AICD 16.46 31.26 21.31 40.15 

5 Conclusions 

We have presented a solution for authorship identification of multi-author doc-
uments. The crux of our solution lies in the ability to probabilistically attribute 



different parts (fragments) of the same documents to different subsets of co-
authors. Specifically, we have proposed a data structure called the Co-Authorship 
Graph (CAG) to capture stylistic similarity between pairs of fragments across 
the entire document corpus. We have also formulated a CAG training algorithm 
to learn the true writer(s) of each fragment. We evaluated the proposed solution 
using one synthetic dataset and two real datasets. Our experimental results have 
shown that our method had (i) significantly outperformed the best existing so-
lution; (ii) could effectively handle a larger number of co-authors; and (iii) could 
handle non-writer authors (NWAs). 
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Appendix A Stylometric Features 

The stylometric features used in this investigation are shown in Table 3. For 
features 5 to 12, N represents count of words and V represents count of distinct 
words. For Features 6 and 9, Vi represents the count of words that occur i times. 

Table 3. List of Stylometric Features 

Lexical Features 
1. N : Total #words 

4. S.D. of word lengths 
V7. V R(R) = √ 
N 
V210. V R(S) = V 

13. Entropy of word freq. ditri. 
16. Freq. of uppercase chars 
19. Freq. of special chars 
22. Alpha char ratio 
25. Numeric char ratio 

2. V : Total #distinct words 
V5. N 

8. V R(C) = log V 
log N 

logV 11. V R(k) = 
log(log N) 

14. Total number of chars 
17. Freq. of lowercase chars 
20. Freq. of white spaces 
23. Uppercase char ratio 
26. Special char ratio 

3. Average word length P 
104( i2Vi−N)

6. V R(K) = 
N 2 

(100 log N)
9. V R(H) = 

(1−V1)/V 
(1−V 2)

12. V R(LN) = 
V 2(log N) 

15. Freq. of alpha chars 
18. Freq. of numeric chars 
21. Freq. of punctuations 
24. Lowercase char ration 
27. White spaces ratio 

Syntactic Features 
28. Freq. of nouns 29. Freq. of proper nouns 30. Freq. of pronouns 
31. Freq. of ordinal adjs. 32. Freq. of comparative adjs. 33. Freq. of superlative adjs. 
34. Freq. of advs. 35. Freq. of comparative advs. 36. Freq. of superlative advbs. 
37. Freq. of modal auxiliaries 38. Freq. of bases form verbs 39. Freq. of past verbs 
40. Freq. of present part. verbs 41. Freq. of past part. verbs 42. Freq. of particles 
43. Freq. of wh-words 44. Freq. of conjunctions 45. Freq. of numerical words 
46. Freq. of determiners 47. Freq. of existential theres 48. Freq. of existential to 
49. Freq. of prepositions 50. Freq. of genitive markers 51. Freq. of quotations 
52. Freq. of commas 53. Freq. of terminators 54. Freq. of symbols 
Structural Features 
55. Total number of sentence 56. Avg. #words per sentence 


