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Abstract. Recently, some studies have utilized the Markov Decision
Process for diversifying (MDP-DIV) the search results in information
retrieval. Though promising performances can be delivered, MDP-DIV
suffers from a very slow convergence, which hinders its usability in real
applications. In this paper, we aim to promote the performance of MDP-
DIV by speeding up the convergence rate without much accuracy sac-
rifice. The slow convergence is incurred by two main reasons: the large
action space and data scarcity. On the one hand, the sequential decision
making at each position needs to evaluate the query-document relevance
for all the candidate set, which results in a huge searching space for
MDP; on the other hand, due to the data scarcity, the agent has to pro-
ceed more “trial and error” interactions with the environment. To tackle
this problem, we propose MDP-DIV-kNN and MDP-DIV-NTN methods.
The MDP-DIV-kNN method adopts a k nearest neighbor strategy, i.e.,
discarding the k nearest neighbors of the recently-selected action (doc-
ument), to reduce the diversification searching space. The MDP-DIV-
NTN employs a pre-trained diversification neural tensor network (NTN-
DIV) as the evaluation model, and combines the results with MDP to
produce the final ranking solution. The experiment results demonstrate
that the two proposed methods indeed accelerate the convergence rate of
the MDP-DIV, which is 3x faster, while the accuracies produced barely
degrade, or even are better.
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1 Introduction

In real web search scenarios, a large number of queries are ambiguous or multi-
faceted. For instance, the query “apple” can be a kind of delicious fruit or the
great I'T company; the huge vehicle “rocket” can also be mentioned as the Hous-
ton Rocket basketball team. In order to satisfy the users with different infor-
mation needs, search result diversification approaches, which provide the search
results that covered with a wide range of subtopics for a query, have been widely
studied. The approaches work by ranking documents or webpages take both
relevance and information novelty (diversification) into considerations.

A majority of traditional methods for search result diversification are heuris-
tic methods with manually defined functions [2IBJT3ITAT5IT6]. Their key ratio-
nale is that the subsequent document should be “different” from the ones already
ranked. As a representative work, the maximal marginal relevance (MMR) [2]
is proposed to formulate the construction of a diverse ranking as a process of
sequential document selection. In MMR, the marginal relevance is defined as a
sum of query-document relevance and the maximal document distance as novelty
by a predefined document distance function.

Recently, in order to avoid heuristic methods with manually defined evalu-
ation functions, machine learning methods have been proposed and applied to
search result diversification [2T22I242528]. The basic idea is to automatically
learn a diverse ranking model from the labeled training data. Typical approaches
include the relational learning to rank (R-LTR) [28] and its variations [21122124].
In [2T28], the novelty of a document with respect to the previously selected doc-
uments is encoded as a set of handcrafted novelty features. In [22], the neural
tensor networks are extended to model the novelty among them.

However, all these methods model utility of a candidate document either
based on carefully designed heuristics or handcrafted relevance features and nov-
elty features. The utility perceived from the preceding documents is not fully uti-
lized. To avoid this, the latest work for search result diversification, Markov deci-
sion process diversification model (MDP-DIV) [23] is proposed, which formalizes
the construction of a diverse ranking as a sequential decision making process and
models the process with Markov decision process (MDP). Reinforcement learn-
ing technique, the policy gradient algorithm of REINFORCE [I8], is adopted to
adjust the model parameters. MDP-DIV outperforms the state-of-the-art base-
lines on the TREC benchmark datasets. However, its low convergence rate, often
requiring tens of thousands iterations to converge, is unacceptable, especially for
industrial applications.

In this paper, we aim to promote the performance of MDP-DIV by speed-
ing up the convergence rate and maintaining the accuracy. The primary reasons
for low convergence rate are the large action space and data scarcity. On the
one hand, the sequential decision making at each position needs to evaluate all
the remaining documents of relevance, which forms a huge search space; on the
other hand, the data scarcity compels the agent to proceed more “trial and error”
interactions with the environment. To address the problem, we propose MDP-
DIV-KNN and MDP-DIV-NTN methods. The MDP-DIV-kNN method adopts



a k nearest neighbor strategy to linearly reduce the action space at each posi-
tion. Specifically, it removes the k nearest neighbors of the recent selected action
(document). Different from the MDP-DIV-kNN, the MDP-DIV-NTN employs
a pre-trained diversification neural tensor network (NTN-DIV) as the evalua-
tion model, and combines the results with MDP to produce the final ranking
list. There are two instantiations of MDP-DIV-NTN. Specifically, the MDP-
DIV-NTN(D) method directly filters the pre-ranked list; while the MDP-DIV-
NTN(E) method sequentially models the novelty of candidate document with
respect to previously selected documents. The main contributions of this paper
can be summarized as follows:

— We analyze the reasons for the slow convergence of MDP-DIV, and find that
it is mainly due to the large action space and the data scarcity.

— We propose the MDP-DIV-kNN and MDP-DIV-NTN methods, which can
promote the convergence rate while maintaining the accuracy of MDP-DIV
for search result diversification.

— Extensive experiments are carried out on 09-12 TREC benchmark datasets,
and the results demonstrate the proposed methods indeed fasten MDP-DIV
and outperforms the state-of-the-art competitors.

The remainder of the paper is structured as follows. In Section 2, we briefly
review the related works. In Section 3, the Markov decision process, MDP-DIV,
and NTN-DIV are introduced as preliminaries. The proposed methods are pre-
sented in Section 4. Experimental results are provided in Section 5 to demon-
strate the effectiveness of the proposed methods.

2 Related Work

2.1 Search Result Diversification

One of the key problems in search result diversification is the diverse ranking.
Formalizing the construction of diverse ranking as a process of sequential docu-
ment selection is a common practice. This ranking strategy provides us a more ra-
tional way to model the utility of a candidate document which not only depends
on the document itself but also the preceding documents. Existing approaches
can be classified into two categories, namely heuristic methods [25/6/7T6] and
machine learning methods [21I2223|24128].

The representative work in the first kind is the maximal marginal relevance
(MMR) [2] criterion to guide the design of diverse ranking models. In MMR, the
sequential document selection is based on the marginal relevance score, which
is a linear combination of query-document relevance score and document nov-
elty score. A variation of MMR is the probabilistic latent MMR model proposed
by Guo and Scanner [6]. PM-2 [5] tackles the problem from the perspective
of proportionality. xQuAD [16] explicitly models the relationships between the
documents retrieved for the query and the possible sub-queries coverage. The
authors in [7] propose to combine the implicit and explicit topic representations



for constructing diverse ranking. All these methods model the utility of can-
didate document based on carefully designed heuristics with manually defined
evaluation functions. However, it is hard to design an unified similarity function
for different tasks.

Recently, machine learning approaches have been proposed for search result
diversification issue. The ranking score for diverse ranking is based on a linear
combination of relevance features and novelty features, and the parameters can
be automatically adjusted from the training data. Zhu et al. [28] propose the rela-
tional learning to rank (R-LTR) framework by optimizing the objective function
to construct the diverse ranking model. With different definitions of the objec-
tive functions and optimization techniques, different diverse ranking algorithms
have been proposed [2T22124]. Xia et al. [21] learn a maximal marginal relevance
model via directly optimizing diversity evaluation measures. The authors in [22]
utilize the neural tensor network to model the novelty relations. To avoid the
handcrafted features and fully utilize the utility in preceding documents, Xia
et al. [23] propose to adapt reinforcement learning techniques to formalize the
diverse ranking as a process of sequential decision making which can be modeled
with MDP, where the parameters can be trained by policy gradient algorithm
of REINFORCE [1§].

2.2 Reinforcement Learning for Information Retrieval

Reinforcement learning (RL) techniques are widely used in information retrieval
(IR) applications. The aforementioned MDP for diverse ranking in [23] is a repre-
sentative work in this kind. What’s more, MDP also can be extended to learning
to rank problems [20], in which the proposed MDPRank model utilizes the MDP
to directly optimize the NDCG at all ranking positions. Wang et al. [19] pro-
pose a game theoretical minimax game to iteratively optimize the generative
retrieval and discriminative retrieval models, in which the generative retrieval
model is optimized by the policy gradient algorithm of REINFORCE. In session
search, Luo et al. [I0] propose to utilize the partially observed Markov deci-
sion process (POMDP) to model session search as a dual-agent stochastic game
for constructing a win-win search framework. The authors in [27] propose to
utilize the log-based document re-ranking, which is modeled as a POMDP to
improve the ranking performance. Moreover, RL techniques are also utilized in
recommender systems. For instance, Guy et al. [I7] designed a MDP based rec-
ommender system which employs a strong initial model to converge quickly. The
multi-armed bandits technique is also utilized for diverse ranking [12]. Lu and
Yang [9] propose a neural-optimized POMDP model for building a collaborative
filtering recommender system.

Recent advances in reinforcement learning techniques make the research in IR
one step further, and promising performances are delivered, such as MDP-DIV,
MDPRank, etc. However, MDP-DIV suffers from a very slow convergence, which
hinders the usability in real applications. In this paper, we aim to promote the
performance of MDP-DIV by speeding up the convergence rate without much
accuracy sacrifice.



3 Preliminaries

3.1 Markov Decision Process

The search result diversification issue considered in this paper could be formu-
lated with a continuous state Markov decision process (MDP) [IIII8] which
is usually utilized for sequential decision making. An MDP is comprised of
states, actions, rewards, policy, and transition, and can be represented by a
tuple (S, A, T, R, )

States S is a set of states. In [23], states can be defined as tuples consisting
of preceding ranked documents, candidate documents, and the utility that the
agent perceives from the preceding documents as well as the query.

Actions A is a discrete set of actions that an agent can take. The possible
actions at each time step depend on the current state s, denoted as A(s).

Transition T is the state transition function s;11 = T(s¢, a;) which maps a
state s; into a new state s;y1 in response to the selected action ay.

Reward r = R(s,a) is the immediate reward, also known as reinforcement.
It gives the agent an immediate reward when taking action a under state s.

Policy 7(als) describes the behaviors of an agent which is a sequence map-
ping from states to actions. Generally speaking, 7 is optimized to decide how
to move around in the state space to achieve the optimal long-term discounted
reward y_,o; v'r.

The agent interacts with the environment at each time step. For instance, at
time step t, the agent receives the environment’s state s; € .S, and then selects
an action a; € A(s;) based on the current state s;, where A(s;) is the set of
actions available under state s;. As a consequence of the action taken, the agent
receives a numerical reward r;11 € R and the state changes to s;11 = T(s¢, ar)
simultaneously in the next time step.

3.2 MDP-DIV

MDP-DIV is proposed by Xia et al. [23], which is the latest and the first approach
that utilizes the reinforcement learning techniques for search result diversifica-
tion. The construction of diverse ranking is formalized as a process of sequential
decision making, which is modeled with a continuous state Markov decision pro-
cess (MDP). The user’s perceived utility can be treated as a part of its MDP
state.

More specifically, at time step ¢, the agent receives the environment’s state
s¢ which models the user’s dynamic state on the perceived utility, starting from
the first ranking position. Based on the received state, the agent chooses an
action a; € A(s;) depending on the policy that the agent has learned recently.
The policy in MDP-DIV is formulated as a softmax type of function that maps
from the current state to a probability distribution of selecting each possible
actions. According to the selected action (document), the user perceives some
additional utility, also known as the immediate reward, from the recently-selected
document. Here the reward is defined as the quality improvement of the selected



documents in terms of a-DCG or Subtopic recall (S-recall), which are two widely
used metrics in search result diversification. Then the system transits to a new
state. The transition function, which maps old state and the selected document
to a new state, is implemented in a recurrent manner. Reinforcement Learning
techniques, the policy gradient algorithm of REINFORCE [I8], is adopted to
coordinate the model parameters for the sake of maximizing the expected long-
term discounted rewards.

The end-to-end MDP-DIV model unifies the relevance and novelty as the
criterion for selecting documents which directly optimizes a diversity evaluation
measure, and outperforms the state-of-the-art baselines on the TREC bench-
mark datasets. However, the low convergence rate of needing tens of thousands
iterations in the training phase is indeed unacceptable, especially for industrial
applications. The reasons are two fold: (i) In the training stage, for decision
making at each ranking position, the agent has to go through the whole remain-
ing candidate set which introduces high computational complexity. Suppose we
are given N training queries, and each query is associated with a set of M re-
trieved documentsﬂ The diverse ranking process will cost N (1M (M +1)) times
of query-document relevance evaluations for just one iteration. Moreover, the
reinforcement learning process often needs large numbers of iterations to con-
verge. Therefore, it is really a catastrophe if we are unfortunately facing to a
large discrete action space, i.e. M is large; (ii) The retrieved documents are too
scarce to train, which means that the agent has to proceed more “trial and error”
interactions with the environment. For instance, more than 70% of data utilized
in MDP-DIV are not labeled (i.e., no subtopics is contained). Worse still, some
queries are associated with completely irrelevant (unlabeled) documents.

3.3 NTN-DIV

The NTN-DIV model is proposed by Xia et al. [22] that models document nov-
elty with neural tensor networks. Intuitively, the neural tensor networks model
the relationships between two entities with a bilinear tensor product. This idea
could be naturally extended to model the novelty relation of a document with
respect to the other documents for search result diversification. Suppose we are
given a set of M candidate documents X = {dj}jle, where each document is
characterized with its preliminary representation with embedding models, such
as the doc2vec model. The novelty score of a candidate document d € X with
its preliminary representation v, and a set of ranked documents S € X\{d} with
their representations {v1, ..., v 5|} can be defined as a neural tensor network with
z hidden slices. The ranking function can be defined in Eq.:

fn(v,S) = who + uT max{tanh(vTW[LZ] [v1, .. v15]) } (1)

3 For the ease of explaination, we suppose each query is associated with the same
number of documents.



where the first term is the relevance scoreﬂ and w weights the embedding fea-
ture v. The second term is the novelty score computed by neural tensor network.
Specially, W!#l a z dimensional three-way tensor, represents the relationship of
the documents, where Wy, stands for the k-th feature of relationship between
documents d; and d;. And p weights the importance of the slices of the ten-
sor. The primary merit of using neural tensor network to model the document
novelty is that the tensor can relate the candidate document and the selected
documents multiplicatively, instead of only going through a predefined similarity
function or through a linear combination of novelty features. To the best of our
knowledge, the NTN-DIV model is the latest and the best approach for search
result diversification except for MDP-DIV.

4 Methodology

As aforementioned that large action space and data scarcity will lead to low
convergence rate, in this paper, we propose two kinds of strategies to deal with
this issue. The first one is the k nearest neighbor strategy, which discards the k
nearest neighbors of the recently-selected action (document); The second strat-
egy relies on the pre-trained NTN-DIV [22] model, which employs a pre-trained
NTN-DIV as the evaluation model, and combines the results with MDP to pro-
duce the final ranking solution. The two strategies are, respectively, realized by
the proposed MDP-DIV-kNN and MDP-DIV-NTN methods in this paper. Both
methods are based on the original MDP-DIV | and they differ from each other in
the sampling procedure of the episode. Suppose we are given N labeled training
data D = {(¢), X J)IN_  where each query ¢(™ is associated with a
set of retrieved documents X (") = {9cgn)7 ...71'5\2)}, and J(™ denotes the labels
on the documents, in the form of a binary matrix. J(™(i,5) = 1 if document
xgn) contains the j-th subtopics of ¢(™ and 0 otherwise. The reward function
R(st,at) = a-DCG[t+ 1] — a-DCG]H] is based on a-DCG. As an overview of our
approaches, we first summarize main procedure in Algorithm 1. Clearly, similar
to the MDP-DIV model, our approaches also work in an iterative manner. The
main improvements come from the step 4, where two different sampling methods
are developed to efficiently search the action space. Next, we will elaborate the
two methods.

4.1 K Nearest Neighbors Strategy

The action evaluation is always a parameterized function that takes both state
and action as input. Hence, each time to select an action, |A| evaluations have
to be performed first, where |A| is the size of action space. However, this quickly
becomes intractable, especially if the parameterized function is costly to evaluate.
In MDP-DIV, the policy 7(a|s) is defined as a normalized softmax function whose
input is the bilinear product of the utility and the selected document in Eq.(2):

4 In order to learn end-to-end, we use the embedding features instead of handcrafted
relevance features.



Algorithm 1: MDP-DIV-kNN and MDP-DIV-NTN

input : Labeled training set D = {(q("), X, J("))}gzl, learning rate 7, discount factor
7, reward function R, and the size of returned list m
output: All the parameters ©
Randomly initialize © in [—1, 1]
while not converge do
for (¢, X,J) € D do
(80,a0,T1, ..y SM—1,am—1,7Mm) < SampleEpisode(©, q, X, J, R) with kNN strategy
for MDP-DIV-kNN or pre-trained NTN-DIV strategy for MDP-DIV-NTN
fort =0 to m —1do
Ge — S T Y g
O +— O+ ny'GyVe log w(ai|st; O)

W N R

o

8 return ©

exp{z! @ Uh}
m(adl[Ze, X, he]) = ———" 20—
Z= Y exp{ah,Uh} (2)

a€A(s)

where U is the parameter in the bilinear product and Z is the normalization
factor. The perceived utility of information h; could be computed in a recurrent
manner in Eq.:

hi = o(Vapa,) + Whi_1) (3)

where V is the document-state transformation matrix that adds the newly per-
ceived utility from the recently-selected document. W' is the state-state transfor-
mation matrix which determines the utility remained across time step. Generally
speaking, at each time step, the utility perceived by users for fulfilling the infor-
mation needs has to take all the previously selected documents into account, i.e.,
the later, the more complicated. Unfortunately, the execution complexity grows
quadratically with |.4] which makes this approach inefficient. This motivate us
to reduce the computational complexity.

Since the complexity of MDP-DIV closely relates to |.A[, it is natural to find
a way to “shrink” the action space, i.e. reduce the complexity. To maintain the
accuracy not degrading, the “shrink” strategy guarantees such foundations that:
(i) It has the ability to smartly prune part of the redundant (highly similar)
actions; (ii) The shrunken action evaluation can nearly generalize over actions.
For search result diversification, our goal is to return the most relevant docu-
ments to the queries and ensure the diversity of the documents simultaneously.
Therefore, consider such a situation: a; and a; are highly alike and both are
closely relevant to the queries, can we just return a; (or a;)? The answer is pos-
itive, because learning about a; also inform us about a;. Moreover, in order to
guarantee the diversity of the selected documents, returning them both is not
a reasonable choice. Therefore, we propose a k nearest neighbor based strategy
(MDP-DIV-kNN) to reduce the complexity of MDP-DIV. The basic idea of the



MDP-DIV-kNN is to discard the k£ nearest neighbors of the recently-selected
action (document) at each time step. In particular, the strategy is instantiated
in Algorithm 2. Each time we adopt an action a; € A(s;), at the same time, we
remove the k nearest neighbors of a; from the action space, where the neighbors
are computed by using the document embeddingsﬂ with Euclidean distance as:

k
fr(ar) = argmin|la; —all, (4)
a€A(sy)

The kNN lookup is a lightweight operation than the action evaluation exe-
cution although they are of the same complexity of the action space. Therefore,
the kNN based strategy offers us three merits here: (i) It provides sub-quadratic
complexity with respect to the action space; (ii) It avoids heavy cost of eval-
uating all actions while retraining generalization over actions; (iii) It directly
optimizes the diversity of the selected documents.

Algorithm 2: SampleEpisode with kNN strategy

input : 0,q,X,J, R, and m
output: An episode

1 Initialize so and E=()

2 fort =0 tom—1do

3 sample a; € A(s;) according to w(a¢|s¢; ©)

4 ri11 = R(s¢, at)

5 change s; to s¢41 according to the transition function

6 discard k nearest neighbor of a; in X; according to Eq.
7 append (s¢, a¢, r¢41) to the tail of E

8 return E;

4.2 Pre-trained NTN-DIV Strategy

The other method we propose to speed up the convergence rate of MDP-DIV
is to use a pre-trained diversity ranking model. As aforementioned that the
large action space and the data scarcity will lead to low convergence rate. The
proposed k nearest neighbors strategy in turn reduces the action space at each
position by filtering out the k nearest neighbors of the recently-selected action
(document). It is apparent that this strategy will efficiently shrink the action
space to speed up the convergence. However, it cannot deal with the data scarcity.
Because, in the incipient phase, once the document is selected, we will delete the
k nearest neighbors of the selected document, but we cannot make sure that it
is relevant to the query or is the right one to rank at the current position. To
deal with this problem, we propose the MDP-DIV-NTN method, which has two
instantiations, i.e., MDP-DIV-NTN(D) and MDP-DIV-NTN(E), to promote the
performance of MDP-DIV.

The first instantiation adopts the pre-trained NTN-DIV model to rank the
candidate set first and then takes actions in part of the pre-ranked list by ap-
plying the MDP-DIV. As a result, the action space is reduced as the NTN-DIV
model can provide accurate candidates with good diversity. The MDP-DIV-
NTN(D) offers us two merits: (i) It directly shrinks the candidate set, i.e., the

5 All the queries and documents are embedded with doc2vec [§] embedding model.
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action space in MDP-DIV; (ii) It straightforwardly takes out part of the ir-
relevant documents (the documents with none subtopics). Although the MDP-
DIV-NTN(D) methods is effective, it may loss a bit of information because the
NTN-DIV model is indeed not perfectly accurate.

The second variant is more precise. We utilize the pre-trained NTN-DIV
model at each position, i.e., each time to adopt an action. Similar to kNN
strategy, we summarize its sampling strategy in Algorithm 3. It can be seen
that, at each step time of the training, once the agent chooses an document, we
utilize the pre-trained NTN-DIV model to find the documents which are novelty
to the previously selected documents and relevant to the query simultaneously.
For the next time step, the agent only needs to learn on the filtered the candidate
set. Moreover, this approach also provides more considerable advantages: (i) It
precisely shrinks the action space; (ii) It accurately takes out the irrelevant
documents.

Algorithm 3: SampleEpisode with pre-trained NTN-DIV strategy

input : 0,q,X,J, R, m, K, and pre-trained NTN-DIV model
output: An episode
Initialize sg, D = (){empty set of selected docs}, and E=(){empty episode}
fort =0 tom—1do
sample a; € A(s;) according to w(a¢|s¢; ©) and add as to D
ri11 = R(s¢, at)
change s; to s¢41 according to the transition function
rank the documents in X; with D and the pre-trained NTN-DIV model
choose the first K documents of X; as X141
append (s¢, at, r¢41) to the tail of E

0N U WwN

©

return E;

However, the training of the NTN-DIV model using the original implemen-
tation is time consuminﬂ because it is executed sequentially on CPU. In order
to accelerate the training, we re-implement this model with Tensorflow [I] on a
NVIDIA® Tesla® K80 GPU because all the tensor product can be computed
parallelly. Finally, we obtain a slightly better performance with less than 30 min-
utes to train instead of more than 5 hours training of the original CPU version.
We also note that the NTN-DIV is trained off-line and its GPU implementation
brings no improvement on the convergence for the MDP-DIV-NTN.

5 Experimental Study

5.1 Datasets and Evaluation Metrics

The dataset is provided by the authorﬂ which is a combination of four TREC
benchmark datasets: TREC 2009-2012 Web Track. The retrieved documents are
carried out on the ClueWeb09 Category B data collectiorﬂ which is comprised of

5 https://github.com/sweetalyssum/DiverseNTN

" The datasets and source code are available at
https://github.com/sweetalyssum/RLASRD

8 http://lemurproject.org/clueweb09/



11

50 million English web documents. We note that the large number of parameters
in MDP-DIV needs lots of labeled data to train, which is the reason why the four
benchmark datasets are merged together. In total, there are 200 queries. Each
query includes several subtopics identified by the TREC assessors. Moreover,
the documents’ relevance labels are made at the subtopic level, which are binary
with 0 denoting irrelevant and 1 denoting relevant.

We employ three widely-used evaluation metrics to assess the diverse ranking
models. They are a-NDCG [4], subtopic recall [26] (denoted as “S-recall”), and
ERR-TA [3]. The a-NDCG and ERR-IA adopt the default settings in official
TREC evaluation progranﬂ7 which measure relevance and diversity of the rank-
ing list by explicitly rewarding diversity and penalizing redundancy observed at
each rank. The parameter a in these two evaluation metrics are set to 0.5. The
traditional diversity metric S-recall measures the coverage rate of the retrieved
subtopics for each query. All of the measures are computed over the top-k search
results (k =5 and k = 10).

5.2 Experimental Setup

All the experiments are conducted with 5-fold cross-validation. We randomly
re-split the queries into five even subsetsIE For each fold, three subsets are
utilized for training, one is for validation, and the rest one for testing. Moreover,
for fair comparison, we run each fold five times, and the results reported are
presented with average and standard deviation values over the total 25 trials.
All the experiments are performed on an intel® Xeon® Processor E5 V4 server
with NVIDIA® Tesla® K80 GPU and over 256 GB memory.

We compare the proposed methods with the latest state-of-the-art baselines
in search result diversification, including the NTN-DIV [22] and MDP-DIV [23].
We do not compare conventional models because previous studies have shown
that their performances are inferior [22//23].

NTN-DIV: As mentioned in Section 3.3, as a state-of-the-art method, the
model computes a ranking score by taking both relevance and novelty into ac-
count with a neural tensor network. To speed up the training, we implement
this method with Tensorflow on GPU which is extremely much faster than the
original CPU version. The tensor slices is 100.

MDP-DIV: As introduced in Section 3.2, this is the latest and state-of-
the-art method based on the MDP. We set parameters following [23], because
the datasets utilized are exactly the same as in [23]. As our methods employ
a-DCG as reward function, the a-DCG version MDP-DIV is thus adopted for a
fair comparison.

MDP-DIV-kNN: The parameter k is set to be 10% x |A[, 20% x |.A|, and
30% x | A|, denoted as MDP-DIV-kNN(10), MDP-DIV-kNN(20), and MDP-DIV-
kNN(30), respectively. The other parameters follow the settings in MDP-DIV.

9 http://trec.nist.gov/data/web/12/ndeval.c
10 The authors does not provide the split results, therefore we re-split the queries.
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MDP-DIV-NTN: The tensor slices of the pre-trained NTN-DIV model is
100, and the learning rate is 0.009. The size of both pre-ranked list in MDP-
DIV-NTN(D) and MDP-DIV-NTN(E) is set to 50% x |A|. Again, the other
parameters follow the setting in MDP-DIV.

In the experiments, the query vector and document vector are represented
as the embeddings generated by the Doc2vec model, which is trained on all the
documents in Web Track datasets. When training of the Doc2vec model, the
number of dimension is set to 100, the learning rate is set to 0.025 and 8 is
utilized as the window size.

5.3 Results and Analysis

Table 1. Performance comparison of all methods on TREC web track dataset. (The
best results are marked in bold format)

Method |a-NDCG@10 a-NDCG@5 S-recall@10 S-recall@5 ERR-IA@10 ERR-TAQ@5 time (:h)
NTN-DIV(GPU) 0.4617 0.4124 0.6205 0.5140 0.3446 0.3186 0.5
MDP-DIV 0.4874 0.4480 0.6639 0.5599 0.3697 0.3477 65
MDP-DIV-kNN(10) 0.4915 0.4462 0.6731 0.5435 0.3725 0.3539 43
MDP-DIV-kNN(20) 0.4869 0.4461 0.6582 0.5463 0.3723 0.3506 25
MDP-DIV-kNN(30) 0.4844 0.4464 0.6489 0.5467 0.3721 0.3517 16
MDP-DIV-NTN(D) 0.4912 0.4470 0.6738 0.5464 0.3727 0.3493 26
MDP-DIV-NTN(E) 0.4937 0.4485 0.6795 0.5627 0.3735 0.3497 53

Performance Comparison for Search Result Diversification. Table ]|
shows the performance of all the methods on TREC web track datasets. From the
table, we can see that the re-implemented GPU version of NTN-DIV needs half
an hour to train which is extremely faster than all the other methods. However,
its performance (accuracy) is significantly inferior to the other approaches.

Compared to the original MDP-DIV, the proposed MDP-DIV-kNN methods
and MDP-DIV-NTN methods are all faster, with a barely degraded or even
slightly better accuracy. Among the MDP-DIV-kNN methods, the fastest one is
the MDP-DIV-kNN(30) which discards 30% of the current actions by the nearest
neighbor strategy. It takes 16 hours to train which is 3x faster than the MDP-
DIV (taking 65 hours). Moreover, the MDP-DIV-kNN(10) shows best accuracy
among the three. We observe that it is slightly better than the original MDP-
DIV, while the other two (i.e., MDP-DIV-kNN(20) and MDP-DIV-kNN(30)) are
slightly worse. The reasons are two fold: (i) The k nearest neighbors strategy
can help produce a more diverse ranking list; (ii) Filtering nearest neighbors
may also result in a information loss. The lager the k, the more the information
loss is. Therefore, the performance is a trade-off between the complexity and the
accuracy.

As to the MDP-DIV-NTN methods, the performance is better compared
to MDP-DIV. For MDP-DIV-NTN(D), the pre-tained NTN-DIV model offers
us a pre-ranked list which helps to shrink the action space and filters part of
the irrelevant document; For MDP-DIV-NTN(E), at each time step, we model
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Fig. 1. Performance of stability comparison of all the methods on TREC web track
dataset.

the novelty of the candidate document based on both the query and preceding
selected documents which provides us a more accurate pre-ranked list. Hence, its
performance (accuracy) is not only better than MDP-DIV, but also better than
MDP-DIV-NTN(D). However, the computing on GPU at each time step will
cost some time. This is the reason that MDP-DIV-NTN(E) (taking 53 hours)
does not run as fast as MDP-DIV-NTN(D) (taking 26 hours).

In Figure [I} we report the error-bar of the comparison methods. From the
figure, we can see that all the approaches show relatively consistent standard
deviation, which indicates the proposed methods achieve stably better or com-
parable performance than NTN-DIV and MDP-DIV.

Next, we present some results to analyze the efficiency and effectiveness of
the proposed methods in details.

Efficiency Analysis. To analyze the efficiency, We draw a shaded-line figure
in Figure [2[ to show the time cost for a-NDCG@10 performance of the models
based on 5-fold cross validation. The horizon axis is the a-NDCG@10 perfor-
mance, and the vertical axis is the time cost to achieve the a-NDCG@Q@10 per-
formance. The curve in the figure means the average time cost for a-NDCG@10
performance, and the shade is the standard deviation. From the figure we can see
that the proposed MDP-DIV-kNN and MDP-DIV-NTN methods are all trained
faster than the original MDP-DIV. Specially, with the increase of the k value, the
MDP-DIV-kNN models converge faster. Although the accuracy of the final con-
vergence will sacrifice, it is still relatively acceptable. The MDP-DIV-NTN(D)
trained faster than other models before the a-NDCG@10 performance reaches
0.48. However, the promotion of a-NDCG@10 after 0.48 becomes very time-
consuming. In terms of a-NDCG@10, after convergence, MDP-DIV-NTN(D)
performs worse than MDP-DIV-NTN(E) which achieves the best accuracy.

Compared to the original MDP-DIV, for instance, to achieve the a-NDCG@10
performance at 0.48, MDP-DIV-kNN(30) and MDP-DIV-NTN(D) are almost 3
times faster, MDP-DIV-kNN(20) is 1.4 times faster, MDP-DIV-kNN(10) is 0.4
times faster, and MDP-DIV-NTN(E) is 0.54 times faster than MDP-DIV. Ac-
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Fig. 2. Efficiency analysis of the proposed methods on TREC web track dataset.

cording to the observations, we draw the following conclusions: (i) The proposed
MDP-DIV-kNN and MDP-DIV-NTN models fulfill the target of accelerate the
convergence of MDP-DIV without much accuracy sacrifice; (ii) The MDP-DIV-
kNN methods converge fast with a relatively acceptable accuracy, and the MDP-
DIV-NTN methods converge fast and show better accuracy than MDP-DIV.

Effectiveness analysis. Another promotion comes from the accuracy per-
formance. Here we draw a shaded-line figure in Figure[3|to show the e-NDCG@10
performance against the number of iterations. From this figure, we observe that
during the first 2000 iterations, MDP-DIV-NTN(E) shows a significant improve-
ment of a-NDCG@10 up to 0.05 over the MDP-DIV. As the training phase goes
on, the improvement becomes gentle. Finally, when both the methods converge,
MDP-DIV-NTN(E) still delivers better performance than MDP-DIV. In sum-
mary, we draw the following conclusions: (i) The proposed MDP-DIV-NTN(E)
converges faster than the original MDP-DIV; (ii) MDP-DIV-NTN(E) can reach
a high performance in the first 2000 iterations, and the converge performance
is also better. The reason of the fast convergence rate is that we utilize an off-
line NTN-DIV model to shrink the search space and filter part of the irrelevant
documents.

6 Conclusion

In this paper, we aim to promote the performance of MDP-DIV by speeding up
its convergence rate without much accuracy sacrifice. After analysis, we find the
slow convergence of MDP-DIV is mainly due to the two reasons: the large action
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Fig. 3. Effectiveness analysis of the proposed methods on TREC web track dataset.

space and data scarcity. On the one hand, the sequential decision making at each
position needs evaluate the query-document relevance for all the candidate set,
which results in a huge searching space for MDP; on the other hand, due to the
data scarcity, the agent has to proceed more “trial and error” interactions with
the environment. To tackle this problem, we propose MDP-DIV-kNN and MDP-
DIV-NTN methods. The experiment results demonstrate that the two proposed
methods indeed accelerate the convergence rate of the MDP-DIV, while the
accuracies produced barely degrade, or even become better.
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