Skip to main content

Model Averaging Approach to Forecasting the General Level of Mortality

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations (IPMU 2018)

Abstract

Already a 1% improvement to the overall forecast accuracy of mortality rates, may lead to the significant decrease of insurers costs. In practice, Lee-Carter model is widely used for forecasting the mortality rates. Within this study, we combine the traditional Lee-Carter model with the recent advances in the weighted model averaging. For this purpose, first, the training database of template predictive models is constructed for the mortality data and processed with similarity measures, and secondly, competitive predictive models are averaged to produce forecasts. The main innovation of the proposed approach is reflecting the uncertainty related to the shortness (e.g., 14 observations) of available data by the incorporation of multiple predictive models. The performance of the proposed approach is illustrated with experiments for the Human Mortality Database. We analyzed time series datasets for women and men aged 0–100 years from 10 countries in the Central and Eastern Europe. The presented numerical results seem very promising and show that the proposed approach is highly competitive with the state-of-the-art models. It outperforms benchmarks especially when forecasting long periods (6–10 years ahead).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We can distinguish high mortality countries from low mortality countries with life expectancy at birth [United Nations, Department of Economic and Social Affairs, Population Division (2013). World Mortality Report 2013 (United Nations publication)]. This indicator for Euro Area overtakes 82, while for Central Europe and the Baltics equals 77 [The World Bank 2015].

  2. 2.

    Datasets are available for download from https://www.mortality.org.

  3. 3.

    Some authors calculate prediction errors based on the model’s variable \(\ln (m_ {x, t})\). It is worth pointing out that this approach does not always generate the same conclusions (the results are not equivalent). From a practical point of view we are interested in the central death rate. The LC model is just a estimation tool. Therefore, we compute errors comparing the estimated values to the central death rate.

  4. 4.

    According to MAE relative differences.

References

  1. Carter, L.R., Prskawetz, A.: Examining structural shifts in mortality using the Lee-Carter method. Methoden und Ziele 39 (2001)

    Google Scholar 

  2. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: AAAI 1994 Workshop on Knowledge Discovery in Databases, pp. 359–370 (1994)

    Google Scholar 

  3. Booth, H., Hyndman, R., Tickle, L., De Jong, P.: Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions. Demogr. Res. 15, 289–310 (2006). https://doi.org/10.4054/DemRes.2006.15.9

    Article  Google Scholar 

  4. Box, G.E., Tiao, G.C.: Intervention analysis with applications to economic and environmental problems. J. Am. Stat. Assoc. 70(349), 70–79 (1975). https://doi.org/10.2307/2285379

    Article  MathSciNet  MATH  Google Scholar 

  5. Brouhns, N., Denuit, M., Vermunt, J.K.: A Poisson log-bilinear regression approach to the construction of projected lifetables. Insur. Math. Econ. 3(31), 373–393 (2002). https://doi.org/10.1016/S0167-6687(02)00185-3

    Article  MathSciNet  MATH  Google Scholar 

  6. Diebold, F.X., Mariano, R.S.: Comparing predictive accuracy. J. Bus. Econ. stat. 20(1), 134–144 (2002). https://doi.org/10.2307/1392185

    Article  MathSciNet  Google Scholar 

  7. Geweke, J.: Contemporary Bayesian Econometrics and Statistics. Wiley, Hoboken (2005)

    Book  Google Scholar 

  8. Harvey, D., Leybourne, S., Newbold, P.: Testing the equality of prediction mean squared errors. Int. J. Forecast. 13(2), 281–291 (1997). https://doi.org/10.1016/S0169-2070(96)00719-4

    Article  Google Scholar 

  9. Hryniewicz, O., Kaczmarek, K.: Bayesian analysis of time series using granular computing approach. Appl. Soft Comput. J. 47, 644–652 (2016). https://doi.org/10.1016/j.asoc.2014.11.024

    Article  Google Scholar 

  10. Hryniewicz, O., Kaczmarek, K.: Monitoring of short series of dependent observations using a control chart approach and data mining techniques. In: Proceedings of the International Workshop ISQC 2016, Helmut Schmidt Universität, Hamburg, pp. 143–161 (2016)

    Google Scholar 

  11. Hryniewicz, O., Kaczmarek-Majer, K.: Monitoring of short series of dependent observations using a XWAM control chart. In: Knoth, S., Schmid, W. (eds.) Frontiers in Statistical Quality Control 12 (2018)

    Google Scholar 

  12. Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 26(3) (2008)

    Google Scholar 

  13. Kaczmarek-Majer, K., Hryniewicz, O.: Data-mining approach to finding weights in the model averaging for forecasting of short time series. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIFSGN/EUSFLAT -2017. AISC, vol. 642, pp. 314–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66824-6_28

    Chapter  Google Scholar 

  14. Kaczmarek, K., Hryniewicz, O., Kruse, R.: Human input about linguistic summaries in time series forecasting. In: Proceedings of The Eighth International Conference on Advances in Computer-Human Interactions ACHI (2015)

    Google Scholar 

  15. Koissi, M.-C., Shapiro, A.F., Hgns, G.: Evaluating and extending the Lee-Carter model for mortality forecasting: bootstrap confidence interval. Insur. Math. Econ. 38(1), 1–20 (2006)

    Article  MathSciNet  Google Scholar 

  16. Kruse, R., Borgelt, C., Braune, C., Mostaghim, S., Steinbrecher, M.: Computational Intelligence: A Methodological Introduction. TCS. Springer, London (2016). https://doi.org/10.1007/978-1-4471-7296-3

    Book  MATH  Google Scholar 

  17. Lee, R.D., Carter, L.R.: Modeling and forecasting US mortality. J. Am. Stat. Assoc. 87(419), 659–671 (1992). https://doi.org/10.2307/2290201

    Article  MATH  Google Scholar 

  18. Lee, R.: The Lee-Carter method for forecasting mortality, with various extensions and applications. North Am. Actuar. J. 4(1), 80–91 (2000). https://doi.org/10.1080/10920277.2000.10595882

    Article  MathSciNet  MATH  Google Scholar 

  19. Makridakis, S., Hibon, M.: The M3-competition: results, conclusions and implications. Int. J. Forecast. 16, 451–476 (2000). https://doi.org/10.1016/S0169-070(00)00057-1

    Article  Google Scholar 

  20. McKee, M., Zatoski, W.: How the cardiovascular burden of illness is changing in eastern Europe. Evid.-Based Cardiovasc. Med. 2(2), 39–41 (1998)

    Article  Google Scholar 

  21. Watson, P.: Explaining rising mortality among men in Eastern Europe. Soc. Sci. Med. 41(7), 923–934 (1995). https://doi.org/10.1016/0277-9536(94)00405-I

    Article  Google Scholar 

  22. Fund Pension Protection: The Pensions Regulator (2006), The Purple Book: DB Pensions Universe Risk Profile (2008)

    Google Scholar 

  23. Lundström, H., Qvist, J.: Mortality forecasting and trend shifts: an application of the Lee-Carter model to Swedish mortality data. Int. Statist. Rev. 72, 37–50 (2004). https://doi.org/10.1111/j.1751-5823.2004.tb00222.x

    Article  MATH  Google Scholar 

  24. Tuljapurkar, S., Li, N., Boe, C.: A universal pattern of mortality decline in the G7 countries. Nature 405(6788), 789–792 (2000). https://doi.org/10.1038/35015561

    Article  Google Scholar 

  25. Wang, D., Lu, P.: Modelling and forecasting mortality distributions in England and Wales using the Lee-Carter Model. J. Appl. Statist. 32, 873–885 (2005). https://doi.org/10.1080/02664760500163441

    Article  MathSciNet  MATH  Google Scholar 

  26. Felipe, A., Guillén, M., Perez-Marin, A.M.: Recent mortality trends in the Spanish population. Br. Actuar. J. 4(8), 757–786 (2002). https://doi.org/10.1017/S1357321700003901

    Article  Google Scholar 

  27. Lovász, E.: Analysis of Finnish and Swedish mortality data with stochastic mortality models. Eur. Actuar. J. 2(1), 259–289 (2011). https://doi.org/10.1007/s13385-011-0039-8

    Article  MathSciNet  MATH  Google Scholar 

  28. Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., Khalaf-Allah, M.: Mortality density forecasts: an analysis of six stochastic mortality models. Insur.: Math. Econ. 3(48), 355–367 (2011). https://doi.org/10.1016/j.insmatheco.2010.12.005

    Article  MathSciNet  MATH  Google Scholar 

  29. Cairns, A.J.G., Blake, D., Dowd, K.: A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration. J. Risk Insur. 73(4), 687–718 (2006). https://doi.org/10.1111/j.1539-6975.2006.00195.x

    Article  Google Scholar 

  30. Macdonald, A., Gallop, A., Miller, K., Richards, S., Shah, R., Willets, R.: Stochastic projection methodologies: Lee-Carter model features, example results and implications. Continuous Mortality Investigation Bureau, Working Paper No. 25 (2007)

    Google Scholar 

  31. Renshaw, A.E., Haberman, S.: A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insur.: Math. Econ. 38(3), 556–570 (2006). https://doi.org/10.1016/j.insmatheco.2005.12.001

    Article  MATH  Google Scholar 

  32. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Disc. 26, 275–309 (2013). https://doi.org/10.1007/s10618-012-0250-5

    Article  MathSciNet  Google Scholar 

  33. Wilmoth, J.R., Andreev, K., Jdanov, D., Glei, D.A., Boe, C., Bubenheim, M., Philipov, D., Shkolnikov, V., Vachon, P.: Methods protocol for the human mortality database. University of California, Berkeley, and Max Planck Institute for Demographic Research, Rostock (2017). http://www.mortality.org/Public/Docs/MethodsProtocol.pdf. Version 6: Accessed 27 Nov 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Rutkowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartkowiak, M., Kaczmarek-Majer, K., Rutkowska, A., Hryniewicz, O. (2018). Model Averaging Approach to Forecasting the General Level of Mortality. In: Medina, J., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-319-91473-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91473-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91472-5

  • Online ISBN: 978-3-319-91473-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics