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Abstract. This paper introduces a generalization of overlap functions by extend-
ing one of the boundary conditions of its definition. More specifically, instead of
requiring that “the considered function is equal to zero if and only if some of
the inputs is equal to zero”, we allow the range in which some t-norm is zero.
We call such generalization by a t-overlap function with respect to such t-norm.
Then we analyze the main properties of t-overlap function and introduce some
construction methods.
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1 Introduction
The notion of overlap function [1, 4, 7–10] has shown itself very useful to deal with sit-
uations in which it is necessary to determine up to what extent a given element belongs
to one or several classes whose boundaries are not crisp. It has been used, e.g., in image
processing [12], classification problems [13, 14] and decision making [11].

Our goal here is to generalize the notion of overlap function by relaxing one of the
boundary condition. In particular, instead of demanding that “the considered function is
equal to zero if and only if some of the inputs is equal to zero”, we allow for some kind
of threshold, defined in terms of a t-norm T . We call such generalization by a t-overlap
function with respect to T .

We notice that, this simple generalization allows us to state several interesting prop-
erties, which may allow for application in fuzzy rule-based system in order to discard
bad rules when computing the compatibility degree. Section 2 presents some prelimi-
nary concepts. In Sect. 3, besides studying the main properties, we also propose some
construction methods. Section 4 is the Conclusion.

2 Preliminaries

This section aims at introducing the background necessary to understand the paper.



Definition 1. A fuzzy negation is a function N : [0, 1] → [0, 1] satisfying: (N1) the
boundary conditions: N(0) = 1 and N(1) = 0; (N2) N is decreasing: if x ≤ y then
N(y) ≤ N(x).

A fuzzy negation N is said to be strong if: ∀x ∈ [0, 1] : N(N(x)) = x (the invo-
lutive property). The standard negation or the Zadeh’s negation is given by NZ(x) =
1− x.

Definition 2. [3, 15] A function A : [0, 1]n → [0, 1] is said to be an n-ary aggregation
operator if the following conditions hold:

(A1) A is increasing 6 in each argument: for each i ∈
{1, . . . , n}, if xi ≤ y, then
A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn);

(A2) A satisfies the Boundary conditions: A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

Definition 3. A t-norm is a bivariate aggregation function T : [0, 1]2 → [0, 1] satisfy-
ing the following properties, for all x, y, z ∈ [0, 1]:

(T1) Commutativity: T (x, y) = T (y, x);
(T2) Associativity: T (x, T (y, z)) = T (T (x, y), z);
(T3) Boundary condition: T (x, 1) = x.

Example of t-norms are the Łukasiewicz and Yager t-norms, defined, respectively,
by TŁ(x, y) = max{0, x+y−1} and TY (x, y) = max{0, 1−

√
(1− x)2 + (1− y)2.

An element x ∈]0, 1] is a non-trivial zero divisor of T if there exists y ∈]0, 1]
such that T (x, y) = 0. A t-norm is positive if and only if it has no non-trivial zero
divisors, i.e., if T (x, y) = 0 then either x = 0 or y = 0. Examples of continuous and
positive t-norms are the minimum and the product t-norms, defined, respectively, by
TM (x, y) = min{x, y} and TP (x, y) = xy.

The main concern of this paper is the concept of overlap function [1, 4, 7–9, 12].

Definition 4. [4] An overlap function is a bivariate function O : [0, 1]2 → [0, 1] satis-
fying the following properties, for all x, y ∈ [0, 1]:

(O1) O is commutative: O(x, y) = O(y, x);
(O2) O(x, y) = 0 if and only if x = 0 or y = 0;
(O3) O(x, y) = 1 if and only if x = y = 1;
(O4) O is increasing;
(O5) O is continuous.

3 Introducing t-Overlap Functions

This section generalizes the concept of overlap functions by changing the condition
(O2) of Definition 4, namely, the property that requires that, for all x, y ∈ [0, 1] and
overlap function O : [0, 1]2 → [0, 1] it holds that O(x, y) = 0 ⇔ xy = 0. In our
generalization, we replace the product operation by a t-norm T : [0, 1]2 → [0, 1].

6 In this paper, a increasing (decreasing) function does not need to be strictly increasing (de-
creasing).



Definition 5. Let T : [0, 1]2 → [0, 1] be a t-norm. A function OT : [0, 1]2 → [0, 1] is
said to be a t-overlap function with respect to T if the following conditions hold:

(OT 1) OT (x, y) = OT (y, x),
(OT 2) OT (x, y) = 0⇔ T (x, y) = 0,
(OT 3) OT (x, y) = 1⇔ x = y = 1,
(OT 4) OT is increasing,
(OT 5) OT is continuous.

Remark 1. Observe that, considering a fuzzy rule-based system, this generalization al-
lows to discard bad rules when computing the compatibility degree. This is due to the
fact that the membership degrees of the input with the antecedents would be low for
bad rules and, consequently, t-overlap functions may return 0 instead of a low value,
which can mislead the final prediction. Accordingly, we have maintained the third con-
dition, since, intuitively, it is not interesting to give the same value to all the rules whose
membership degrees are high, since it may imply a decrease in the predictive power.

Remark 2. Notice that the proposed generalization enlarge the use of overlap function.
For example, consider the overlap function O =

√
xy√

xy+(1−xy) , which only becomes
zero in the case where x = 0 or y = 0, by condition (O2), which means that overlap
functions are t-overlap functions with respect to t-norms without zero divisors. Our defi-
nition overcomes this limitation by changing the condition (O2) by the condition(OT 2),
where T is a t-norm that can have zero divisors. See, for example, the t-overlap function
with respect to the Łukasiewicz t-norm TŁ given by:

OTŁ(x, y) =
max{0, (1 + λ)(x+ y − 1)− λxy}

max{0, (1 + λ)(x+ y − 1)− λxy}+min{1, 1− (1 + λ)(x+ y − 1) + λxy} .

Example 1. LetG : [0, 1]2 → [0, 1] be defined byG(x, y) = (min{x, y})p, with p > 0,
and consider the Łukasiewicz and Yager t-norms, TŁ(x, y) = max{0, x + y − 1} and
TY (x, y) = max{0, 1−

√
(1− x)2 + (1− y)2. Then, the functions OGTŁ

, O2
TŁ
, OTY :

[0, 1]2 → [0, 1], defined by OGTŁ
(x, y) = G(x, y)TŁ(x, y), O

2
TŁ

(x, y) = 2
TŁ − 1 and

OTY (x, y) = 2TY − 1 are t-overlap functions whit respect to TŁ and TY .

The previous example may be generalized as the following results:

Remark 3. Let T : [0, 1]2 → [0, 1] be a continuous t-norm. Then T is a t-overlap
function with respect to itself.

Proposition 1. Let O : [0, 1]2 → [0, 1] be an overlap function and T : [0, 1]2 → [0, 1]
be a continuous t-norm. Then the function OT : [0, 1]2 → [0, 1], defined, for all x, y ∈
[0, 1], by OT (x, y) = O(x, y)T (x, y) is a t-overlap function with respect to T .

Proof. (OT 1) It is immediate.
(OT 2) For all x, y ∈ [0, 1], it follows that:

OT (x, y) = 0⇔ O(x, y)T (x, y) = 0

⇔ O(x, y) = 0 ∨ T (x, y) = 0

⇔ x = 0 ∨ y = 0 ∨ T (x, y) = 0 by (O2)
⇔ T (x, y) = 0.



(OT 3) For all x, y ∈ [0, 1], it follows that:

OT (x, y) = 1⇔ O(x, y)T (x, y) = 1

⇔ O(x, y) = 1 ∧ T (x, y) = 1

⇔ x = 1 ∧ y = 1 ∧ T (x, y) = 1 by (O3)
⇔ T (x, y) = 1.

(OT 4− 5) Since both O and T are continuous and increasing, then the results are
immediate.

ut

The previous theorem may be generalized using a special t-norm T ′ instead of the
product between the overlap function O and the t-norm T with which the function OT
is a t-overlap with respect to T .

Proposition 2. Let O : [0, 1]2 → [0, 1] be an overlap function and T : [0, 1]2 →
[0, 1] be a continuous t-norm. For any continuous and positive t-norm T ′ : [0, 1]2 →
[0, 1], one has that the function OT : [0, 1]2 → [0, 1], defined, for all x, y ∈ [0, 1], by
OT (x, y) = T ′(O(x, y), T (x, y)), is a t-overlap function with respect to T .

Proof. (OT 1) It is immediate.
(OT 2) For all x, y ∈ [0, 1], it follows that:

OT (x, y) = 0⇔ T ′(O(x, y), T (x, y)) = 0

⇔ O(x, y) = 0 ∨ T (x, y) = 0 Since T ′ is positive
⇔ x = 0 ∨ y = 0 ∨ T (x, y) = 0 by (O2)
⇔ T (x, y) = 0.

(OT 3) For all x, y ∈ [0, 1], it follows that:

OT (x, y)(x, y) = 1⇔ T ′(O(x, y), T (x, y)) = 1

⇔ O(x, y) = 1 ∨ T (x, y) = 1

⇔ x = y = 1 ∨ T (x, y) = 1

⇔ T (x, y) = 1.

(OT 4− 5) It is immediate.
ut

Note that if a t-norm T is positive, then OT is an overlap function.

Theorem 1. Let O1
T , . . . , O

n
T : [0, 1]2 → [0, 1] be t-overlap functions with respect to

a t-norm T : [0, 1]2 → [0, 1] and ω1, . . . , ωn ∈ [0, 1] be weights with
∑n
i=1 ωi = 1.

Then the function OT : [0, 1]2 → [0, 1], defined, for all x, y ∈ [0, 1], by OT (x, y) =∑n
i=1 ωiO

i
T (x, y) is also a t-overlap function with respect to T .

Proof. (OT 1) It is immediate.



(OT 2) For all x, y ∈ [0, 1], it follows that:

OT (x, y) = 0⇔
n∑
i=1

ωiO
i
T (x, y) = 0

⇔ ωiO
i
T (x, y) = 0,∀i = 1, . . . , n.

Since
∑n
i=1 ωi = 1, then there exists k ∈ {0, . . . , n} such that ωk 6= 0, and, thus

OkT (x, y) = 0. By (OT 2), it holds that T (x, y) = 0. The reciprocal is analogous.
(OT 3) For all x, y ∈ [0, 1], it follows that:

OT (x, y) = 1⇔
n∑
i=1

ωiO
i
T (x, y) = 1 =

n∑
i=1

ωi.

One has that
∑n
i=1 ωiO

i
T (x, y) −

∑n
i=1 ωi = 0, i.e.,

∑n
i=1 ωi(O

i
T (x, y) − 1) =

0. This means that, for all i = 1, . . . , n, it holds that ωiOiT (x, y) −
∑n
i=1 ωi =

0. However, since
∑n
i=1 ωi 6= 0, there exist k ∈ {1, . . . , n} such that ωk 6= 0.

Thus, one has that OkT (x, y) = 1, and, by (OT 3), it follows that x = y = 1. The
reciprocal is analogous.

(OT 4− 5) It is immediate.
ut

Let T : [0, 1]2 → [0, 1] be a t-norm and denote KT = {(x, y) ∈ [0, 1]2 | T (x, y) =
0}. Obviously, any t-overlap function with respect to a t-norm T coincides with an
overlap function if and only if KT = {(x, y) ∈ [0, 1]2 | x = 0 ∨ y = 0}.

Denote by Θ the set of all t-overlap functions with respect of any t-norm T . The
following result is immediate.

Theorem 2. The ordered set S = (Θ,≤Θ) is a lattice, where ≤Θ is defined, for all
OT1

, OT2
∈ Θ, by OT1

≤Θ OT2
if and only if OT1

(x, y) ≤ OT2
(x, y), for all (x, y) ∈

[0, 1]2.

Theorem 3. Let OTi be a t-overlap function with respect to the t-norms T1, . . . , Tn :
[0, 1]2 → [0, 1] and let ω1, . . . , ωn ∈ [0, 1] be weights such that

∑n
i=1 ωi = 1. If

T =
∑n
i=1 ωiTi : [0, 1]

2 → [0, 1] is a t-norm, then OTi is a t-overlap function with
respect to T .

Proof. (OT 1) It is immediate.
(OT 2) (⇒) Since OTi is a t-overlap function with respect to the t-norms T1, . . . , Tn,

then, by (OT 2), for all i = 1, . . . , n, it holds that whenever OTi(x, y) = 0 then
Ti(x, y) = 0, for all x, y ∈ [0, 1]. Then, it follows that

∑n
i=1 ωiTi(x, y) = 0.

(⇐) If
∑n
i=1 ωiTi(x, y) = 0, then, since

∑n
i=1 ωi 6= 0, there exists k = 1, . . . , n

such that ωk 6= 0. It follows that Tk(x, y) = 0. Since OTi is a t-overlap function
with respect to the t-norm Tk, one has that OTi(x, y) = 0. It follows that OTi is a
t-overlap function with respect to the t-norm T .

(OT 3− 5) It is immediate.
ut



Theorem 4. Let O1, O2 : [0, 1]2 → [0, 1] be t-overlap functions with respect to the
t-norms T1, T2 : [0, 1]2 → [0, 1], respectively. Consider ω1, ω2 ∈ [0, 1] such that ω1 +
ω2 = 1. If T ′[0, 1]2 → [0, 1] is a positive t-norm then

OT (x, y) = ω1O1(x, y) + ω2O2(x, y)

is a t-overlap function with respect to the t-norm T : [0, 1]2 → [0, 1], defined, for all
x, y ∈ [0, 1], by T (x, y) = T ′(T1(x, y), T2(x, y)).

Proof. (OT 1) It is immediate.
(OT 2) For all x, y ∈ [0, 1], it follows that:

OT (x, y) = 0⇔ ω1O1(x, y) + ω2O2(x, y) = 0⇔ ω1O1(x, y) = ω2O2(x, y) = 0

⇔ ω1 = 0 ∨O1(x, y) = 0 and ω2 = 0 ∨O2(x, y) = 0.

Now suppose that ω1 6= 0. Then one has that O1(x, y) = 0 and, by (OT 2), it
holds that T1(x, y) = 0. It follows that T (x, y) = T ′(T1(x, y), T2(x, y)) = 0. The
reciprocal is analogous, taking into account that T ′ is a positive t-norm.

(OT 3) For all x, y ∈ [0, 1], it follows that:

OT (x, y) = 1⇔ ω1O1(x, y) + ω2O2(x, y) = 1

⇔ ω1O1(x, y) + ω2O2(x, y) = ω1 + ω2

⇔ ω1(1−O1(x, y)) + ω2(1−O2(x, y)) = 0

⇔ ω1 = 0 ∨ 1−O1(x, y) = 0 and O2 = 0 ∨ 1−O2(x, y) = 0

⇔ ω1 = 0 ∨O1(x, y) = 1 and O2 = 0 ∨O2(x, y) = 1

⇔ ω1 = 0 ∨ x = y = 1 and ω2 = 0 ∨ x = y = 1.

Now, since ω1 + ω2 = 1 it holds that x = y = 1. The reciprocal is immediate.
(OT 4− 5) It is immediate.

ut

Theorem 5. The function OT : [0, 1]2 → [0, 1] is a t-overlap function with respect to a
t-norm T : [0, 1]2 → [0, 1] if and only if

OT (x, y) =
f(x,y)

f(x,y)+h(x,y) ,

for all x, y ∈ [0, 1] and some functions f, h : [0, 1]2 → [0, 1] such that

(i) f and h are commutative.
(ii) f is increasing and h is decreasing.
(iii) f(x, y) = 0 if and only if T (x, y) = 0.
(iv) h(x, y) = 0 if and only if x = y = 1.
(v) f and h are continuous.

Proof. (⇒) Suppose that OT is a T-overlap function with respect to a t-norm T . Con-
sider that OT (x, y) = f(x, y) and h(x, y) = 1 − f(x, y). It is immediate that (i) f
and h are symmetric, (ii) f is increasing and h is decreasing and (v) f and h are con-
tinuous. (iii) Now, by (OT 2), f(x, y) = 0 if and only if T (x, y) = 0. (iv) Similarly,
by (OT 3), h(x, y) = 0 if and only if f(x, y) = 1 if and only if x = y = 1. Since
f(x, y) + h(x, y) = 1 then



OT (x, y) = f(x, y) = f(x,y)
1 = f(x,y)

f(x,y)+h(x,y) .

(⇐) Consider two functions f, g : [0, 1]2 → [0, 1] satisfying the conditions (i)-(v), and
the function OT : [0, 1]2 → [0, 1], defined, for all x, y ∈ [0, 1], by

OT (x, y) =
f(x,y)

f(x,y)+h(x,y) .

(OT 1) It is immediate.
(OT 2) For all x, y ∈ [0, 1], it follows that:

OT (x, y) = 0⇔ f(x, y)

f(x, y) + h(x, y)
= 0⇔ f(x, y) = 0⇔ T (x, y) = 0.

(OT 3) For all x, y ∈ [0, 1], it follows that:

O(x, y) = 1⇔ f(x, y)

f(x, y) + h(x, y)
= 1⇔ f(x, y) = f(x, y) + h(x, y)

⇔ h(x, y) = 0⇔ x = y = 1.

(OT 4) Let x, y, z ∈ [0, 1] be such that x ≤ y, then f(x, z) ≤ f(y, z) and h(y, z) ≤
h(x, z). It follows that

f(x, z)h(y, z) ≤ f(y, z)h(x, z)⇒
f(x, z)h(y, z) + f(x, z)f(y, z) ≤ f(y, z)h(x, z) + f(x, z)f(y, z)⇒

f(x, z)(h(y, z) + f(y, z)) ≤ f(y, z)(h(x, z) + f(x, z))⇒
f(x, z)

h(x, z) + f(x, z)
≤ f(y, z)

h(y, z) + f(y, z)
⇒

O(x, z) ≤ O(y, z).

(OT 5) It is immediate.
ut

From the previous theorem, one may consider the particular case where the function
f is the t-norm T (with respect to the function OT is a t-overlap function), and the
function h is N(T ), where N : [0, 1]→ [0, 1] is a strong negation. It is immediate that:

Corollary 1. Let T be a continuous t-norm andN a strong negation. Then the function
OT : [0, 1]2 → [0, 1], defined, for all x, y ∈ [0, 1], by

OT (x, y) =
T (x,y)

T (x,y)+N(T (x,y))

is a t-overlap function.

Supported by the previous corollary, we give some examples of t-overlap functions
that are not overlap functions, considering continuous and positive t-norms.

Example 2. The following functions are some examples of associative t-overlap func-
tions that are not overlap functions, since the property (O2) does not hold:

(i) Consider the standard negation NZ(x) = 1 − x and the family of Lukasiewicz t-
norms TŁ(x, y) = max{0, (1+λ)(x+y−1)−λxy}, where λ ≥ −1. The function
O1 : [0, 1]2 → [0, 1], defined, for x, y ∈ [0, 1], by



O1(x, y) =
max{0,(1+λ)(x+y−1)−λxy}

max{0,(1+λ)(x+y−1)−λxy}+min{1,1−(1+λ)(x+y−1)+λxy}

is a t-overlap function with respect to TŁ.
(ii) Consider the Lukasiewicz t-norm TŁ(x, y) = max{0, x + y − 1} and the strong

negation N(x) =
√
1− x2. The function O2 : [0, 1]2 → [0, 1], defined, for all

x, y ∈ [0, 1], by

O2(x, y) =
max{0,(x+y−1)}

max{0,x+y−1}+min{1,
√

1−(x+y−1)2}
,

is a t-overlap function with respect to TŁ. Now, if one takes the strong negation
N(x) = 2

π arcsin[1− sin(π2x)], then the function O3 : [0, 1]2 → [0, 1], defined, for
all x, y ∈ [0, 1], by

O3(x, y) =
max{0,x+y−1)}

max{0,x+y−1}+ 2
π arcsin[π2 max{o,x+y−1}]

is a t-overlap function with respect to TŁ.
(iii) Consider the Yager t-norm TY (x, y) = max{0, 1 −

√
(1− x)2 + (1− y)2 and

the strong negation N(x) =
√
1− x2. The function O4 : [0, 1]2 → [0, 1], defined,

for all x, y ∈ [0, 1], by

O4(x, y) =
max{0,1−

√
(1−x)2+(1−y)2}

max{0,1−
√

(1−x)2+(1−y)2}+
√

1−max2{0,1−
√

(1−x)2+(1−y)2}

is a t-overlap function with respect to TY . Now, if one takes the strong negation
N(x) = 2

π arcsin(1 − sin(xπ2 )), then the function O5 : [0, 1]2 → [0, 1], defined,
for all x, y ∈ [0, 1], by
O5(x, y) =

max{0, 1−
√

(1− x)2 + (1− y)2}
max{0, 1−

√
(1− x)2 + (1− y)2}+ 2

π arcsin(1− sin(π2 max{0, 1−
√

(1− x)2 + (1− y)2}))

is a t-overlap function with respect to TY .

Corollary 2. Let OT : [0, 1]2 → [0, 1] be a t-overlap function with respect to a t-norm
T : [0, 1]2 → [0, 1] and h : [0, 1]2 → [0, 1] satisfying the conditions (1), (ii), (iv) and
(v) of Theorem 5. Then it holds that OT (x, x) = x, for some x ∈ [0, 1[ if and only if

f(x, x) =
x

1− x
h(x, x).

Proof. For x ∈ [0, 1[, it follows that:

OT (x, x) = x⇔ x =
f(x, x)

f(x, x) + h(x, x)
by Theorem 5

⇔ xf(x, x) + xh(x, x) = f(x, x)⇔ f(x, x) =
x

1− x
h(x, x).

ut

Given two t-norms T1, T2 : [0, 1]2 → [0, 1], define T1T2 : [0, 1]2 → [0, 1] by
T1T2(x, y) = T1(x, y)T2(x, y), for all [x, y] ∈ [0, 1].



Theorem 6. Let O : [0, 1]2 → [0, 1] be a overlap function, T1, T2 : [0, 1]2 → [0, 1]
be continuous t-norms such that T1, T2 : [0, 1]2 → [0, 1] is a t-norm. Then the function
OT : [0, 1]2 → [0, 1] defined, for all [x, y] ∈ [0, 1], byOT (x, y) = O(T1(x, y), T2(x, y)),
is a t-overlap function with respect to T1T2.

Proof. (OT 1) It is immediate.
(OT 2) For all [x, y] ∈ [0, 1], it follows that:

OT (x, y) = 0⇔ O(T1(x, y), T2(x, y)) = 0⇔ T1(x, y)T2(x, y) = 0

⇔ (T1T2)(x, y) = 0.

(OT 3 For all [x, y] ∈ [0, 1], it follows that:
OT (x, y) = 1⇔ O(T1(x, y), T2(x, y)) = 1⇔ T1(x, y) = T2(x, y) = 1

⇔ x = y = 1.

(OT 4− 5) It is immediate.
ut

Theorem 7. Let O1, O2 : [0, 1]2 → [0, 1] be t-overlap functions with respect to the
t-norms T1, T2 : [0, 1]2 → [0, 1], respectively, and M : [0, 1]2 → [0, 1] be a continuous
and positive function such that M(x, y) = 1 ⇔ x = y = 1. Then the function OT :
[0, 1]2 → [0, 1], defined, for all x, y ∈ [0, 1], by OT (x, y) =M(O1(x, y), O2(x, y)), is
a t-overlap function with respect to T1 or T2.

Proof. (OT 1) It is immediate.
(OT 2) For all [x, y] ∈ [0, 1], it follows that:

OT (x, y) = 0⇔M(O1(x, y), O2(x, y)) = 0⇔ O1(x, y) = 0 ∨O2(x, y) = 0

⇔ T1(x, y) = 0 ∨ T2(x, y) = 0.

(OT 3) For all [x, y] ∈ [0, 1], it follows that:
OT (x, y) = 1⇔M(O1(x, y), O2(x, y)) = 1⇔ O1(x, y) = O2(x, y) = 1

⇔ x = y = 1.

(OT 4− 5) It is immediate.
ut

4 Conclusion
In this work, we generalized the concept of overlap functions, by relaxing the require-
ment that “one of its inputs must be zero so that the overlap function is zero”. For that,
we considered overlap functions associated to positive t-norms, as the Luckasiewicz t-
norm. Likewise, a method for constructing t-overlap functions based on certain simple
conditions has been presented. Future work is concerned this generalization under an
interval-valued approach, as in [2, 5, 6].
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