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Abstract. Several fuzzy modeling techniques have been employed for
handling uncertainties in data. This study presents a comparative eval-
uation of a new class of interval type-2 fuzzy logic system (IT2FLS)
namely: interval type-2 intuitionistic fuzzy logic system (IT2IFLS) of
Takagi-Sugeno-Kang (TSK)-type with classical IT2FLS and its type-1
variant (IFLS). Simulations are conducted using a real-world gas com-
pression system (GCS) dataset. Study shows that the performance of
the proposed framework with membership functions (MFs) and non-
membership functions (NMFs) that are each intervals is superior to clas-
sical IT2FLS with only MFs (upper and lower) and IFLS with MFs and
NMFs that are not intervals in this problem domain.
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1 Introduction

A fuzzy set (FS) is a concept introduced by Zadeh [1] where elements are not
restricted to binary MFs of 0 or 1 but rather is a continuum in 0 and 1. However
due to the complexity and uncertainty in many applications, the ordinary FS
cannot handle or minimise the uncertainty in many applications because the
MF values are exactly defined. To cope with this problem, Zadeh [2] introduced
type-2 FS (T2FS) where the MFs are fuzzy with the actual membership grade
of an element assumed to lie within a closed interval of 0 and 1. Generally, the
definition of classical FSs, both type-1 and type-2 employ only the MFs to define
the two concepts: MF and NMF of an element to a set. For classical FSs, the
NMF (complement) is 1 minus the membership grade. This definition may not
really be the case in real life scenario as they may be some hesitation in the
definition of membership degree of an element to a set such that the NMF is not
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complementary to the MF and vice-versa.
Atanassov [3] introduced the concept of intuitionistic FS (IFS) with MF and

NMF separately defined such that none is complementary to the other. In the
literature, IFSs have been found to be one of the useful tools for dealing with
imprecise information [4]. The reader is referred to [5] for more details on IFS.
Similar to classical type-1 FSs, the MFs and NMFs of IFSs may not handle the
plethora of uncertainty that fraught many applications. The T2FS introduced
by Zadeh is a three dimensional structure which provides the extra degrees of
freedom needed to handle higher forms of uncertainty. For the generalised T2FS,
the third dimension is weighted differently which makes it complex and difficult
to use [6, 7]. The simpler and manageable version - interval type-2 FS (IT2FS) -
have values in the third dimension equal to 1 and this makes it easier for IT2FS
to be represented on a two dimensional plane. The IFSs and IT2FSs have been
widely and extensively adopted by researchers in uncertainty modeling in many
applications. For example, in Nguyen et al. [8], IT2 fuzzy C-mean (FCM) cluster-
ing using IFS is proposed. The authors show that the use of IFS with IT2FCM
led to improved clustering quality particularly in the presence of noise. In Naim
and Hagras [9, 10] and Naim et al. [11], IFS and IT2FS are combined to develop
a multi-criteria group decision making (MCGDM) system for the assessment of
post-graduate study, selection of appropriate lighting level in intelligent environ-
ment and evaluation of different techniques for the choice of illumination in a
shared environments respectively. The authors pointed out that the use of IFS
and IT2FS in a MCGDM system provided decisions that are closer to the group
decisions compared to some existing methods. However, in [9, 10, 11], only the
IT2FS MFs are utilised and the intuitionistic fuzzy (IF) indices are evaluated
on the primary MFs of the IT2FSs and no learning whatsoever is carried out on
these sets.

Recently, in Eyoh et al. [12], IFS is fused with IT2FS and an interval type-
2 intuitionistic FS (IT2IFS) is obtained with artificial neural network learning
capability. The uncertainties in IT2IFLS that utilises IT2IFS in the IF-THEN
rules are captured by the footprints of uncertainties (FOUs) of both MFs and
NMFs. The developed model in [12] is applied for non-linear system predic-
tion with encouraging results. The same authors in Eyoh et al. [13, 14] applied
the IT2IFLS framework for time series prediction. Results reveal that IT2IFLS
exhibits superior performance to many non-fuzzy and some fuzzy approaches.
The authors believe that the additional parameters provided by the NMFs give
IT2IFS more design degrees of freedom thus allowing it to minimise the effects
of uncertainties in many applications than the classical IT2FLS and IFLS.

Different learning methodologies have been proposed for the adaptation of the
parameters of fuzzy logic systems. The study reported here utilises the DEKF to
optimise the parameters of the models under investigation. The rest of the paper
is structured as follows: In Section 2, the definitions of IFS, T2IFS and IT2IFS
are given. The IT2IFLS-TSK model is formulated in Section 3 and parameter
update rules are derived in Section 4. We present our experimental set-up and
statistical evaluation and discussion in Sections 5 and 6 respectively, and con-
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clude in Section 7. Following are the definitions of some concepts underpinning
the proposed model.

1.1 Intuitionistic Fuzzy Set (IFS)

Definition 1. For any given finite set X, an IFS has the form:
A∗ = {(x, µA∗(x), νA∗(x)) : x ∈ X)}. where µA∗(x) : X → [0, 1] is the degree of
belonging of x in X and νA∗(x) : X → [0, 1] is the degree of non-belonging of
x ∈ X with 0 ≤ µA∗(x) + νA∗(x) ≤ 1 [3].

The IF-index, πA∗(x) = 1− (µA∗(x) + νA∗(x)).

1.2 Type-2 Intuitionistic Fuzzy Set (T2IFS)

Definition 2. A T2IFS is of the form: Ã∗ = {(x, u) , µÃ∗ (x, u) , νÃ∗ (x, u) | ∀x ∈ X,
∀u ∈ Jµx ,∀u ∈ Jνx} where µÃ∗(x, u) is the degree of belonging and νÃ∗(x, u) is the
degree of non-belonging [12].

Jµx =
{

(x, u) : u ∈
[
µ
Ã∗ (x) , µÃ∗ (x)

]}
. (1)

Jνx = {(x, u) : u ∈ [νÃ∗ (x) , νÃ∗ (x)]} . (2)

in which 0 ≤ µÃ∗ (x, u) ≤ 1 and 0 ≤ νÃ∗ (x, u) ≤ 1, Jµx and Jνx represent the
support of the secondary MFs and NMFs on the third dimension [12].
The T2IFS Ã∗ can also be formulated as:

Ã∗ =

∫
x∈X

[∫
u∈Jµx

∫
u∈Jνx

{µÃ∗ (x, u) , νÃ∗ (x, u)}

]
/ (x, u) . (3)

for continuous universe of discourse (UoD). For discrete UoD, Ã∗ becomes

Ã∗ =
∑
x∈X

∑
u∈Jµx

∑
u∈Jνx

{µÃ∗ (x, u) , νÃ∗ (x, u)}

 / (x, u) . (4)

When µÃ∗(x, u) = 1, and νÃ∗(x, u) = 1, an interval type-2 intuitionistic FS
(IT2IFS) is obtained. The IF-indices utilised are defined as follows [12]:

πc(x) = max (0, (1− (µÃ∗(x) + νÃ∗(x)))) . (5)

πvar(x) = max (0, (1− (µÃ∗(x) + νÃ∗(x)))) . (6)

πvar(x) = max
(

0,
(

1−
(
µ
Ã∗(x) + νÃ∗(x)

)))
. (7)

Two footprints of uncertainties (FOUs) defined for IT2IFS are as follows [12]:

FOUµ

(
Ã∗
)

=
⋃
∀x∈X

[
µ
Ã∗(x), µ̄Ã∗(x)

]
. (8)

FOUν

(
Ã∗
)

=
⋃
∀x∈X

[νÃ∗(x), ν̄Ã∗(x)] . (9)

denoting MF and NMF FOUs respectively.
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2 Interval Type-2 Intuitionistic Fuzzy Logic System

The structure of T2FLS rule based system is exactly as that of the classical
T2FLS with components comprising of the intuitionistic fuzzifier, intuitionis-
tic rule base, intuitionistic inference engine and intuitionistic output processing
module.

2.1 Fuzzification

The fuzzification process maps the crisp input vector x ∈ X into an IT2IFS
Ã∗ thereby assigning to each element its MF and NMF degree in each IT2IFS
partition.
The IT2IFS is defined using a modified Gaussian function (see Fig. 1 and (10)
to (13)) [12]. The scaling and shifting allows for the degree of indeterminacy to
be embedded in the FOUs of IT2IFLS.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input

D
eg

re
es

 o
f M

F
 a

nd
 N

M
F

 

Upper NMF

Lower NMF

Upper MF

Lower MF

Fig. 1. A typical IT2IFS [12]

µik (xi) = exp

(
− (xi − cik)

2

2σ̄2
2,ik

)
∗ (1− πc,ik(xi)) . (10)

µik (xi) = exp

(
− (xi − cik)

2

2σ2
1,ik

)
∗ (1− πc,ik(xi)) . (11)

νik (xi) = (1− πvar,ik(xi))−

[
exp

(
− (xi − cik)

2

2σ̄2
1,ik

)
∗ (1− πc,ik(xi))] . (12)

νik (xi) =
(
1− πvar,ik(xi)

)
−

[
exp

(
− (xi − cik)

2

2σ2
2,ik

)
∗ (1− πc,ik(xi))] . (13)

where πc,ik is the IF-index of center and πvar,ik is the IF-index of variance [4].
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2.2 Rules

The IF-THEN rule formation of IT2IFLS follows the general fuzzy logic rule
syntax. For IT2IFLS-TSK, the antecedent are IT2IFSs while the consequent
parts are linear combinations of the inputs. A typical rule structure of IT2IFLS
is as shown in (14).

Rk : IF x1 is Ã∗1k and · · · and xn is Ã∗nk THEN yk =

n∑
i=1

wikxi+bk . (14)

For IT2IFLS, the rules are defined for MFs in (15) and NMFs in (16) as follows:

Rµk : IF x1 is Ã∗
µ

1k and · · · and xn is Ã∗
µ

nk THEN yµk =

n∑
i=1

wµikxi + bµk .

(15)

Rνk : IF x1 is Ã∗
ν

1k and · · · and xn is Ã∗
ν

nk THEN yνk =

n∑
i=1

wνikxi + bνk .

(16)
where Ã∗1k,Ã∗2k, · · · ,Ã∗ik,· · · ,Ã∗nk are IT2IFS, yµk and yνk are the MFs and
NMFs outputs of the kth rule, w′s and b’s are consequent parameters.

2.3 Inference

This study adopts a TSK-inferencing system where the inputs are IT2IFS and
the output of each IF-THEN rule is a linear function of the inputs, otherwise
known as A2-C0 TSK-fuzzy inferencing. The inference engine of IT2IFLS is
defined in (17) [12, 13].

y =
(1− β)

∑M
k=1

(
fµk + fµk

)
yµk∑M

k=1 f
µ
k +

∑M
k=1 f

µ
k

+
β
∑M
k=1

(
fνk + fνk

)
yνk∑M

k=1 f
ν
k +

∑M
k=1 f

ν
k

. (17)

and utilises the ”prod” t-norm to specify the firing strength such that:

fµk (x) =

n∏
i=1

µ
Ã∗

ik
(xi), fµk (x) =

n∏
i=1

µÃ∗
ik

(xi) .

(18)

fνk (x) =

n∏
i=1

νÃ∗
ik

(xi), fνk (x) =

n∏
i=1

νÃ∗
ik

(xi) .

(19)

where f
k

and fk are the lower and upper firing strengths defined for both MFs

and NMFs respectively, yµk and yνk are the outputs of the kth rule corresponding
to MF and NMF respectively. The final output of IT2IFLS-TSK is a weighted
average of each IF-THEN rule’s output. The parameter β (0 ≤ β ≤ 1) weighs
the contribution of the MF and NMF values in the final output.
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3 Parameter Update

In this section, the parameter update rules for IT2IFLS using DEKF is derived.
For comparison, the DEKF is also used to update the parameters of classical
IT2FLS and IFLS.

3.1 Extended Kalman filter Parameter Update Rule

The purpose of IT2IFLS prediction is to obtain an accurate an estimate as possi-
ble between input-output relationship of a system. Let the output of IT2IFLS be
y = f(X, θ). The parameter X denotes the inputs into the system and θ is used
to represent the unknown parameters of the model. The generic state equation
of the non-linear system can be expressed as:

θt+1 = f(θt) + ωt . (20)

yt = h(θt) + υt . (21)

where θ is the system’s state, ω is the process noise with zero mean and covari-
ance Q and υ is the measurement noise with zero mean and covariance R. The
process and measurement noise are assumed to be Gaussian and uncorrelated
and:

E(θ0) = θ0, E[(θ0 − θ0)(θ0 − θ0)T ] = P0,

E(ωt) = 0, E(ωtω
T
l ) = Qδtl,

E(υt) = 0, E(υtυ
T
l ) = Rδtl .

(22)

where E(.) is the expectation operator and δtl is the Kronecker delta. Using
Taylor expansion, the state is estimated as:

f(θt) = f(θ̂t) + Ft(θt − θ̂t) +H.O.T .

h(θt) = h(θ̂t) +Ht(θt − θ̂t) +H.O.T .
(23)

where:

Ft =
∂f(θ)

∂θ

∣∣∣∣
θ=θ̂t

and HT
t =

∂h(θ)

∂θ

∣∣∣∣
θ=θ̂t

.

and H.O.T is the higher order term. The system in (23) can be approximated
as in (24) when the H.O.Ts are neglected.

θt+1 = Ftθt + ωt + φt .

yt+1 = HT
t θt + υt + ϕt .

(24)

where:
φt = f(θ̂t)− Ftθ̂t .

ϕt = h(θ̂t)−Htθ̂t .
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The order of the computational cost of EKF is AB2, where A is the output
dimension of the system and B is the number of parameters. An IT2IFLS with n
inputs and M rules has a total of 6n+2M(n+1) parameters. The computational
cost of EKF for IT2IFLS is 36n2 + 4M2(n2 + 2n+ 1) + 24nM(n+ 1).

3.2 Decoupled Extended Kalman Filter - DEKF

In using the DEKF to learn the parameters of IT2IFLS, the antecedent and the
consequent parameters for both MFs and NMFs are grouped into two vectors
namely: antecedent (θ1) and consequent (θ2) parameter vectors. The generic
parameter update rules for the parameters in the ith group is expressed in (25)
to (27):

θit = θit−1 +Ki
t [yt − h(θt−1)] . (25)

Ki
t = P itH

i
t [(H

i
t)
TP itH

i
t +Ri]−1 . (26)

P it+1 = P it −Ki
tP

i
t (H

i
t)
T +Qi . (27)

where K is the Kalman gain, P is the covariance matrix of the state estima-
tion error. The unknown parameters in the antecedent are gathered into the
antecedent’s parameter vector and represented as (28):

θ1 = [c11, c21, · · · , cnN , σ11, σ21, · · · , σnN ]T . (28)

where n is the number of inputs and N is the number of linguistic terms. The
parameters of the consequent are grouped into the consequent’s parameter vector
and represented as (29):

θ2 = [w11, w21, · · · , wMn, b1, b2, · · · , bM ]T . (29)

where M is the number of rules, with the MF and NMFs having separate Kalman
parameters. The derivative matrix, H, is defined as:

H1 =
∂y

∂θ1
and H2 =

∂y

∂θ2
. (30)

(31)

for antecedent and consequent parameters respectively. The update rule for the
antecedent and consequent parameters then follow the same recursive procedures
in (25) to (27). Using the DEKF algorithm reduces the computational burden
of EKF in the order 36n2 + 4M2(n2 + 2n+ 1) such that the computational cost
of DEKF to standard EKF is in the ratio:

36n2 + 4M2(n2 + 2n+ 1)

36n2 + 4M2(n2 + 2n+ 1) + 24nM(n+ 1)
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In the next sections, the IT2IFLS is used for the prediction of a real-world
dataset - GCS dataset of a gas turbine obtained from a Nigerian-based power
plant. The purpose of this simulation is to statistically analyse the performance
of IT2IFLS with other existing FLSs such as the classical IT2FLS and the type-1
IFLS. The DEKF learning approach is adopted for these experimental analyses
because of its theoretical strength, faster convergence and its ability at finding
good solutions [15].

4 Experimental Set-up

The GCS data is a complex dataset consisting of different operational conditions
of a gas plant. The GCS data consist of 825 data points and modeled as a time
series using input generating format: [y(t− 3), y(t− 2), y(t− 1)] with y(t) as the
output. The inputs are normalised to lie between small range of [0,1], so that
larger input values do not overshadow the smaller values, thereby leading to
poor prediction and learning using the embedded neural network architecture.
For each run of the experiments, the data are randomly sampled and split into
70% training and 30% testing set with each data point having equal chance of
being chosen for training and testing. For a clear and objective discussion and
evaluation of the three models of IT2IFLS, IT2FLS and IFLS, the Kalman filter
parameters R, Q and P for both MFs and NMFs are initially set as 40, 0.01I32
and 1.0I32 respectively for all experiments with 100 epochs for each run. The
simulation is conducted for 30 runs. This allows for objective evaluation of the
performance of the different models. Figures 2 and 3 show a single GCS input
partition before and after training using IT2IFLS.
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Fig. 2. GCS x1 before training with
IT2IFLS-DEKF
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Fig. 3. GCS x1 after training with
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5 Statistical Evaluation and Discussion

In this section, statistical evaluation is conducted to test the hypothesis of this
research. The main interest is to understand the effectiveness of integrating NMF
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and IF-indices into the classical IT2FLS (IT2IFLS). The second is to investigate
the performance of the proposed framework of IT2IFLS with its type-1 counter-
part. Statistical comparison is also made between IFLS and IT2FLS. To explore
these analyses, three experiments are conducted. In each case, the performance
metric is the root mean squared error (RMSE). Figure 1 shows the box-plot of
the three models using their test RMSEs. The following hypotheses form the
basis of evaluation:

IT2IFLS IT2FLS IFLS
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Fig. 4. Box and whisker plot showing the performance of IT2IFLS, IT2FLS and IFLS
trained with DEKF.

– Hypothesis 1: With the integration of NMFs and IF-indices into the classical
IT2FLS, the new model of IT2IFLS is able to model uncertainty in many
applications than the classical IT2FLS that do not incorporate NMFs and
IF-indices.

– Hypothesis 2: With MFs and NMFs that are intervals, the new model of
IT2IFLS is able to model uncertainty in many applications than its type-1
variant with MFs and NMFs that are not represented as intervals values.

– Hypothesis 3: With MFs and NMFs of IFLS, the model is able to model un-
certainty in many applications than the classical IT2FLS with only interval
MFs (lower and upper).

Statistical significant differences (one-tailed) between pairs of models are
carried out using Wilcoxon signed rank test (α level = 0.05), which is a non-
parametric statistical hypothesis test for evaluating pairs of models. The test
RMSEs averaged over 30 runs for the different fuzzy models considered here are
presented in Table 1.
Hypothesis 1: The first set of experiments is focused on assessing the ability of
IT2IFLS framework to provide good estimates than the classical IT2FLS. The
null and the alternative hypotheses are:

– H0: There is no significant difference in the uncertainty modeling employing
IT2FLS that incorporates NMFs and IF-indices and those that do not.
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Table 1. Gas Compression System Prediction

Models Training RMSE Test RMSE

IT2FLS-TSK 0.1504 0.1425

IFLS-TSK 0.1496 0.1423

IT2IFLS-TSK 0.1202 0.1199

– H1: There is a significant difference in the uncertainty modeling of IT2FLS
that incorporates NMFs and IF-indices and those that do not.

Table 2. Wilcoxon’s test: IT2IFLS vs IT2FLS on test data RMSE

Models Hypothesis (α = 0.05) p-value

IT2IFLS vs IT2FLS Reject H0 0.0173

For the first hypothesis, the statistical analysis in Table 2 shows that there is
a significant difference between the uncertainty modeling using the two FLSs
(p-value = 0.0173). Based on this premise, the null hypothesis is rejected with
a conclusion that there is a significant difference between the performance of
IT2IFLS compared to the classical IT2FLS. As observed in the box-and-whisker
plot, IT2IFLS has a smaller error value on average. This observation demon-
strates the advantages of NMFs and IF-indices as an integral part of IT2FLS
(IT2IFLS).
Hypothesis 2: The second set of experiments is focused on assessing the ability
of IT2IFLS framework to provide good estimates than its type-1 counterpart.
The null and the alternative hypotheses are:

– H0: There is no significant difference in uncertainty modeling of IT2IFLS
with MFs and NMFs that are each intervals and IFLS with MFs and NMFs
that are not intervals.

– H1: There is a significant difference in uncertainty modeling of IT2IFLS with
MFs and NMFs that are each intervals and IFLS with MFs and NMFs that
are not intervals.

Table 3. Wilcoxon’s test: IT2IFLS vs IFLS on test data RMSE

Models Hypothesis (α = 0.05) p-value

IT2IFLS vs IFLS Reject H0 0.0091

For the second hypothesis, the statistical analysis in Table 3 suggests that there
is a significant difference between the uncertainty modeling using IT2IFLS com-
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pared to IFLS (p-value = 0.0091). With this p-value, the null hypothesis is re-
jected. It is concluded that there is a significant difference between the IT2IFLS
and IFLS. This shows that IT2IFLSs with MFs and NMFs that are intervals
may be more appropriate for uncertainty modeling than those with MFs and
NMFs representations that are not intervals.
Hypothesis 3: The third set of experiments is to investigate the statistical sig-
nificance between IT2FLS and IFLS. The null and the alternative hypotheses
are:

– H0: There is no significant difference in the performance of IT2FLS utilising
upper and lower MFs of IT2FS and IFLS utilising MFs and NMFs.

– H1: There is a significant difference in the performance of IT2FLS utilising
upper and lower MFs of IT2FS and IFLS utilising MFs and NMFs.

Table 4. Wilcoxon’s test: IT2FLS vs IFLS using test data RMSE

Models Hypothesis (α = 0.05) p-value

IT2FLS vs IFLS Fail to reject H0 0.7336

Table 4 shows the results of statistical comparison between classical IT2FLS and
type-1 IFLS. The Wilcoxon’s signed rank test at 0.05 significance level shows that
there is no significant difference (p-value = 0.7336) existing between classical
IT2FLS and IFLS, therefore, we fail to reject the null hypothesis.

6 Conclusion

In this study, the DEKF is used to optimise the parameters of IT2IFLS, classical
IT2FLS and type-1 IFLS. Specifically, the following conclusions are supported:

• IT2IFLS captures more information and enables hesitation in the FS de-
scription.

• There is significant performance improvements of IT2IFLS over IT2FLS and
IFLS.

• The performance of the classical IT2FLS is comparable to that of IFLS.
• The IT2IFLS with MF and NMF that are intervals can minimise the effects

of uncertainties in most applications.

In the future, we intend to conduct more experiments using bench mark data
sets, other fuzzy modeling functions such as triangular and trapezoidal functions
and other learning algorithms.
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