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Abstract. A tendency in the theory of aggregation functions is the gen-
eralization of the monotonicity condition. In this work, we examine the
latest developments in terms of different generalizations. In particular,
we discuss strengthened ordered directional monotonicity, its relation to
other types of monotonicity, such as directional and ordered directional
monotonicity and the main properties of the class of functions that are
strengthened ordered directionally monotone. We also study some con-
struction methods for such functions and provide a characterization of
usual monotonicity in terms of these notions of monotonicity.
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1 Introduction

The problem of finding a single representative number for a set of values
is common to every field that handles real data. There exist several works in
the literature addressing this issue prior to the introduction of the theory of
aggregation functions per se. That is the case, for example, of triangular norms
[13], copulas [I7] and Choquet integrals [7]. According to [14], the inception of the
theory of aggregation functions as an independent theory dates back to 1988 [10]
and it was not until 2001 that the first monograph on the subject came out [6]. An
aggregation function, in the classical sense, is a function A : [0,1]™ — [0, 1] such
that A(0) =0, A(1) =1 and it is increasing with respect to every argument (the
standard partial order on [0,1]™). Since its appearence, the aggregation theory



has been extended to new domains beside real numbers [I8] and aggregation
functions have been applied in diverse real world problems [S/9/T5].

In addition to the extension of aggregation operators to be able to deal with
more general scales than numbers, such as lattices, a relevant trend in the the-
ory of aggregation functions is the relaxation of the monotonicity condition.
Monotonicity with respect to every argument may lead to exclude from the
framework of aggregation functions mappings that are valid to provide a repre-
sentative value from a set of numerical values. Examples of such functions are
the mode operator, or the Lehmer mean [3], among others (see [2]).

On the account of broadening the framework of functions that are sound
for fusing data, some generalizations of monotonicity have emerged [I]. One of
the most significant forms of monotonicity is that of directional monotonicity,
introduced in [5], which, similar to the concept of directional derivatives, deals
with monotonicity along a ray in R™. This type of monotonicity generalizes the
formerly presented notion of weak monotonicity [I9], which is the particular case
of restricting directional monotonicity to the ray (1,1,...,1). The fact that the
ray of increasingness could be any vector in R™ permits to select functions that
adjust better to particular problems or applications. Nevertheless, that direction
is the same for all the points in the domain.

Recently, influenced by the concept of OWA operator [20], the concept of
ordered directional (OD) monotonicity has been introduced []. The direction
of increasingness or decreasingness for ordered directionally monotone function
varies depending on the point of the domain that is being considered. Specifi-
cally, the ray of increasingness (decreasingness) varies according to the relative
size of the inputs, as long as a fixed comonotonicity requirement is satisfied.
Directionally and ordered directionally monotone functions have yielded good
results in classification problems [12] and in the field of image processing [16].

In this work, we discuss the notion of strengthened ordered directional (SOD)
monotonicity [IT], a concept based on ordered directional monotonicity, for
whose definition no comonotonicity condition is required. This relaxation makes
the family of strengthened ordered directionally monotone functions a proper
subset of the class of ordered directionally monotone functions, meaning that if
a function is strengthened ordered directionally monotone, then it is ordered di-
rectionally monotone, but not contrarily. Furthermore, we address some relevant
properties of the three forms of monotonicity, i.e., directional, ordered directional
and strengthened ordered directional monotonicity, and we point out some links
and differences among them. We also expose some construction methods for
functions that are monotone in each of the discussed senses and we characterize
classical monotonicity with regard to its various generalizations.

This work is organized as follows. We start the next section with some re-
marks about the notation that is used throughout the paper, as well as recalling
some preliminary notions and basic definitions. In Section [3]| we present the def-
inition of the latest generalization of monotonicity in the literature regarding
directional monotonicity; the concept of strengthened ordered directional mono-
tonicity. We also study the class of SOD functions and we expose a scheme of the



points that trivially satisfy the conditions for each of the types of monotonicity.
In Section [] we discuss some relevant properties of the different notions of mono-
tonicity, as well as the relations that exist among them. In Section [5| we present
various construction methods for functions that are monotone in each sense. We
finish this work with a characterization of the usual condition of monotonicity
in terms of the different generalizations, in Section [5] followed by some brief
concluding remarks.

2 Preliminaries

Let n € N, with n > 2. We refer as x = (21,...,x,) € [0,1]™ to points in the
unit hypercube and as 7 = (r1,...,m) € R™ to vectors connoting a direction
in R™.

The notion of monotonicity is highly related to the concept of order. In this
work we consider the usual partial order of [0,1]", i.e., given x,y € [0,1]",we
say x <y if x; <y, for every i € {1,...,n}.

Like in the case of OD monotone functions, the points of the domain whose
components are decreasingly ordered play an important role in the framework
of SOD monotone functions. We use the following notation for the set of these
points: Let H C R", then we set H>y = {(h1,...,hn) € H | hy > -+ > hy}
and H<), H(sy, H(<), H=) accordingly.

In order to impose that some points’ components are decreasingly ordered,
it is common to use permutations. Let S,, be the set of all permutations of n
elements, o € S, and x € [0,1]", we denote by x, the tuple (Z,(1),--;ZTe(n))-
Note that for x, y € R”, it holds that x € [0,1]" if and only if x, € [0, 1]™.
Moreover, for x,y € [0,1]" and 0 € S, it holds that (x +y), = X, + Yo, and
XY = X, Yo, where x -y denotes the scalar product given by x-y = >""" | zy;.

The notion of directional monotonicity, or monotonicity along a ray v, was
introduced in [5], generalizing the notion of monotonicity for functions from
[0,1]™ to [0, 1].

Definition 1. Let F: [0,1]" — [0,1] and 7 € R™, we say that F is T -increasing
(decreasing), if for all ¢ > 0 and x € [0,1]" such that x + ¢ 7 € [0,1]", it holds
that F(x +¢7) > F(x) (F(x+¢7) < F(x)).

Directional monotonicity generalizes weak monotonicity, introduced in [19],
which is the particular case of considering as direction the vector T} =(1,...,1).

OD monotonicity was presented in [4]. The direction of increasingness of
functions that are OD 7—increasing varies in terms of the relative sizes of the
input.

Definition 2. Let F: [0,1]" — [0,1] and 7 € R, we say that F is ordered
directionally, OD, 7-inc7“easz'ng (decreasing), if for all ¢ > 0, 0 € S,, and x €
[0,1]", it holds that if X4, Xo + cT € |0, 1J{s, then F(x + T o) > F(x)
(F(x+ T y-1) < F(x)).



3 The class of strengthened ordered directionally
monotone functions

The concept of SOD monotonicity has been more recently introduced in [I1].
It is based on OD monotonicity, in fact the difference between both concepts is
that SOD monotone functions are not asked to satisfy the condition of comono-
tonicity between x, and x, + 7.

Definition 3. Let F: [0,1]" — [0,1] and 7 € R", we say that F is strengthened
ordered directionally, SOD, ?—z’ncreasing (decreasing), if for all ¢ > 0, 0 € S,
and x € [0,1]", it holds that if x, € [0,1]%s) and x, + 7 € [0,1]", then
F(x+c¢Ty1) > F(x) (F(x+¢7 ,-1) < F(x)).

If a function is simultaneously (OD, SOD) 7 -increasing and (OD, SOD)
7 -decreasing, we say that the function is (OD, SOD) 7 -constant.

Remark 1. The notation (OD, SOD) 7 -increasing refers to directional (7-
increasing), ordered directional (OD 7—increasing) and strengthened ordered
directional (SOD 7 -increasing) monotonicity.

The case of 7 = 6> is trivial for the three notions of monotonicity. In fact,
every function is (OD, SOD) T-constant.

An OD monotone function F is required to satisfy the inequality F(x +
¢7 ,-1) > F(x) for points that satisfy the comonotonicity condition x,, X, +
T € [0, 1]?>), whereas a SOD monotone function F is required to satisfy the
same inequality for points that satisfy that condition and for points that do not.
Therefore, SOD 7 -increasingness implies OD 7—increasingness. However, the
converse statement does not hold.

One of the particularities of each notion of monotonicity is the set of points
that satisfy the monotonicity conditions trivially. On the one hand, in the case
of directional monotonicity, i.e., ?—increasing functions, the points that trivially
satisfy the conditions are those x € [0,1]" such that x+¢7 & [0,1]" for all ¢ > 0.
On the other hand, for a function F that is OD (SOD) 7 -increasing, such set
of points is formed by those x € [0,1]" such that if o € S, with x, € [0,1]{%,),
then x, + ¢7 & [0, 11 (%o + ¢ & [0,1]") for all ¢ > 0.

For the case n = 2, we show in Table [1| the relation of directions (given
in terms of the angle that they form with respect to the non-negative horizon-
tal axis) and points that, for each notion of monotonicity, trivially satisfy the
conditions.

4 Properties and connections of the different notions of
monotonicity

We use the following notation to refer to the set of vectors for which a func-
tion is increasing (and constant) according to the three different notions of mono-



Table 1. Directions (in terms of their angle o w.r.t. the non-negative horizontal axis)
and points that trivially satisfy the monotonicity conditions for directional, ordered
directional and strengthened ordered directional monotonicity

Directions | D monotonicity OD monotonicity SOD monotonicity
7 such that|x € [0,1]? such that| x € [0,1]? such that x € [0, 1] such that
a=0 r1 =1
- rx1=1lorxs =1
0<O‘§Z r1=lorxzs =1
rzy=loraxs =1
™ s
T <a<gy rz1=1loray =1
or r1 = I2
a=13 22 =1 n=z2=1
Z<a<wm|zi=0o0rz=1 L1 = T2 ri=ax3=1lorzi=x2=0
Q=T z1 =0 x1 =22 =0
T<a<iT z1=0o0rz2 =0
Y1 2z1=00ra=0 101”231:2372

x1=0o0rxzs =0

x1=0o0rxzs=0
a == o =10

1 =0o0rax; =1 x1=0o0rx; =1
377(<Oé<271' x1=1lorze =0 !

orxo =0oraxs =1 orxs =0o0razy =1

tonicity with which we deal in this paper. Let F': [0,1]™ — [0, 1], thus we set

DY(F)={7 € R" | F is 7-increasing },
C(F)={7 eR" | F is 7-constant },

and the remaining sets of directions D(T)D(F)7 DgOD (F), Cop(F) and Csop(F)
accordingly.
We derive from the definition the first relation among these sets of directions.

Proposition 1. Let F': [0,1]" — [0,1]. Then the following items hold:
(i) C(F) € DY(F), Cop(F) € Dpp(F) and Csop(F) € Dyop(F);
(ii) Csop(F') € Cop(F);

(iii) Dop(F) € Dpp(F).

The following two results are also obtained from the definition of the different
notions of monotonicity.

Proposition 2. Let F': [0,1]" — [0,1] and 7 € R™ be such that 7, > ... > T,,.
Then F is SOD 7-increasing (decreasing) if and only if F is OD 7-mcreasing
(decreasing). Moreover, F is SOD 7 -constant if and only if F is OD 7 -constant.



Proposition 3. Let F: [0,1]" — [0,1] be a (OD, SOD) 7 -increasing function
and let p: [0,1] — [0,1] be an increasing (decreasing) function. Then, the com-
position p o F: [0,1]" — [0,1] is (OD, SOD) 7 -increasing (decreasing).

The vectors’ magnitude has no influence whatsoever in the qualification of
such vectors as directions of (OD, SOD) increasingness. Therefore, it is possible
to limit the set of directions to normalized vectors, i.e., vectors of norm 1, as it
is shown in the next Proposition.

Proposition 4. Let F: [0,1]" — [0,1] and k > 0. Then, F is (OD, SOD)
T -increasing (decreasing) if and only if F is (OD, SOD) (k7 )-increasing (de-
creasing).

The following result reveals a difference between the classes of directionally
and ordered directionally monotone functions and the class of strengthened or-
dered directionally monotone functions.

Proposition 5. Let F: [0,1]" — [0,1]. F is (OD) 7 -increasing if and only if
(OD) F is (—7)-decreasing.

Proof. Case of directional monotonicity:
Let F be 7-increasing and let x € [0,1]” and ¢ > 0 such that x — ¢7 € [0,1]".
Set y =x — ¢7. Thus,

F(x+¢(=7)) = F(y) < F(y + ¢7) = F(x),

hence F is (—7)-decreasing. Similarly, one can show the converse statement.
Case of ordered directional monotonicity:

Let F be OD 7 -increasing and let x € [0,1], ¢ > 0 and o € S, such that

x, and x, 4 ¢(—=7) € [0, {5y Set y = x + ¢(=7)y-1. Thus, it holds that

Yo =Xo +¢(—=7) €0, 1]fs) and yo + T =x, €0, 1]%,- Now, since F'is OD

7-increasing, it holds that

F(x+¢(=T)o1) = F(y) < Fy +¢7 51) = F(x),
therefore F' is OD (—7)—decreasing. The converse is analogous.

In [I1] it is shown that Proposition [5| does not generally hold for SOD mono-
tonicity, which indicates that whereas the results for (ordered) directional in-
creasingness can be readily extended to (ordered) directional decreasingness, it
is not generally the case for the results of SOD monotonicity. This fact is patent
in the upcoming results on duality (Section [5).

The next three theorems concern the directions of (OD, SOD) increasingness
for functions with some known directions of (OD, SOD) increasingness. The first
one, regarding directional monotonicity can be found in [B]; the second, about
ordered directional monotonicity, in [4]; and the third, regarding strengthened
ordered directional monotonicity, in [I1].



Theorem 1 ([5]). Let 7,5 € R" and a,b > 0, with a+b > 0. Let x € [0,1]",
¢ >0, and assume that if X and x + c(a™ + b5 ) € [0,1]", then either x + ca ™
orx+cbs €[0,1)". Then, if a function F : [0,1]" — [0,1] is both T -increasing
and § -increasing, then F is also (a7 + b5)-increasing.

Theorem 2 ([4]). Let 7,5 € R" and a,b > 0, with a+b > 0. Let x € [0,1]",
¢>0,0 €S8, and assume that if X, and Xy +c(a™ +b75) € [0, 1]{), then either
x+caT orx+4chs €0, 1J{s)- Then, if a function F : [0,1]" — [0, 1] is both OD
7—mc7“easmg and OD ?—mcreasing, then F is also OD (a? + b?)—mcreasmg,

Theorem 3 ([11]). Let 7,5 € R" and a,b > 0, with a+b > 0. Let x € [0,1]",
¢>0,0 €S, and assume that if x, € [0,1] and x, + cla™ +b3) €0,1]",
then either x+caT orx+cbs € [0,1]". Then, if a function F : [0,1]" — [0,1] is
both SOD 7 -increasing and SOD 8 -increasing, then F is also SOD (a7+b s)-
mcreasing.

Therefore if a function F is (OD, SOD) increasing in two directions 7 and
&, under the assumptions of the preceding theorems, it is also (OD, SOD)
increasing in the direction resulting from a positive linear combination of 7 and

5.

5 Construction methods

In this Section we show how to construct (ordered, strengthened ordered)
directionally monotone functions from functions that have the same type of
monotonicity. First, we present some results that establish the relation of a
function and its dual according to these generalizations of monotonicity.

Proposition 6. Let F: [0,1]" — [0,1] and F°: [0,1]" — [0,1] be given by
F¢(x) = 1 — F(x). Let 7 € R™. Then, F is (OD, SOD) 7 -increasing if and
only if F¢ is (OD, SOD) 7 -decreasing.

Proof. Case of directional monotonicity:

Let ¢ > 0 and x, x + ¢7 € [0,1]", then F(x) < F(x + ¢7) if and only if
Fe(x)=1—F(x) >1—F(x+¢7) = Fé(x+¢7). The cases of OD and SOD
monotonicity are straightforward.

As a consequence, the fact that (F'°)¢ = F yields the following result.

Corollary 1. Let F': [0,1]" — [0,1] and F°: [0,1]™ — [0,1] be given by F*°(x) =
1— F(x). Let 7 € R"™. Then, F is (OD, SOD) T -constant if and only if both
F and F€ are (OD, SOD) T -increasing. Additionally, the following equalities
hold:

(1) C(F) = C(F°);

(i) Cop(F) = Cop(F°);
(ii) Csop(F) = Csop(F°).



Under the conditions of Proposition@ it is clear that F is (OD) 7-increasing
if and only if F° is (OD) (=7 )-increasing. However, that statement is not gen-
erally so for SOD monotonicity.

Proposition [6] and the next result provide the relation of a function and its
dual in terms of the directions for which each is (ordered, strengthened ordered)
directionally monotone.

Proposition 7. Let F : [0,1]" — [0,1], G: [0,1]" — [0,1], defined by G(x) =
F(1—x), and 7 € R". Let 7‘1 (rny...,r1). Then

(i) F is 7 -increasing if and only if G is (—7)—increa5ing; and
(ii) F is OD (SOD) 7 -increasing if and only if G is OD (SOD) (=7)¢-

ncreasing.

Proof. (i) It is straightforward.

(ii) Case of ordered directional monotonicity:
Let F be OD 7 -increasing and let x € [0,1]". Let o € S,, and ¢ > 0 such
that x, € [0,1]{) and x, + o(=7)4elo, 1%,y
Sety =1—xand 7 € S, such that 7(i) = o(n—i+1) for allze{l, ,n}.
Thus, one can verify that 771(i) = n — o7 1(i) + 1, and that (7 d)o. 1=
7 .—1. Besides, we have that y, € [0, 1]ts) and y- + ¢ €0, 1]%,- Now,
since F' is OD 7 increasing, it holds that

Gxte(=7"),.)=F(y+c )2 Fy) = G(x),

therefore G is OD (—77) %increasing.
d

The converse is straight since — (—?d =7.

Similarly, one can show the case of strengthened ordered directional mono-

tonicity.

Recall that given a function F: [0,1]™ — [0, 1], we can define its dual F¢ by
Fix)=1-F(1 —x).

Corollary 2. Let F : [0,1]" — [0,1] and F¢: [0,1]" — [0, 1] be its dual function.
Then, for 7 e R™, it holds that

(i) F is - increasing if and only if F? is - -increasing;
(i) F is OD T -increasing if and only if F% is OD 7d-mc7“easmg,
(iii) F is SOD 7 -increasing if and only if F? is SOD (=7 )%-decreasing.

At this point, we expose how a(n) (ordered, strengthened ordered) direction-
ally monotone function can be constructed from a set of n functions with the
same type of monotonicity.

Theorem 4. Let 7 € R" and F: [0,1]" — [0,1], 1 < i < m, be m (OD, SOD)
T -increasing functions. Let H : [0,1]™ — [0,1] be an aggregation function. Then
the function H (Fy,...,Fy):[0,1]" — [0,1], given by H (Fy,...,Fy) (x) =
H(F\(x),...,Fy(x)), is (OD, SOD) 7 -increasing.

In particular, the convex combination of m (OD, SOD) directionally mono-
tone functions is a function with the same kind of monotonicity.



6 Characterization of monotonicity in terms of its
different generalizations

The following theorem gives a characterization of the usual condition of in-
creasingness in terms of the different forms of monotonicity discussed in this
paper. This result has acquired its present form along with the introduction of
the different notions of monotonicity. In [5], one can find the proof of the equiv-
alence of the first two items. the third item was added in [4], and one can find
its current presentation in [IT].

Theorem 5 ([I1]). Let F: [0,1]" — [0,1] and (€1,..., € ) be the canonical
basis of R™. The following are equivalent:

(i) F is increasing;

(ii) F is € ;-increasing for every i € {1,...,n};
(iii) F is OD € ;-increasing for every i € {1,...,n};
(iv) F is SOD € -increasing for every i € {1,...,n}.

As a consequence, we have another characterization of usual monotonicity, in
terms of vectors for which all the components are positive instead of canonical
vectors.

Corollary 3. Let F: [0,1]" — [0,1]. The following are equivalent:

(i) F is increasing;
(ii) F is OD 7 — increasing for every 7 € (RT)";
(iii) F is SOD 7 — increasing for every 7 € (R1)™.

Another interesting result is the characterization of weak monotonicity in
terms of the other generalizations of monotonicity. Weak monotonicity is a par-
ticular case of directional monotonicity which only considers the vector 1
(1,...,1) as a direction.

Theorem 6. Let F': [0,1]™ — [0,1]. The following are equivalent:

(i) F is weakly increasing;

(ii) F is 1 -increasing;
(iii) F is OD 1 -increasing;

(iv) F is SOD ?—increasing.

Proof. .and are equlvalent by the definition of weak monotonicity and
Proposition [2] I ylelds that (fiii) and (fiv]) are also equivalent.

Let us show that i) and 1 D are equlvalent Assume that F' is 1 1ncreab1ng and
let x € [0, 1] o€ S and ¢ > 0 such that x, € [0 1]{5 and x, +cl € [0, 1]%,).

Since F is 1 -increasing, it holds that F(x + ¢ T o-1)=F(x+c¢ T ) > F(x).
The converse implication is analogous.



7 Conclusions

We have presented the concept of strengthened ordered directional mono-
tonicity, the latest generalization of monotonicity in the literature. We have also
discussed some of the main properties and the links among the different state-
of-the-art weaker forms of monotonicity, namely, weak monotonicity, directional
monotonicity, ordered directional monotonicity and strengthened ordered direc-
tional monotonicity. Moreover, we have highlighted some construction methods
for classes of functions that are monotone according to the discussed types of
monotonicity and we have provided a characterization of the usual condition
of monotonicity in terms of directional, ordered directional and strengthened
ordered directional monotonicity.
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