Skip to main content

A Novel Uncertainty Quantification Method for Efficient Global Optimization

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications (IPMU 2018)

Abstract

For most regression models, their overall accuracy can be estimated with help of various error measures. However, in some applications it is important to provide not only point predictions, but also to estimate the “uncertainty” of the prediction, e.g., in terms of confidence intervals, variances, or interquartile ranges. There are very few statistical modeling techniques able to achieve this. For instance, the Kriging/Gaussian Process method is equipped with a theoretical mean squared error. In this paper we address this problem by introducing a heuristic method to estimate the uncertainty of the prediction, based on the error information from the k-nearest neighbours. This heuristic, called the k-NN uncertainty measure, is computationally much cheaper than other approaches (e.g., bootstrapping) and can be applied regardless of the underlying regression model. To validate and demonstrate the usefulness of the proposed heuristic, it is combined with various models and plugged into the well-known Efficient Global Optimization algorithm (EGO). Results demonstrate that using different models with the proposed heuristic can improve the convergence of EGO significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breiman, L.: Random Forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  2. Den Hertog, D., Kleijnen, J.P., Siem, A.: The correct kriging variance estimated by bootstrapping. J. Oper. Res. Soc. 57(4), 400–409 (2006)

    Article  Google Scholar 

  3. Domingos, P.: A unified bias-variance decomposition. In: Proceedings of 17th International Conference on Machine Learning, pp. 231–238. Morgan Kaufmann, Stanford CA (2000)

    Google Scholar 

  4. England, P., Verrall, R.: Analytic and bootstrap estimates of prediction errors in claims reserving. Insur. Math. Econ. 25(3), 281–293 (1999)

    MATH  Google Scholar 

  5. Fortin, F., Michel, F., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize optimization. In: Tenne, Y., Goh, C.-K. (eds.) Computational Intelligence in Expensive Optimization Problems. ALO, vol. 2, pp. 131–162. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-10701-6_6

    Chapter  Google Scholar 

  7. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  8. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  9. Krige, D.G.: A statistical approach to some basic mine valuation problems on the witwatersrand. J. Chem. Metall. Mining Soc. S. Afr. 52(6), 119–139 (1951)

    Google Scholar 

  10. Rasmussen, C.E.: Gaussian Processes in Machine Learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 63–71. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_4

    Chapter  Google Scholar 

  11. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. Adaptative computation and machine learning series, University Press Group Limited (2006). http://books.google.nl/books?id=vWtwQgAACAAJ

  12. Slaney, M., Casey, M.: Locality-sensitive hashing for finding nearest neighbors [lecture notes]. IEEE Signal Process. Mag. 25(2), 128–131 (2008)

    Article  Google Scholar 

  13. Stine, R.A.: Bootstrap prediction intervals for regression. J. Am. Stat. Assoc. 80(392), 1026–1031 (1985)

    Article  MathSciNet  Google Scholar 

  14. Wang, H., Emmerich, M., Back, T.: Balancing risk and expected gain in kriging-based global optimization. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 719–727. IEEE (2016)

    Google Scholar 

  15. Yamamoto, J.K.: An alternative measure of the reliability of ordinary kriging estimates. Math. Geol. 32(4), 489–509 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The authors acknowledge support by NWO (Netherlands Organisation for Scientific Research) PROMIMOOC project (project number: 650.002.001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bas van Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Stein, B., Wang, H., Kowalczyk, W., Bäck, T. (2018). A Novel Uncertainty Quantification Method for Efficient Global Optimization. In: Medina, J., Ojeda-Aciego, M., Verdegay, J., Perfilieva, I., Bouchon-Meunier, B., Yager, R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications. IPMU 2018. Communications in Computer and Information Science, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-91479-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91479-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91478-7

  • Online ISBN: 978-3-319-91479-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics