
A Situational Approach for the Definition and Tailoring
of a Data-Driven Software Evolution Method

Xavier Franch1, Jolita Ralyté2, Anna Perini3, Alberto Abelló1, David Ameller1, Jesús
Gorroñogoitia4, Sergi Nadal1, Marc Oriol1, Norbert Seyff5, Alberto Siena6, Angelo Susi4

1Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
{aabello, franch, dameller, snadal, moriol}@essi.upc.edu

2 University of Geneva, Switzerland
jolita.ralyte@unige.ch

3 Fondazione Bruno Kessler (FBK), Trento, Italy
{perini, susi}@fbk.eu
4 ATOS, Madrid, Spain

jesus.gorronogoitia@atos.net
5 University of Applied Sciences Northwestern Switzerland (FHNW)

norbert.seyff@fhnw.ch
6 Delta Informatica SpA, Trento, Italy

alberto.siena@gmail.com

Abstract. Evolution is a cornerstone activity in the software life cycle. Success-
ful evolution heavily depends on the selection of the right features to be included
in the next release. Such selection is difficult, and companies often report bad
experiences about user acceptance. To overcome this challenge, there is an in-
creasing number of approaches that propose intensive use of data to drive evolu-
tion. This trend has motivated the SUPERSEDE method, which proposes the col-
lection and analysis of user feedback and monitoring data as the baseline to elicit
and prioritize requirements, which are then used to plan the next release. How-
ever, every company may be interested in tailoring this method depending on
factors like project size, scope, privacy issues, etc. In order to provide a system-
atic approach, we propose the use of Situational Method Engineering to describe
SUPERSEDE and guide its tailoring to a particular context.

Keywords: software evolution, situational method engineering, software process.

1 Introduction

Software evolution aims at keeping software systems of any kind aligned with users’
needs, which are influenced by individual, social, economic, and technological
changes. That part of software engineering is receiving more and more attention since
software has become a pervasive and key element in modern society [1][2].

Basic principles and processes of software evolution [3] have been revisited in the
light of the high availability of data, reflecting the variety of modern software, and of
efficient techniques to mine such data. Indeed, key knowledge to foster short and fre-

Franch, X. [et al.]. A situational approach for the definition and tailoring of a data-driven software evolution
method. A: International Conference on Advanced Information Systems Engineering. "Advanced Information
Systems Engineering: 30th International Conference, CAiSE 2018: Tallinn, Estonia, June 11-15, 2018:
proceedings". Berlín: Springer, 2018, p. 603-618. DOI 10.1007/978-3-319-91563-0_37

quent evolution cycles can be extracted from these data, which is both produced explic-
itly by users (i.e. user feedback), and resulting from monitoring the context in which
the software is executed, as well as the software itself at runtime [1].

The SUPERSEDE H2020 project (www.supersede.eu) enables a data-driven soft-
ware evolution process, by offering a set of tools that can be flexibly combined to sup-
port an iterative and incremental development process that fits specific needs of com-
panies and projects. The consortium includes three companies, SIEMENS, ATOS and
SEnerCon, which are playing a main role in the understanding of the key insights of
data-driven software evolution and that allow to evaluate project results in contexts
which vary regarding, among others: (i) the number and heterogeneity of end-users,
ranging from about 10 app developers in the SIEMENS use case, to millions of Olym-
pic game spectators in ATOS; ii) the variety of deployment technology, ranging from
mobile devices to desktop computers; iii) the type of user feedback, for instance user
forums or issue tracking systems; iv) the size and type of the organization, e.g. big and
distributed company, which tends to adopt a structured, certified software development
process, vs. small company, which aims at using a simplified agile process.

One of the outcomes of the SUPERSEDE project is the formulation of a method.
The SUPERSEDE method drives the data-driven evolution process in a systematic
way. Therefore, it needs to reconcile generality to accommodate such different types of
companies (and others that potentially may be interested) and customisability, as to
allow the method to be effectively adopted by a company.

The research goal described in this paper is to provide a systematic definition of the
SUPERSEDE method for data-driven software evolution. We aim at SUPERSEDE act-
ing as a reference method that can be tailored to different situations. Therefore, we
adopt Situational Method Engineering (SME) [4] as engineering approach to design the
method as a composition of reusable components called method chunks. The research
questions that we address in relation to this type of evolution are:

RQ1. What are the constituent parts of method chunks?
RQ2. What are the most fundamental method chunks for SUPERSEDE evolution?
RQ3. What are the criteria whose combination allows expressing the context in

which these method chunks apply?
RQ4. How can the different method chunks be combined in order to create a cus-

tomization of the SUPERSEDE method tailored to a particular context?
The rest of the paper is organized as follows. Section 2 presents the research method.

Section 3 provides the background. Sections 4 to 7 are the core of the paper, addressing
the four research questions. Finally, Section 8 presents conclusions and future work.

2 Research Context and Method

As commented in the introduction, the SUPERSEDE method is an engineering artefact
developed in the context of a project with the same name. The research method has
been somehow coordinated with the project timeline, so we find three milestones:
 Requirements gathering. The first milestone finished at the third month of the pro-

ject (July 2015), and resulted in the documentation of the requirements posed by

the three companies [5]. Requirements comprised as-is and to-be goal models, plus
the user stories emerging from this to-be model, all of them coming from work-
shops held at the companies’ site (see protocol in [5]).

 Elaboration of SUPERSEDE engineering artefacts (models, techniques and tools).
This second milestone was basically achieved at the end of the second year (April
2017), although the artefacts will be refined until the end of the project (April
2018). The elaboration and evaluation of these engineering artefacts has helped to
understand the intricacies of the elements to be integrated in the method.

 Formulation of the SUPERSEDE method for evolution. This third phase will be
active until the end of the project (April 2018) and the first tangible result is this
paper. The research method has consisted in the adoption of SME as scientific ap-
proach, and then the joint work of engineering artefacts providers under the coor-
dination of the SUPERSEDE scientific manager, the SME expert and the supervi-
sion of the SUPERSEDE project coordinator (first three authors). We used a shared
space to collaboratively elaborate the method components that will be outlined in
this paper. Regular meetings allowed the incremental synchronization of the
method components. Advances were systematically checked against the result of
the first milestone (requirements compiled in [5]).

3 Background

3.1 Situational Method Engineering

To formalise the SUPERSEDE method, we apply Situational Method Engineering
(SME) [4] principles and techniques. In SME, a method is viewed as a collection of
autonomous and interoperable method components that can be selected and assembled
in a way to satisfy the particular situation of the project at hand. The definition of
method components and their assembly techniques vary form one SME approach to
another [4]), but the main objective stays the same: to make the method knowledge
modular and reusable for the construction and/or adaptation of situation-specific meth-
ods. Most of the assembly techniques support method construction from scratch based
on the identified situational context and requirements, other deal with incremental or-
ganization’s method adaptation or even method family construction.

In our work, we adopt and adapt the assembly-based and method chunk-based SME
approach [6][7] that supports situation-specific method construction and extension in
three steps: method requirements specification, method chunks selection and assembly
of the selected chunks (details given in Section 6 as needed). Method chunks are reus-
able method components. A method chunk includes a process (i.e., the guidelines pro-
vided by the method chunk) and its related product knowledge (i.e., the formalisation
of concepts and artefacts used and produced by the method chunk), and is specified by
the situation in which it can be applied (i.e., the required input artefacts) and the inten-
tion (i.e. the engineering goal) to be reached. Finally, the reuse context of the method
chunk is specified by a set of criteria that can be defined by using a taxonomy like the
reuse frame proposed in [8]. We apply an ad hoc method chunk definition approach [9]
that creates chunks from experts’ knowledge, based on a method chunk metamodel.

3.2 The SUPERSEDE Control Loop

The data-driven software evolution process of SUPERSEDE takes inspiration from the
autonomic control loop proposed for adaptive systems [10]. In SUPERSEDE, the con-
trol loop drives also software evolution, considering runtime and context data, and also
explicit user’s feedback, which the user might deliver upon having used the software.

The SUPERSEDE evolution process can be characterized by the following steps:

Collect. Multi-modal feedback gathering techniques allow users to express their feed-
back as textual comments, emoticons, rating and pictures. Flexible and configurable
monitoring components collect data from the context and system usage [11]. These
data, of different types, are stored in a big data storage, which maps data to a semantic
model at support of analysis [12].

Analyse. Different types of analysis are tool-supported, for instance, sentiment analysis
and extraction of feature requests and bug issues from user textual comments [13],
tweet mining to understand perceived quality of experience [14], and combined analy-
sis of end-user feedback and contextual data.

Decide. Focusing on software evolution tasks, automated reasoning techniques support
collaborative-decision making concerning, for instance, the identification of new re-
quirements, and their prioritization with respect to multiple criteria [15].

Act. Operationalizations of the decisions made are performed at this step. Selected fea-
tures are included in a release plan that takes into account available resources, deadlines
and organization priorities [16]. In addition, this step can be refined during the actual
implementation of the next release using a continuous release planning approach [17].

4 Method Chunks Metamodel for SUPERSEDE

In this section, we implement the concept of method chunk using a process-oriented
view. We base our work on existing software process modelling approaches, e.g. from
SPEM [18]. We build a metamodel articulating the subset of method elements that are
relevant for our purposes, namely activities, artefacts, roles and tools, each one yielding
a particular class in the metamodel. Then, we link method chunks to these classes.

4.1 SUPERSEDE Method Elements

Activities, artefacts, roles and tools are declared as specializations of an abstract class
MethodElement (see Fig. 1), which links every method element to one or more phases
of the SUPERSEDE loop, allowing also referencing to external concepts (e.g., a role
not needed by the method but referenced for the sake of completeness). We declare a
reflexive association class to express relationships among method elements that will be
specialized according to the different types of method elements whenever needed. All
method elements may present structural relationships (composition and specialization)
and each method element may present other particular types, as we detail below. The
existence of specialization brings also the concept of abstract method element.

Fig. 1. Elements of the SUPERSEDE method

Activities involve artefacts, tools and roles as described in the paragraphs below. Ex-
amples are Feedback Collection (linked to the Collect phase), Domain Ontology Defi-
nition (Analyse), Requirements Prioritization (Decide) and Release Planning (Act).
Structural relationships will be widely used; for instance, Requirements Prioritization
will be specialized into several sub-activities, each adopting a particular prioritization
strategy (e.g. Requirements Prioritization with AHP). In addition, activities may pre-
sent several types of temporal relationships; we adopt the proposal in [19] (richer than
SPEM when it comes to temporal relationships) with relationships like start-start, end-
start, exclusion, etc. (e.g. Release Planning cannot start before Requirements Prioriti-
zation has ended). In all the types of process elements, particular relationships are de-
fined by specializing the MEOtherRel class (see Fig. 2) and including the necessary
integrity constraints to enforce application to the right type, e.g. context ArtefactRel
inv: self.from->oclIsTypeOf(Activity) and self.to->oclIsTypeOf(Activity).

Artefacts represent informational resources that are produced, consumed or just used
as a working asset by an activity. Examples of artefacts are Feedback Document (pro-
duced as output by the Feedback Collection activity), Prioritized List of Requirements
(consumed as input by Release Planning) and AHP Matrix (used as working asset by
Requirements Prioritization with AHP). Artefacts are declared of a particular category.
Examples are: Model (e.g., Integration-Oriented Ontology), File (e.g., Monitoring
Data), DataSet (e.g., Project Schedule), Technology (e.g., Event Queue Endpoint) and
Expression (e.g., Complex Event Pattern). Categories may be decomposed into subcat-
egories at any level, for instance the Integration-Oriented Ontology belongs to the On-
tology subcategory in Model. Artefacts may be related to each other by structural rela-
tionships: aggregation (a List of Requirements as aggregation of Requirement) and spe-
cialization (Prioritized List of Requirements as specialization of List of Requirements).
Other relationships are possible, like constraint (e.g., a Release Plan constrains a Project
Schedule) or in-sync, meaning that changes in one artifact imply changes in another
(e.g., a Release Plan is in-sync with a Prioritized List of Requirements).

Roles are involved in activities either individually (e.g., Project Owner) or as a set
of person (e.g. Set of Developers), which is expressed with an association class (SetOf).

Tools are also used in activities, and they produce and consume artefacts and involve
roles. All these associations among the four type of process elements are not independ-
ent and some integrity constraints need to be declared (not included here for the sake
of brevity), e.g. context Activity inv: self.tool->includesAll(self.input.tool). Rela-
tionships among tools include connection (i,e., the result of one tool is used by another).

Again this association is related with others through integrity constraints, e.g. if the
RePlan tool (which produces a ReleasePlan) is connected to DMGame (which produces
a Prioritized List of Requirements), then the corresponding artefacts need to be in-sync.

Fig. 2. Detail of the SUPERSEDE method elements

4.2 Definition of Method Chunks

Every activity in SUPERSEDE begets a method chunk for the catalogue. We consider
that the description of the activity is the process part of the chunk, while the output of
such activity (i.e., the list of produced artefacts) is the product part. The situation of the
method chunk is given by the list of consumed artefacts, while the intention needs to
be explicitly given in the form of a goal. We also include the definition of the chunk
reuse context, which has been defined in [8] as a taxonomy of criteria (details are given
in Section 5.2); not all the criteria apply to every chunk. Finally, we extend the defini-
tion of method chunks with the Role and Tool attributes representing the corresponding
SUPERSEDE method elements and presented in the section above.

Fig. 3 shows the metamodel corresponding to the definition of method chunk. For
convenience, several derived roles are explicitly declared which can be computed from
roles appearing in Fig. 2. Also an associate association class is introduced as derived
from the corresponding activity-binding association class appearing in Fig. 1.

Fig. 3. Metamodel for method chunks

5 A Catalogue of Method Chunks for SUPERSEDE

In this section, we present the method chunks of the SUPERSEDE method that we have
developed following an ad-hoc approach and applying the method chunk metamodel
shown in Fig. 3. The context criteria play a crucial role in order to understand in which
situations the chunks are applicable; therefore, we start by detailing them.

5.1 Context Criteria applicable in the SUPERSEDE Method

As reported in Sections 3.1 and 4.2, context definition using SME is implemented by
the definition of context criteria that capture the factors that may influence in the selec-
tion of a method chunk for a particular instantiation of a method. In [8], a proposal is
given resulting in two relevant outcomes: 1) a 3-tier context structure in which a few
dimensions are decomposed into facets, and the facets into criteria; 2) a concrete pro-
posal of this context structure for the information systems field by 2006.

We have evolved the original proposal along two different directions: first, to reflect
the evolution on the systems engineering field in these last ten years; second, to fit it to
the SUPERSEDE context. Table 1 presents an excerpt of the result, focusing on those
criteria that are the most relevant for chunk selection. Criteria with an (*) are new,
mostly related to the data-driven approach adopted in the SUPERSEDE method. Range
of values adhere to the original proposal as much as possible; when subjective, value
assignment relies in expert criteria. Definition of the relevant criteria follow:
 User involvement. Related to the participation of the user in the chunk’s activity.

Relevant for activities related to feedback gathering (end-user involvement) but
also for technical ones (e.g., involvement of project managers in release planning).

 Resources required (evolution of Means shortage in [8]). To measure the com-
plexity of an activity with respect to personnel, infrastructure, etc. It affects espe-
cially activities that require code development (e.g., new monitoring components).

 Size (of the project). Size may impact activities whose feasibility depends on the
volume of work. A typical example would be prioritization techniques (e.g., AHP
comparison) that do not scale well with a large number of requirements.

 Privacy. Data-driven methods like SUPERSEDE may be highly constrained in the
case of serious privacy restrictions due to regulations, national laws, etc. Remark-
ably, tracing user’s behaviour may be particularly problematic.

 Scope. The scope of the project is relevant for different reasons. For instance, pro-
cessing feedback in worldwide application is problematic because this feedback
will be expressed in different languages making it difficult to process.

 Delivery strategy. The type of delivery impacts the later stages of evolution. Heav-
yweight prioritization techniques are cumbersome to use with frequent releases,
and classical release planning does not apply in continuous delivery contexts.

 Accuracy. The level of accuracy sought impacts on the selection and customization
of some techniques. For example, as we will see in Section 5.3, different prioriti-
zation techniques exhibit different accuracy levels.

 Type of end-user. Some users may be more educated than others from an IT con-
sumer perspective. It may be expected that a technician using the feedback gather-
ing mechanisms will be more accurate than a regular citizen.

 Motivation. In data-driven approaches, one strategy to get more data is to motivate
stakeholders to make them willing to participate actively. Not only end-users, but
also technical stakeholders may be involved using gamification techniques.

 Business domain. The business domain has several consequences. For instance, a
domain as smart cities is likely to produce tons of data from sensors that may help
eliciting requirements for next releases.

Table 1. Criteria for SUPERSEDE reuse context
Criterion Values

User involvement Low, Medium, High
Resources required Few, Fair, Much
Size Small, Medium, Large
Privacy (*) Very sensible, Sensible, Not sensible
Scope (*) Narrow, Wide, Multi-national
Delivery strategy Spare releases, Frequent releases, Continuous delivery
Accuracy (*) Low, Medium, High
Type of end-user (*) Citizen, Organization, Technician
Motivation (*) Low, Medium, High
Business domain Smart cities, Banking, …
System architecture (*) Desktop, Web-based, Mobile, …
Other assumptions (*) Minor, Fair, Major

 System architecture. The type of system architecture may impact on the complexity
of development. For instance, a monitoring tool for a web client may require less
effort to implement than the same instrument for mobile devices.

 Other assumptions. This criterion collects very specific conditions not belonging
to the previous types that need to be fulfilled in order to apply the chunk. They may
refer to the organization, adopted techniques, involved roles, etc.

5.2 A Catalogue of Method Chunks

We group the chunks in four categories. For all the categories, an initial chunk (Chu-
XXX-01) represents an initial deployment activity, which is sometimes decomposed
into subactivities. We omit these ones for brevity and present below the rest of chunks
and their relationships (see Fig. 4, where “e-s” stands for “end-start” relationships).

Chunks for collection. Data enters the SUPERSEDE process in two different ways.
First, end users may provide feedback using multi-modal mechanisms configured at
design time but also at runtime (although runtime issues, belonging to the self-adapta-
tion world, are not included in this paper) (Chu-Col-02: Feedback Collection). Second,
SUPERSEDE may monitor data without users’ explicit intervention (Chu-Col-03:
Monitoring Data Collection). There are three different types of monitored data: quality
of service, e.g. response time or availability (Chu-Col-03a: QoS Monitoring); monitor-
ing of social networks as Twitter (Chu-Col-03b: Social Network Monitoring); users’
usage monitoring (Chu-Col-03c: Usage Monitoring). The collected data are sent for
analysis following the SUPERSEDE loop.

Chunks for analysis. The SUPERSEDE data-driven approach relies on the conceptual-
ization of relevant ideas using a domain ontology defined by a data steward who medi-
ates with domain experts from the organization (Chu-Ana-02: Domain Ontology Defi-
nition). This ontology is used as the basis to define the event recognition rules (Chu-
Ana-03: Definition of Event Recognition Rules) that will capture needs for evolution
as well as the logical definition of data coming from feedback and monitoring (Chu-
Ana-04: Source Ontology Extraction). Collected data are processed in a last chunk

(Chu-Ana-05: Event and Pattern Detection) that applies the recognition rules to the
monitored data coming from Chu-Col-02 and Chu-Col-03 and produces the real needs
in the form of events and patterns to be decided upon in the next phase.

Chunks for decision. The alerts produced by Chu-Ana-5 are captured by a method
chunk that converts them into a list of requirements by means of collaborative editing
involving some selected requirements analysts (Chu-Dec-02: Requirements Collabora-
tive Editing). Since they have been produced independently, it may be the case that
requirements are overlapping or present other relationships, therefore a consolidation
of the list is made right away (Chu-Dec-03: Requirements Similarity Check). This con-
solidated list is then prioritized involving again the appropriate (or available) set of
stakeholders, to generate a prioritized list of requirements (Chu-Dec-04: Requirements
Prioritization) to be processed by the enactment method chunks. There are several strat-
egies for prioritizing requirements, and we present here three of them (Chu-Dec-04a,
Chu-Dec-04b and Chu-Dec-04c, using AHP, Gamified AHP and Genetic Algorithms,
respectively) which differ in some context criteria (see details in next subsection).

Chunks for enactment. The prioritized list of requirements is processed by a release
planning activity (Chu-Ena-02: Release Planning) that considers also the list of availa-
ble resources as input, and then produces a release plan.

Fig. 4. Relationships among SUPERSEDE evolution method chunks.

5.3 Example: Requirements Prioritization

For the sake of illustration, in this subsection we present a method chunk in detail,
namely the chunk for requirements prioritization, together with a summary of its three
current specializations. Requirements prioritization elaborates on a set of requirements
produced by a previous activity (Chu-Dec-03, which needs to be finished before start-
ing this one), and applies a set of weighted criteria to the information elicited from
several stakeholders, as to provide a list of prioritized requirements that serves as input
of the release planning activities. The SUPERSEDE method applies a gamification ap-
proach to prioritization, and a software tool called DMGame has been developed with
this purpose. Three types of stakeholders collaborate around this tool: a Supervisor su-
pervising the process, a Negotiator mediating in conflicts and the Decision Providers
that provide the necessary information for prioritizing. It is worth remarking that this
chunk has not context criteria applicable, meaning that it will be instantiated in any
possible situation. We expect this to be the usual situation in abstract method chunks,
leaving the criteria to the specializations as shown below.

We have built three different specializations for this abstract chunk until now. Two
of them are based on the AHP method, a third one on genetic algorithms. As a special-
ization, the information is inherited, thus only new information needs to be added.

Table 2. Method chunk for requirements prioritization (DM: Decision-Making)
Method chunk Content
Id Chu-Dec-04 [abstract]
Name Requirements Prioritization
Description This activity applies some selected technique in order to prioritize a list of requirements

involving several selected stakeholders
Context --
Situation  Set of (possibly interrelated) requirements

 Set of weighted criteria for the prioritization
Intention Prioritize requirements in a collaborative way
Process part Description of the activity – not included for brevity reasons
Product part LP: List of prioritized requirements
Roles  DM Supervisor: Organizes the full setting of the prioritization and supervises the

execution of the activity
 DM Negotiator: Facilitates the resolution of conflicts among decision providers
 Set of DM Decision Providers: Provides information useful for prioritization

Tools DMGame: decision-making web-based tool
Related chunks Chu-Dec-03 e-s Chu-Dec-04

In the case of these three specializations, only the context is concerned. The context
criteria that affect the selection of the specialization are shown in Table 3, with the
values that apply to every specialization. As a short summary, AHP-based methods
require more user involvement and thus more resources and also suffer from limitations
on the number of requirements to handle and from the assumptions needed to ensure
the accuracy of the method (which under these assumptions, is higher than the case of
genetic algorithms). Although not critical, there are some differences also in the type
of end-users and the delivery strategy. Concerning the two AHP methods, the main
difference among them is the higher motivation required for AHP.

Table 3. Context criteria for the three specializations of requirements prioritization.

Criterion AHP Gamified AHP Genetic
User involvement High High Medium
Resources required High High Medium
Project size Small Small Medium
Delivery strategy Frequent Frequent Continuous
Type of end-user Technician Technician Mixed
Accuracy High High Fair
Motivation High Medium Medium
Assumptions High High Low

6 Steps for adopting SUPERSEDE: A Situational Approach

It is not sufficient to transform a method into a collection of method chunks to make it
situational. We need to provide guidance for creating situation-specific SUPERSEDE
methods and allowing companies to tailor SUPERSEDE to their needs. For that, we
follow the generic three-step assembly process mentioned in Section 3, that we special-
ise for SUPERSEDE as follows (see Fig. 5). The formalization of the process is just
outlined; we cannot be developed in full due to space reasons.

Fig. 5. The three-step assembly process for the SUPERSEDE method tailoring.

Method requirements specification. The first step consists in defining functional and
contextual method requirements. Functional requirements capture a set of engineering
intentions that shall be fulfilled by the new method, while the contextual ones reflect
the situation of the project at hand in terms of assessed criteria from the reuse context
(see Table 1).

Identifying method requirements is not an easy task, and the SME literature only
provides very generic recommendations. For SUPERSEDE, we propose to use goal
models (represented as i* models [20]) as well as the domain knowledge to extract
method intentions and to assess context criteria. Indeed, a goal model interconnects the
main actors via goal dependencies and allows to derive method intentions from these
goals. We recommend, to construct first the as-is goal model reflecting the current sit-
uation of the organization. Then, the envisioned situation is designed as a to-be goal
model. For the to-be situation, we propose to link intentional elements to relevant con-
text information that allow identifying the most pertinent context criteria (e.g. user in-
volvement, privacy, delivery strategy, etc.) and, therefore, to derive not only method
intentions but also contextual requirements. The result of this step can be stated then as
a set of method requirements, namely contextual goals, P = {cgk} where every method
requirement is a pair cgk = (gk, Ck) of a goal and a set of conditions of the form
Ck = {(ci, vi)}, being ci a contextual criterion and vi a valid value for such criterion.
Note that Ck is a correspondence, allowing thus different values for a criterion.

Method chunks selection. In the second step, the method requirements are used to select
method chunks by matching them with method chunk components. The selection query
is the model P above which is compared against the catalogue (C, R) of method chunks,
C = {mck}, and their relationships, R = {(mc1i, mc2i, tr i)}, being mc1i and mc2i two
method chunks and tr i a type of relationship valid for them. For the selection process,
we consider only as relevant information of method chunks the intention and the con-
text, mck = (intk, contk), where contk has a similar structure than Ck above.

The matching among P and (C, R) can then be defined as a set of selected method
chunks SMC = {smck} where each smck = (intk, contk) fulfils several conditions:
1) the intention of the chunk satisfies some functional requirement gk of the query,
intkgk; 2) the context criteria of such functional requirements are satisfied by the
chunk, contkCk; 3) the intention of the chunk does not violate any other functional
requirement of the query, (intkgi). Please note that we do not consider relation-
ships in the step, but in the next one.

Ideally, the selected method chunks should cover all functional method requirements
and satisfy the context conditions. In case some functional requirement is not satisfied,
other method sources will be explored and formalised as method chunks to fill the gap
(see next step). On the contrary, if there are several method chunks satisfying the same
requirement (i.e. producing the same outputs in different ways) two possibilities are to
be considered: (1) selecting only one of these chunks, so the decision is taken by the
method engineer, or (2) postpone the decision to method enactment time (see next step).

Method chunks assembly. The last step consists in assembling the selected method
chunks into a coherent method. In the case of SUPERSEDE, that will mainly consist in
defining the order of chunks execution based on their input and output artefacts and
complete missing elements by ad hoc (eventually non-reusable) chunks.

Let M be the method corresponding to the SUPERSEDE instantiation under con-
struction, M = {mek}, being mek an instance of the MethodElement abstract class in-
troduced in Fig. 1. The rules to be applied are:
1. Connect the selected method chunks according to the relationships in R:
(m1, m2)SMC: (m1, m2, t)R  (m1, m2, t)M. We assume that this inclusion
in M takes care also of including and connecting artefacts, roles and tools as speci-
fied in the metamodel.

2. For those contextual goals {cgk} in P not covered by any method chunk in SMC,
explore other method sources and formalise them as method chunks to fill the gap,
applying the steps above as required.

3. For those contextual goals {cgk} in P covered by more than one method chunk in
SMC, providing arguments for the inclusion in M of either only one of them (if they
are exclusive) or a subset (if they are complementary).

7 Example

We present an illustrative example of the application of the SUPERSEDE method to
the SIEMENS project use case, which concerns the development of a smart-city plat-
form (Eco Sys. Platform). A department in SIEMENS is responsible to evolve the plat-
form, staying in continuous contact with app developers and utility devices producers,
which are the main platform users. Moreover, the platform usage is constantly moni-
tored to assess and predict mid- to long-term service level agreement compliance.

Method requirements specification. A SIEMENS department (partner in the
SUPERSEDE project) has adopted the SUPERSEDE method as shown in Fig. 6, which
depicts an excerpt of the i* to-be goal-oriented model for this use case (see [5] for the
full version). The Project Manager relies on the SUPERSEDE method for achieving key
goals that will allow improving the way the department evolves and maintains the Eco
Sys. Platform, in relation to feedback analysis, collaborative decision-making and release
planning. The Development Team relies on SUPERSEDE method to improve collabora-
tive decision-making. Eco Sys. Platform requires SUPERSEDE to ensure privacy compli-
ance. The goal diagram of SUPERSEDE actor models the goals that the method has been
delegated to achieve, which are refined using decomposition (just hinted in the figure).

The SIEMENS department can perform different, and possibly simultaneous pro-
jects. Each project is characterised by specific values of context properties (depicted as
a simple list of item in the rectangular shapes in Fig. 6) which need to be mapped to
contextual criteria (Table 1). For instance, in Project1, which concerns the implemen-
tation of a small set of new requirements to improve the platform reliability, privacy
compliance is not critical, while in Project2, which deal with a larger set of require-
ments related to the management of usage logs, privacy compliance is highly relevant.
The analysis of the resulting contextual goal model will lead to the identification of a
set of method requirements, such as cg1.1 = (G1.1, C1.1), where C1.1 = {(user involvement, high)
(size, small) (accuracy, high) (motivation, high)}, and cg1.2 = (G3, C1.2) where C1.2 = {(privacy, sensible)}
for the SUPERSEDE method configuration in Project1. Similarly, for Project2, method
requirements include cg2.1 = (G1.1, C2.1.), where C2.1 = {(user involvement, medium) (size, medium)
(accuracy, fair) (motivation, medium)}, and cg2.2 = (G3, C2.2) where C2.2 = {(privacy, very sensible)}.

Fig. 6. To-be contextual goal model with information of two projects (simplified example)

Method chunks selection. These method requirements drive the selection of method
chunks. For instance requirements cg1.1 matches to the method chunk Chu-Dec-04 (for
the goal part, G1.1), while for the selection of the method variant we need to match C1.1
with context criteria (see Table 3), resulting in the selection of the AHP variant (Chu-
Dec-04a). Analogously, requirement cg1.2 will lead to the identification of method
chunks Chu-Col-2 (because privacy is not very sensible), Chu-Col-03a, and Chu-Col-
03c. On its turn, for Project2 the genetic algorithm-based prioritization technique Chu-
Dec-04c will be selected, due to the increasing number of requirements). Concerning
data collection, the analysis of context condition C1.2 leads to exclude the use of both
Chu-Col-02 and one specialization of Chu-Col-03, Chu-Col-03b, because neither feed-
back gathering nor usage monitoring are considered appropriate when privacy is a
highly relevant issue (which is explicitly stated in the corresponding chunks). In both
projects, Chu-Ena-02 (Release Planning) is selected due to the Release Planned goal.

Method chunks assembly. On the one hand, the selected method chunks are now assem-
bled taking into account execution order (see Fig. 4) and input / output artefacts. This
will create the assembly (Chu-Dec-04a, Chu-Ena-02) in Project1 and (Chu-Dec-04c,
Chu-Ena-02) in Project2. However, collection chunks cannot be assembled because the

analysis chunks have not been selected. The reason is that the goal model does not
include information enough as to realize that these chunks are needed. Therefore, they
need to be selected in this phase and assembled correspondingly, e.g. (Chu-Col-02,
Chu-Ana-05) in Project1.

8 Conclusions and Future Work

In this paper, we have provided a systematic definition of the SUPERSEDE method for
data-driven software evolution oriented towards its customization in particular con-
texts. We have defined a metamodel for method chunks built upon activities, artefacts,
roles and tools (RQ1), then presented a catalogue of method chunks for SUPERSEDE-
based software evolution compliant to such metamodel (RQ2), we have defined a set
of context criteria to describe the context in which every chunk can be selected (RQ3)
and we have presented an SME-based process to guide the definition of a tailoring of
the SUPERSEDE method in a particular context (RQ4), illustrating it with an example.

It is worth mentioning that the answer to RQ4 is a methodological contribution be-
yond the application to the SUPERSEDE method. It represents an evolution to recent
SME works that we have undertaken [21][22] given the inclusion of context criteria as
part of the method requirements. The full development of the formalization just out-
lined in this paper, as for instance the applicability of previously proposed context goal
modelling approaches that support contextual annotations, e.g. [23], is future work.

A point of discussion is the possible complexity of the method. As in any SME-
based approach, we assume that a method engineer would lead the customization of the
method with the help of key stakeholders, e.g. a requirements engineer for the construc-
tion of the goal model. We plan also to develop tool support as to assist the method
engineer, e.g. by suggesting the missing chunks in the third step of the assembly

One interesting issue to discuss is the fact that companies will rarely adopt an ap-
proach as SUPERSEDE independently of their current development methods. For in-
stance, we are currently developing a Jira plug-in that allows connecting the require-
ment prioritization and releasing planning functionalities to this tool. This brings an
interesting aspect to the method that needs to be brought in the form of new chunks.

In connection with the point above, an aspect that has not been discussed is the extent
to which a company may adopt the SUPERSEDE method. If it is at the level of the
company, or one particular area, type of software/project, or even at the extreme only
for one project. As presented here, our approach has focused more on the project level,
but in the example we have combined with an organizational level (to have a single to-
be model for the organization, with project information as context). Going further in
this direction is definitively another open line of research.

As additional future work, we aim at adding the dynamic adaptation side of
SUPERSEDE to this evolution approach. In SUPERSEDE, there are activities related
to system self-adaptation and configuration that are integrated with the evolution activ-
ities. Including them in the SME approach would provide a holistic view to data-driven
software engineering using the SUPERSEDE control loop.

Acknowledgments

This work is a result of the SUPERSEDE project, funded by the EU’s H2020 Pro-
gramme under the agreement number 644018.

References

1. Wang, X., Guarino, N., Guizzardi, G., Mylopoulos, J.: Software as a Social Artifact: A
Management and Evolution Perspective. ER 2014.

2. Mens, T., Serebrenik, A., Cleve, A. (eds.): Evolving Software Systems. Springer, 2014.
3. Lehman, M.M.: Programs, Life Cycles, and Laws of Software Evolution. Proceedings of

the IEEE, 68(9), 1980.
4. Henderson-Sellers, B., Ralyté, J. Ågerfalk, P., Rossi, M.: Situational Method Engineering.

Springer, 2014.
5. Stade, M., et al.: D3.1: Requirements for Methods and Tools. SUPERSEDE project deliver-

able, 2015. Available at www.supersede.eu.
6. Ralyté, J., Rolland, C.: An Approach for Method Reengineering. ER 2001.
7. Ralyté, J., Deneckère, R., Rolland, C.: Towards a Generic Model for Situational Method

Engineering. CAiSE 2003.
8. Mirbel, I., Ralyté, J.: Situational Method Engineering: Combining Assembly-based and

Roadmap-driven Approaches. Requirements Engineering Journal, 11, 2006.
9. Ralyté, J.: Towards Situational Methods for Information Systems Development: Engineer-

ing Reusable Method Chunks. ISD 2004.
10. Brun, Y. et al.: Engineering Self-Adaptive Systems through Feedback Loops. In Software

Engineering for Self-Adaptive Systems, Springer, 2009.
11. Stade, M., Fotrousi, F., Seyff, N., Albrecht, O.: Feedback Gathering from an Industrial Point

of View. RE 2017.
12. Nadal, S. et al.: A Software Reference Architecture for Semantic-aware Big Data systems.

Information & Software Technology, 90, 2017.
13. Morales-Ramirez, I., Kifetew, F.M., Perini, A.: Analysis of Online Discussions in Support

of Requirements Discovery. CAiSE 2017.
14. Guzmán, E., Alkadhi, R., Seyff, N.: An Exploratory Study of Twitter Messages about

Software Applications. Requirements Engineering Journal 22(3), 2017.
15. Busetta, P. et al: Tool-Supported Collaborative Requirements Prioritisation. COMPSAC 2017
16. Ameller, D. et al.: Replan: A Release Planning Tool. SANER 2017.
17. Ameller, D. et al.: Towards Continuous Software Release Planning. SANER 2017.
18. Object Management Group (OMG): Software & Systems Process Engineering Meta-Model

Specification (SPEM), Version 2.0. Technical Report, April 2008.
19. Ribó, J.M., Franch, X.: A Precedence-based Approach for Proactive Control in Software

Process Modelling. SEKE 2002.
20. Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 Language Guide. Available at

https://arxiv.org/abs/1605.07767
21. López, L. et al.: OSSAP - A Situational Method for Defining Open Source Software Adop-

tion Processes. CAiSE 2016.
22. López, L. et al.: Agile Quality Requirements Management Best Practices Portfolio: A Situ-

ational Method Engineering Approach. PROFES 2017.
23. Ali, R., Dalpiaz, F. and Giorgini, P.: A Goal-based Framework for Contextual Requirement

Modeling and Analysis. Requirements Engineering Journal, 15(4), 2010.

