Skip to main content

\(\mathtt {Entang{\lambda }}\)e: A Translation Framework from Quipper Programs to Quantum Markov Chains

  • Conference paper
  • First Online:
Book cover New Frontiers in Quantitative Methods in Informatics (InfQ 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 825))

Included in the following conference series:

  • 253 Accesses

Abstract

\(\mathtt {Entang}\mathtt {\lambda }{} \mathtt{e}\) is a framework for translating the quantum programming language Quipper to the QPMC model checker. It has been developed in order to formally verify Quipper-like programs. Quipper is a functional circuit description language, allowing an high-level approach for manipulating quantum circuits. Quipper uses the vector state formalism and provides high-level operations. QPMC is a model checker designed for quantum protocols specified as Quantum Markov Chains, and it is based on the density matrix formalism; QPMC supports the temporal logic QCTL. We have developed \(\mathtt {Entang{\lambda }e}\) to deal with the notion of tail recursive quantum programs in Quipper, and so we are able to verify QCTL properties over such programs. The tool implementation has been tested on several quantum protocols, including the BB84 protocol for quantum key distribution.

This work has been partially supported by INdAM GNCS, and by the PRID ENCASE UniUD project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/miniBill/entangle.

  2. 2.

    Available at http://iscasmc.ios.ac.cn/too/qmc.

  3. 3.

    Available at https://github.com/miniBill/entangle.

  4. 4.

    Computed with MATLAB, using the density matrices generated by QPMC and the formula qeval. Further examples are available at https://github.com/miniBill/entangle/tree/master/res/Entangle_Tests.

References

  1. Anticoli, L., Piazza, C., Taglialegne, L., Zuliani, P.: Towards quantum programs verification: from quipper circuits to QPMC. In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 213–219. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40578-0_16

    Chapter  Google Scholar 

  2. Anticoli, L., Piazza, C., Taglialegne, L., Zuliani, P.: Verifying quantum programs: from quipper to QPMC (2017). CoRR, abs/1708.06312

    Google Scholar 

  3. Baltazar, P., Chadha, R., Mateus, P.: Quantum computation tree logic - model checking and complete calculus. Int. J. Quantum Inf. 6, 219 (2008)

    Article  Google Scholar 

  4. Baltazar, P., Chadha, R., Mateus, P., Sernadas, A.: Towards model-checking quantum security protocols. In: Proceedings of the First Workshop on Quantum Security: QSEC 2007. IEEE Press (2007)

    Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum public key distribution reinvented. SIGACT News 18(4), 51–53 (1987)

    Article  Google Scholar 

  6. Feng, Y., Hahn, E.M., Turrini, A., Zhang, L.: QPMC: a model checker for quantum programs and protocols. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 265–272. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19249-9_17

    Chapter  Google Scholar 

  7. Feng, Y., Yu, N., Ying, M.: Model checking quantum markov chains. J. Comput. Syst. Sci. 79, 1181–1198 (2013)

    Article  MathSciNet  Google Scholar 

  8. Gay, S., Nagarajan, R., Papanikolaou, N.: Probabilistic model-checking of quantum protocols. In: Proceedings of the 2nd International Workshop on Developments in Computational Models (2006)

    Google Scholar 

  9. Gay, S.J., Papanikolaou, N., Nagarajan, R.: QMC: A model checker for quantum systems. In: Proceeding of the 20th International Conference on Computer Aided Verification (2008)

    Google Scholar 

  10. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scalable quantum programming language. SIGPLAN Not. 48(6), 333–342 (2013)

    Article  Google Scholar 

  11. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects Comput. 6(5), 512–535 (1994)

    Article  Google Scholar 

  12. Knill, E.: Conventions for Quantum Pseudocode. Technical report, Los Alamos National Laboratory (1996)

    Google Scholar 

  13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  15. Preskill, J.: Lecture Notes for Physics 229: Quantum Information and Computation. CreateSpace Independent Publishing Platform (1998)

    Google Scholar 

  16. Smith, J.M., Ross, N.J., Selinger, P., Valiron, B.: Quipper: concrete resource estimation in quantum algorithms. In: Extended Abstract for a Talk Given at the 12th International Workshop on Quantitative Aspects of Programming Languages and Systems, QAPL 2014, Grenoble. Available from arxiv: 1412.0625 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Anticoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anticoli, L., Piazza, C., Taglialegne, L., Zuliani, P. (2018). \(\mathtt {Entang{\lambda }}\)e: A Translation Framework from Quipper Programs to Quantum Markov Chains. In: Balsamo, S., Marin, A., Vicario, E. (eds) New Frontiers in Quantitative Methods in Informatics. InfQ 2017. Communications in Computer and Information Science, vol 825. Springer, Cham. https://doi.org/10.1007/978-3-319-91632-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91632-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91631-6

  • Online ISBN: 978-3-319-91632-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics