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Abstract. One objective of the performance-based design (PBD) of fire safety in 

buildings is to ensure occupants have an adequate time to escape the effects of 

the fire unharmed. A commonly accepted threshold of the safe evacuation time 

is the time it takes for the fire to compromise the escape routes rendering them 

untenable. This is a complex computational problem that often requires simula-

tions to solve given the geometry of the building, plausible fire scenarios, thermo-

physical properties of building materials and furnishing, as well as the environ-

mental conditions.  

Conventionally, the input data preparation for such simulations is time con-

suming and error-prone as it involves tedious manual measurement and data tran-

scription from paper-based drawings and specification documents. The recent 

uptake of ISO-based building information modelling (BIM) among building de-

signers means that such information should become more readily available. How-

ever, sharing information from such a highly complex data model as BIM with 

downstream applications such as fire dynamics simulations can be challenging 

due to the lack of a practical method for querying spatial data. This paper explores 

two methods of sharing BIM information with an industry standard enclosure fire 

dynamics simulation tool. The paper further describes potential future work in 

using the simulation output to help auditing a given scenario against a set of com-

pliance criteria. A four-storey sample building model is presented in the paper to 

illustrate both approaches. 
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1 Introduction 

1.1 Sharing Building Information Modelling (BIM) Data 

The BIM (Building Information Modelling) technology has enabled a collaborative ap-

proach to design and construct buildings in recent years as it is progressively being 

adopted by building design practitioners. BIM has the potential of making available one 

set of common building information to share among processes and applications in a 

building project. One way of achieving this, in theory, is by using the ISO16739 IFC 
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(Industry Foundation Classes) data model [1]. IFC is a highly-structured, rich and nec-

essarily complex data model to represent every physical and functional aspect of such 

a complex object as a building. Extracting the geometry and spatial data from an IFC 

file is a significant undertaking due to the complexity of the data structure. Although 

commercial tools offering such data extract functionality are available, they are propri-

etary in nature and offer limited query capabilities and integration options with other 

software interfaces. Non-proprietary tools such as the open source BIMserver [2] are 

also available and may be used as a common platform to share building information, 

but additional development work is needed to augment its basic querying capabilities. 

There are also software add-ons, such as SimLab IFC Importer for SketchUp [3] and 

IfcBlender [4] for Blender [5], but they are designed to extend the capabilities of spe-

cific 3D model authoring software applications with the IFC import and export func-

tionality. 

Recent research to address the gap has seen the development of BIMRL (BIM Rule 

Language) that offers an efficient IFC data querying capability that supports multiple 

geometric representations [6]. BIMRL can act as an independent IFC query engine to 

service any software interface that requires BIM data for any application. 

This paper describes the use of BIMRL as a query engine to provide the required 

BIM data from an IFC file for mapping to the input data specification of a fire dynamics 

simulator. The paper also presents a comparative approach of getting BIM data using 

Blender 3D modelling application [5] with third-party software add-ons to achieve the 

same objective. 

1.2 Fire Safety Compliant Design Objectives 

The fire safety of occupants is one of the most important considerations when designing 

a building. Every legal framework in the world would stipulate some forms of require-

ment for a building to be designed with an adequate means of escape for occupants in 

the event of an emergency. An adequate means of escape from a fire in a building is 

commonly measured in terms of the time it takes for occupants to reach a safe point 

outside the building before the escape routes become compromised by the effects of the 

fire. Another common objective is to ensure that the structural integrity is maintained 

sufficiently for fire- fighting operations. This can represent a complex engineering de-

sign problem involving several fire safety science principles that deal with how fire 

develops, its impact on the structure, and how toxic products of combustion would 

spread within a building enclosure. 

Building codes and regulations traditionally prescribe solutions that are based on a 

typical building with a limited set of parameters. These “one-size-fits-all” prescriptive 

requirements specify exactly how a building must be constructed so that it can be 

deemed to satisfy the safety objectives. Modern legal frameworks incorporate the per-

formance-based design (PBD) approach that allows designers to offer a unique and in-

novative solution that would satisfy the performance objectives, which are usually qual-

itative in nature. The PBD approach often requires that the design solution be validated 

using established scientific principles to demonstrate that it is valid for the building and 
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its intended usage throughout its entire life-cycle. Fire engineers often resort to numer-

ical simulations for this purpose, which requires an accurate geometry of the space and 

essential information such as the furnishing, fenestration, thermo-physical properties of 

the building materials, and environmental conditions. 

1.3 Enclosure Fire Dynamics Simulations 

Enclosure Fire Dynamics pertains to the study of the fire behavior and the environmen-

tal response to the fire within an enclosure where there is a limited supply of fuel and 

oxygen. There are three common physics based approaches to simulating enclosure fire 

dynamics, namely lumped parameter or “zone models”, computational fluid dynamics 

(CFD) models based on classical turbulence modelling techniques, and large eddy sim-

ulations (LES) techniques [7]. The latter provides the most realistic description of fire 

phenomena developed to date. 

Two commonly used software tools in the industry today for simulating enclosure 

fire dynamics are B-RISK, a combined probabilistic/deterministic “zone model” devel-

oped by BRANZ (Building Research Association of New Zealand) [8] and FDS (Fire 

Dynamics Simulator), a CFD model developed by NIST in the US [9]. These tools 

represent two different types of computational fire model with distinct underlying phi-

losophies in representing fire scenarios within an enclosure. Consequently, they also 

have different approaches in representing the building geometry for simulation pur-

poses. Zone models such as B-RIK treat a building as a series of rectangular rooms 

interconnected to each other or to the outdoor by common openings of specified dimen-

sions. CFD models such as FDS rely on the exact placement of solid objects, openings, 

and an accurate geometry of the building to determine the interaction between the fire 

and the environment in each enclosure. 

This paper will mainly focus on the transfer of information from IFC-based BIM to 

FDS. 

1.4 FDS (Fire Dynamics Simulator) 

FDS (version 6.6 at the time of writing) defines each fire scenario within a three-di-

mensional computational domain consisting of rectilinear meshes with each mesh di-

vided into three-dimensional cuboid cells [9]. FDS treats solid objects within the com-

putational domain as flow obstructions, whereas openings such as doors and windows 

as flow passages. FDS employs LES numerical techniques to solve large scale hydro-

dynamics turbulence appropriate for low speed, thermally-driven fluid flow with an 

emphasis on smoke and heat transport from fires. Calculations occur in each cell and 

the result of the calculations become a new set of input parameters to the calculations 

in the adjoining cells. Depending on the input specification, FDS can determine various 

aspects of a simulated enclosure fire incident such as the level of thermal radiation and 

convection, the amount of fire products generate, and the level of concentrations of 

certain gas species. Some of the simulation output parameters can be used in an audit 

to determine if the assumed fire scenarios would be acceptable against prescribed legal 

thresholds. 
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The outcome of FDS simulation can be visualised in a number of ways using the 

companion tool SmokeView [10], depending on the output parameters specified in the 

input file. 

1.5 Similar Research 

Similar research was conducted in 2007 to investigate the use of a purpose-built 

IFCSTEP Parser tool, developed at the University of Christchurch in New Zealand, to 

extract a subset of the IFC data model for specific applications in the fire engineering 

domain [11]. A software interface, IFCSTEP-FDS, was developed in a subsequent re-

search project to map the building geometry information extracted by the IFCSTEP 

Parser tool to an input dataset for FDS [12]. Several single-storey building models were 

used in the research to illustrate the approach. As IFCSTEP was intended to be a generic 

IFC parser for a specific domain, some calculations were necessary in the mapping 

process to suit the FDS specification. 

IFCSTEP Parser was a research tool that only supported the axis-aligned bounding 

box (AABB) geometry representation. Consequently, it is limited to parsing objects 

that conform to the AABB geometry. Another limitation of IfcSTEP parser is the de-

pendency on a specific software library that no longer supports later versions of the IFC 

specification. 

2 FDS Input and Output Data Modelling 

2.1 Geometry Specification in FDS 

FDS treats solid obstructions such as walls within a building as a series of orthogonal 

cuboids with respect to each other. Each cuboid is represented by a bounding box and 

specified using the coordinates of the Lower Left Bottom (LLB) and Upper Right Top 

(URT) corners. The object is defined using the OBST namelist group in a line of data 

specification between & and / delimiters, as follows: 

&OBST XB=LLBx,URTx,LLBy,URTy,LLBz,URTz, SURF_ID=”Wall” / 

In the above solid obstruction data specification, LLBx denotes the x-coordinate of the 

LLB corner of the bounding box, and URTy  denotes the y-coordinate of the URT cor-

ner of the bounding box, etc. The SURF_ID is an optional parameter that identifies 

which specification of boundary condition parameters is applicable to this solid ob-

struction. For example, a SURF namelist group with ID=“Wall” may specify the ma-

terial composition and properties of the object. Boundary conditions of solid obstruc-

tions may also be specified with surface temperature, heat-flux, and other quantities or 

as a fire source. Another relevant parameter on the SURF namelist group is GEOMETRY 

=”CYLINDRICAL” or ”SPHERICAL”, which is useful to represent non-planar ob-

jects such as conduits or services ducts. 

The computational efficiency in FDS is partly achieved using a rectilinear numerical 

grid system, which is geometrically satisfactory for most building elements. However, 
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this may represent a limitation when certain objects have geometric features that do not 

conform to the rectilinear grid. In such a case, the non-conforming objects must be 

voxelised into multiple orthogonal cuboids that conform to the grid (Fig. 1). For exam-

ple, a wall that is non-orthogonal with respect to the axes must be transformed into a 

set of voxels that best approximate its original shape while conforming to the grid. In 

terms of calculations, the impact of this “sawtooth” profile on the boundary conditions 

is currently handled by removing one of the vorticity terms in the equations of the flow 

solver, which is triggered by a Boolean parameter input specification on the affected 

object. The future release of FDS is planned to employ a high-order immersed-bound-

ary method (IBM) of calculations for better handling this phenomenon. 

 

 

Fig. 1. Voxelised representation of a non-orthogonal object 

2.2 Data Requirements for FDS 

The following IFC elements are required for the purposes of FDS simulation: 

• Walls (internal and external) 

• Openings in walls (for doors and windows) 

• Slabs 

• Major structural columns or beams 

• Stairs 

• Major furnishing items such as desks, cabinets, or major equipment. 

For solid obstructions such as walls, slabs, and major columns or beams, the follow-

ing properties and attributes are also required: 

• The Globally Unique Identifier (GUID) of the object 

• The short and long name as well as description of the object 

• Coordinates of LLB and URT corners of each object represented as a bounding box 

(in the World Coordinates System) 

• For openings, an additional data is required, i.e. the sill height. This is particularly 

relevant for windows or any opening that is at certain height above the floor level. 

• The materials composition of walls, their layer index, name, and thickness. 
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3 Querying and Extracting IFC Data 

There are several considerations that influence the preferred approaches in getting the 

appropriate data from IFC. One important consideration is the ease of getting the right 

information. IFC is a standard specification designed for data exchange, which makes 

it very verbose and explicit. While it is an open standard that allows everyone to “see” 

the specification and the data, one will still need quite an in-depth understanding of the 

concept and the structure. This is made worse when one tries to connect two domains 

that deal with the same basic information but in a different view point and in different 

details, such as IFC and FDS. Many have tried to build the “bridge” between the two 

systems. In general, such system becomes difficult to manage because of the burden to 

deal with both systems in rather detailed knowledge.  

The rise of an approach to treat IFC as a database, as evidenced in the gaining of 

popularity of the open source BIMserver [2], provides a little relief to this woe, but it 

is still inadequate. One of the difficulties is getting the right geometry data. The geom-

etry by nature is complex, and there is no exception with IFC. As alluded to in Section 

1 of this paper, for example, BIMServer can serve the IFC geometry data, but it still 

requires the consuming application to re-construct the data into the appropriate form 

needed for the application.  

3.1 The BIMRL approach 

The following are two main considerations behind the use of the BIMRL query lan-

guage approach to share BIM data with FDS:  

1. BIMRL is a simplified database representation of the IFC model. As a database, it 

allows flexible queries to be performed against the data. This includes a pre-check 

process to ensure the model has everything required to generate a good quality data 

needed for FDS. Being built on top of a standard RDBMS (Relational Database 

Management System), BIMRL queries can be performed using standard SQL state-

ments given certain level of knowledge on its simplified schema and an understand-

ing of  the IFC data structure [13]. Using a generic tool like BIMRL releases the 

burden for the application to deal with a lot of details in parsing the IFC data. 

2. BIMRL has a built-in concept to support multiple geometry representations [14]. 

This concept allows integrated queries for both building elements and their geome-

tries. This includes not only the specification to re-construct the geometry, but the 

shapes of the final geometry. BIMRL generates five geometric representations for 

each object, i.e. AABB, OBB, Octree approximation, triangulated Polyhedron, and 

BREP (Boundary Representation) by a set of enriched boundary faces (Fig. 2). This 

may represent a redundancy, but also a flexibility of having different level of details 

available for various applications. For example, AABB data is adequate to represent 

orthogonal wall objects for FDS data, but the Octree cells representation is necessary 

to represent voxelized objects in the case of non-orthogonal walls or objects with a 

complex profile. All five geometry representations are pre-computed and persisted 

in the database for querying efficiency. 
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Fig. 2. BIMRL Multiple Geometry Representations [14] 

Given its support for multiple geometry representations, BIMRL can extract the re-

quired data for output in a form that would minimise downstream calculations needed 

for the mapping to FDS. BIMRL can express the query output in JSON (Javascript 

Object Notation) [15], which is most suitable for data exchange using web service ap-

plications. Below is the data requirements schema (in JSON) that can be used to design 

the corresponding BIMRL query: 

{ 
   StoreyId (string), 
   StoreyName (string), 
   StoreyLongName (string), 
   Objects (Array of objects): 
   { 
      ElementId (string), 

      ElementType (string), 
      Name (string), 
      Description (string), 
      Material (array of material objects): 
      [{ 
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         LayerNo (int), 
         Name (string), 
         Thickness (double) 
       }] 
       IsOrthogonal (bool), 
       CellBbox (array of LLB and URT coordinates) 
       [{ 
          LLB: 
           {x, y, z} 
          URT: 
           {x, y, z} 
        }] 
        SingleBox (an object) 
       { 
           Bbox (object), 
           Openings (an array of objects) 
            [{ 
                SillHeight (double), 
                Bbox (CellBbox object) 
            }] 
        } 
   } 
} 

BIMRL supports two types of data query, namely a standard triplet form and the un-

interpreted SQL pass-through. Below is an excerpt of the BIMRL triplet query based 

on the data requirements schema: 

 

CHECK  

//Collect relevant objects, i.e. IfcWall (and 

IfcWallStandardCase), IfcSlab, IfcColumn, and IfcStair 

from the model into Set1 

{(IfcWall, IfcSlab, IfcColumn, IfcStair) E 

      Collect E.ElementId Eguid, E.ElementType Etype,      

      E.Name Ename, E.Description Edesc, E.container cont 

} as Set1; 

 

//Collect all external walls (with IsExternal property 

equals to TRUE) and add them into Set2 

{IfcWall W Where Property(W,IsExternal)='true' 

   Collect W.ElementId Eguid, Property(W,IsExternal)  

   ExternalWall 

} as Set2; 
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//Evaluate data after a Left Outer Join between Set1 and 

Set2 based on the element guid (marking all objects plus 

the external walls) 

EVALUATE FireDataOutput(Eguid, Etype, Ename, Edesc,  

   cont,"e:\\ifc2fds\\FDSOut.json") From Set1  

   Left Outer Join Set2 using (Eguid); 

 

//Print the result to the UI and to the JSON output file 

ACTION print result; 

 

In the above query, if the element returned an IfcWall object, then the query further 

checks to see if the object has a property “IsExternal” with a value of “true” indicating 

that it is an external wall. This is useful to identify as external walls can then be set with 

a transparency value in FDS to improve the visualisation of the simulation output. The 

extent of the computational domain can also be aligned with the outer face of the walls. 

Based on the actual object geometry, BIMRL can automatically determine which 

geometric representation (AABB or Octree Cells) is suitable to represent the object for 

FDS. As explained earlier, Octree Cells would produce voxels to conform to the FDS 

geometry specification. 

3.2 The Blender Approach 

Blender is a community supported open-source generic 3D modelling tool that supports 

Python scripting natively for extending its basic functionality [5]. Consequently, there 

are many open-source add-ons available. IfcBlender is one of these add-ons, which is 

part of the IfcOpenShell software toolkit developed by Thomas Krijnen at the Univer-

sity of Eindhoven in the Netherlands [4]. IfcBlender adds the IFC geometry import 

functionality to Blender. Another add-on relevant for the work described in this paper 

is BlenderFDS [16], which allows one to compile the required data from within the 

Blender’s modelling environment to create the input dataset for FDS. 

The IFC model import for Blender is a straightforward and relatively efficient pro-

cess. Once the building model is imported, the object geometry and main properties 

(GUID, name, and description) would then be readily available for access. 

4 Generating FDS Input Data 

FDS is a command line software application without any graphical user interface. Each 

fire scenario is defined in a single text file containing namelist groups describing dif-

ferent aspects of the scenario to be simulated such as the duration of the simulation, the 

size of the computational domain, the specification of solid obstructions, openings, and 

material properties, boundary conditions, and output quantities, and so on. 

Several third-party pre-processors are available to assist with the creation of the FDS 

input. Exemplar commercial tools include Pyrosim [17], and more recently CYPECAD 

MEP. Exemplar open-source software add-ons and scripts include BlenderFDS [17] for 
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Blender, 3dsolid2fds [18] for AutoCAD, and step2fds [19]. Neither FDS nor these 

third-party user-interface tools currently support extracting data directly from the IFC. 

4.1 The BIMRL Approach 

BIMRL uses a specified data requirements schema (in JSON) as the basis for a query 

on a given IFC model. The query extracts the required information and outputs the 

result in the specified form (in JSON), which is then parsed by a JSON parser and 

mapped to the FDS input dataset in a single process (Fig. 3). For this exercise, the 

BIMRL query result is made available as a physical file for processing by a purpose-

built FDS input data mapping interface, which incorporates a JSON parser. An alterna-

tive data exchange method could be via a web service application, which enables a 

remote application to make use of the query service provided by BIMRL. 

 

Fig. 3. IFC to FDS Data Mapping using BIMRL 

The BIMRL approach enables the FDS data mapping process to be integrated, for ex-

ample, with an automated compliance audit framework that can interface with FDS to 

support the PBD approach. 

4.2 The Blender Approach 

The Blender approach uses two software add-ons to achieve the same objective. Firstly, 

IfcBlender add-on tool is used to import the geometry of the IFC model of the sample 

building. Once imported, the next step is to use the BlenderFDS add-on interface to 

manually classify individual objects into the desired type of representation, i.e. either 

as AABB or as Voxels. This is a time-consuming process that is dependent on the 

placement and geometry of the object in relation to the intended computational grid in 

FDS. As each object is classified, BlenderFDS would create the resulting OBST namel-

ist group formatted line of data for that object and save it into a collection. Eventually, 

all objects are classified and the lines of data in the collection can then be compiled and 

exported as the required FDS input dataset (Fig. 4). 

BlenderFDS is an interface within the Blender modelling environment to guide the 

user in creating the FDS input data, which includes non-geometrical information such 

as material properties definition, computational domain setup and other parameters. 
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However, these information needs to be entered manually by the user as part of the FDS 

input data modelling. 

 

Fig. 4. IFC to FDS Data Mapping using Blender 

The Blender approach effectively provides a graphical user-interface to FDS with the 

advantage of being able to share the BIM geometry data. 

5 Worked Example 

A sample four-storey building model has been selected to illustrate the approach of 

sharing BIM data described in this paper. This building model was originally developed 

by the regulatory authority in New Zealand as a test case for the performance-based 

compliant fire safety design verification method [20]. The actual model used for the 

work described in this paper was developed using ARCHICAD 20 and exported to 

IFC2x3. 

Fig. 5 shows the exported model being viewed in the IFC viewer tool, a part of the 

IFC Tools Project by APSTEX. New features such as fenestrations and a non-orthogo-

nal internal wall have been added to the model to demonstrate the challenges associated 

with mapping the geometry data to suit the input specification of FDS. 



12 

 

 

Fig. 5. The IFC model of the sample building in the IfcViewer application 

Each level of the building accommodates open plan offices. Fig. 6 is the ground level 

layout plan showing two offices separated by an internal wall with an inclined middle 

section (i.e. “Wall – 044”).  

 

 

Fig. 6. Ground Level Layout Plan 

The upper levels (levels 2 to 4) of the building has a typical floor layout, which is 

shown in Fig. 7. An internal stairwell provides access to all levels through a corridor 
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on each level. The stairwell also serves as a single means of escape for occupants dur-

ing an emergency. 

 

 

Fig. 7. Typical Upper Levels Layout Plan 

5.1 The BIMRL Approach 

The IFC model of the sample building is imported into BIMRL and processed by ex-

tracting every elements and properties from the model and storing them into the data-

base. Additionally, five geometric representations of each object are generated and 

stored in the database. Fig. 8 shows a geometric representation of the entire building 

model in BIMRL. 

 

 

Fig. 8. A geometric representation of the building model in BIMRL 
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The execution of the query produced a large JSON output, which is due to the large 

number of voxels generated for the slabs that have a cut-out profile around the stair-

well and also due to the representation of the stairs (Fig. 9). 

 

Fig. 9. The Octree Cells (level 8) representation of the Stairs 

 

 

Fig. 10. AABB and Octree Cells representations of different sections of a wall 

Below is an excerpt of the query output for the ‘Wall – 011’ object that is orthogonal 

with respect to the axes and has an opening, so the AABB geometry representation is 

appropriate for the object. 
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{   

   "ElementId":"19ALpexd7GHBgVjZMl6DWk", 

   "ElementType":"IFCWALLSTANDARDCASE", 

   "Name":"Wall - 011", 

   "Description":"", 

   "Materials":[   

      {   

         "LayerNo":1, 

         "Name":"Concrete - Structural", 

         "Thickness":0.2 

      } 

   ], 

   "IsOrthogonal":true, 

   "IsExternal":false, 

   "CellBbox":null, 

   "SingleBbox":{   

      "Bbox":{   

         "LLB":{   

            "x":19.2672109375, 

            "y":12.5232998046875, 

            "z":0 

         }, 

         "URT":{   

            "x":27.467150390625, 

            "y":12.7232998046875, 

            "z":3.2 

         } 

      }, 

      "Openings":[   

         {   

            "SillHeight":0, 

            "Bbox":{   

               "LLB":{   

                  "x":20.54610072752, 

                  "y":12.1232997142, 

                  "z":0 

               }, 

               "URT":{   

                  "x":21.44610072752, 

                  "y":12.7232997142, 

                  "z":2.1 

               } 

            } 

         } 

      ] 
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   } 

} 

 

Another example is ‘Wall – 044’, which is the inclined middle section of the internal 

timber-framed wall on the ground level, which is subject to voxelization (Fig. 10). 

Below is an excerpt of the query result showing 2 out of 29 voxels generated. 

{   

   "ElementId":"2dZqvRyzIpHuQM7C0wKNZH", 

   "ElementType":"IFCWALL", 

   "Name":"Wall - 044", 

   "Description":"", 

   "Materials":[   

      {   

         "LayerNo":1, 

         "Name":"Timber - Wall", 

         "Thickness":0.09 

      } 

   ], 

   "IsOrthogonal":false, 

   "CellBbox":[   

      {   

         "LLB":{   

            "x":14.464227971062398, 

            "y":13.697208381771718, 

            "z":-0.0141062499999989 

         }, 

         "URT":{   

            "x":14.573928952424797, 

            "y":13.757635718506444, 

            "z":3.1010312500000000167 

         } 

      }, 

      {   

         "LLB":{   

            "x":14.9073928952424797, 

            "y":14.133208381771718, 

            "z":-0.0140624999999989 

         }, 

         "URT":{   

            "x":15.008629933787197, 

            "y":14.234635718506444, 

            "z":3.101703125000000167 

         } 

      } 
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5.2 The Blender Approach 

Fig. 11 shows the IFC model of the sample building imported into Blender using the 

IfcBlender add-on tool. 

 

 

Fig. 11. The building model imported to Blender 

 

The next step is to create the FDS input data by selecting each object in the model in-

dividually (Fig. 12) using the BlenderFDS user-interface and specify if the object is to 

be represented as AABB or voxels. Additionally, the material composition (SURF ID 

namelist group) can be selected for the object, if it has been defined. 

Objects can be selected graphically or from the list of objects. Once an object has 

been classified, its classification and other properties can be copied to other objects. 
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Fig. 12. The non-orthogonal wall being selected in Blender and classified as Voxels 

5.3 Generated FDS Input Data 

The non-geometrical information such as the simulation parameters are specific to FDS 

that must either entered by the user, either via a set of default values (using the BIMRL 

approach) or manually through a user interface (in the case of Blender). 

The material composition of walls and its thickness are generally specified in BIM, 

so the information can be extracted and used in the material property specification in 

the FDS input file, as shown below. FDS can represent a composite material by speci-

fying the mass fraction of each component, i.e. MATL_MASS_FRACTION. 

&MATL ID='Concrete - Structural', 

      FYI='', 

      SPECIFIC_HEAT=1.04, 

      CONDUCTIVITY=1.8, 

      DENSITY=2280.0/ 

 

&SURF ID='Wall - 020', 

      COLOR='INVISIBLE', 

      BACKING='INSULATED', 

      MATL_ID(1,1)='Concrete', 

      MATL_MASS_FRACTION(1,1)=1.0, 

      THICKNESS(1)=0.20/ 
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The thermo-physical properties of the material such as its specific heat, conductivity 

and density are all assumed initial default values. As a good practice, it is expected 

that any simulation input data would be checked for validity and appropriateness by 

the user before the simulation is executed. As part of the validity check, the properties 

of objects may be changed to more appropriate values depending on the application or 

scenario. 

Below is an excerpt of the generated obstruction specification for 2 different walls 

in FDS. The first wall, ‘Wall – 044’, is represented by 29 voxels. The second wall, 

‘Wall – 020’ is represented as a simple AABB. 

// Wall – 044 represented by 29 voxels 

&OBST ID='Wall - 044_0' 

      XB=14.464,14.573,13.697,13.757,-0.001,3.101 / 

&OBST ID='Wall - 044_1' 

      XB=14.907,15.009,14.133,14.235,-0.001,3.101 / 

 

 

// Wall – 020 external wall 

&OBST ID='Wall - 020' 

      XB=0.767,27.667,7.523,7.723,3.200,6.400, 

SURF_ID='Wall - 020' / 

 

Both approaches generated almost identical FDS input files. In general, the BIMRL 

approach produces a lot more voxels than those by BlenderFDS. This is partly due to 

the high level of Octree Cells selected for those objects in BIMRL. The generated FDS 

input file is then executed with a zero simulation duration to produce a set of geometry 

data that can be visualised using SmokeView (Fig. 13 and Fig. 14).  

 

 

Fig. 13. The sample building model as represented in FDS, viewed in SmokeView 
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Fig. 14. Another view of the sample building as represented in FDS, viewed in SmokeView 

6 Discussions and Conclusion 

Two comparative approaches to share IFC geometrical data with the FDS simulation 

tool has been described in this paper. The BIMRL approach offers a customised query 

given a data requirements schema, which may include non-geometrical IFC data such 

as single value properties of certain objects. This is superior to the Blender approach 

where only geometrical data can be imported. Furthermore, the Blender approach relies 

on the IfcBlender software add-on with a predefined mapping definition hard-coded 

into the tool that cannot be modified easily.  

Although the BIMRL approach allows extracting some of the semantical data perti-

nent to fire dynamics simulation such as thermo-physical properties of materials from 

an IFC model, the actual data may not be present in the architectural model unless it 

has been enriched with such information by a fire design engineer. Another set of in-

formation essential to enclosure fire dynamics simulations is the characteristics of the 

fire such as its location, type of ignition source, and the potential energy release based 

on the configuration of combustible materials in the enclosure. Fire design specific pa-

rameters are unlikely, if not inappropriate, to be incorporated into the IFC model during 

the design phase, but would be provided directly into the simulation input dataset as 

part of a good fire engineering design practice. 

The BIMRL approach has an added potential to be integrated with, for example, an 

automated compliance audit framework that can interface with FDS by generating an 

input data for it and then using the simulation output (in a comma-delimited format) in 

a compliance audit process in conjunction with specified normative criteria. 

There are two other approaches similar to the Blender’s workflow that have not been 

described in this paper. They involve using commercial tools such as Pyrosim and 

CYPECAD MED and intermediate data exchanges in proprietary formats, which lacks 
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transparency. These alternative approaches provide a good user-interface for FDS input 

data modelling with the advantage of being able to share BIM geometry data. 

Future work may include an investigation for an optimised method of representing 

voxels in BIMRL. Another potential future work is a case study of auditing certain 

quantities in the FDS simulation output for compliance with specified criteria. 
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