

To be published as “Dimyadi J, Solihin W., Amor R (2018). Using IFC to Support Enclosure Fire

Dynamics Simulation. In Advanced Computing Strategies for Engineering, Springer International

Publishing. doi: 10.1007/978-3-319-91638-5_19

Using IFC to Support Enclosure Fire Dynamics

Simulation

Johannes Dimyadi1[0000-0002-0004-1131], Wawan Solihin2[0000-0001-7538-5265], and

Robert Amor3[0000-0002-4329-9044]
1, 3 University of Auckland, Auckland, New Zealand

{jdim006, trebor}@cs.auckland.ac.nz
2 novaCITYNETS Pte. Ltd., Singapore

w.solihin@outlook.com

Abstract. One objective of the performance-based design (PBD) of fire safety in

buildings is to ensure occupants have an adequate time to escape the effects of

the fire unharmed. A commonly accepted threshold of the safe evacuation time

is the time it takes for the fire to compromise the escape routes rendering them

untenable. This is a complex computational problem that often requires simula-

tions to solve given the geometry of the building, plausible fire scenarios, thermo-

physical properties of building materials and furnishing, as well as the environ-

mental conditions.

Conventionally, the input data preparation for such simulations is time con-

suming and error-prone as it involves tedious manual measurement and data tran-

scription from paper-based drawings and specification documents. The recent

uptake of ISO-based building information modelling (BIM) among building de-

signers means that such information should become more readily available. How-

ever, sharing information from such a highly complex data model as BIM with

downstream applications such as fire dynamics simulations can be challenging

due to the lack of a practical method for querying spatial data. This paper explores

two methods of sharing BIM information with an industry standard enclosure fire

dynamics simulation tool. The paper further describes potential future work in

using the simulation output to help auditing a given scenario against a set of com-

pliance criteria. A four-storey sample building model is presented in the paper to

illustrate both approaches.

Keywords: BIM, IFC, FDS, Geometric representation

1 Introduction

1.1 Sharing Building Information Modelling (BIM) Data

The BIM (Building Information Modelling) technology has enabled a collaborative ap-

proach to design and construct buildings in recent years as it is progressively being

adopted by building design practitioners. BIM has the potential of making available one

set of common building information to share among processes and applications in a

building project. One way of achieving this, in theory, is by using the ISO16739 IFC

2

(Industry Foundation Classes) data model [1]. IFC is a highly-structured, rich and nec-

essarily complex data model to represent every physical and functional aspect of such

a complex object as a building. Extracting the geometry and spatial data from an IFC

file is a significant undertaking due to the complexity of the data structure. Although

commercial tools offering such data extract functionality are available, they are propri-

etary in nature and offer limited query capabilities and integration options with other

software interfaces. Non-proprietary tools such as the open source BIMserver [2] are

also available and may be used as a common platform to share building information,

but additional development work is needed to augment its basic querying capabilities.

There are also software add-ons, such as SimLab IFC Importer for SketchUp [3] and

IfcBlender [4] for Blender [5], but they are designed to extend the capabilities of spe-

cific 3D model authoring software applications with the IFC import and export func-

tionality.

Recent research to address the gap has seen the development of BIMRL (BIM Rule

Language) that offers an efficient IFC data querying capability that supports multiple

geometric representations [6]. BIMRL can act as an independent IFC query engine to

service any software interface that requires BIM data for any application.

This paper describes the use of BIMRL as a query engine to provide the required

BIM data from an IFC file for mapping to the input data specification of a fire dynamics

simulator. The paper also presents a comparative approach of getting BIM data using

Blender 3D modelling application [5] with third-party software add-ons to achieve the

same objective.

1.2 Fire Safety Compliant Design Objectives

The fire safety of occupants is one of the most important considerations when designing

a building. Every legal framework in the world would stipulate some forms of require-

ment for a building to be designed with an adequate means of escape for occupants in

the event of an emergency. An adequate means of escape from a fire in a building is

commonly measured in terms of the time it takes for occupants to reach a safe point

outside the building before the escape routes become compromised by the effects of the

fire. Another common objective is to ensure that the structural integrity is maintained

sufficiently for fire- fighting operations. This can represent a complex engineering de-

sign problem involving several fire safety science principles that deal with how fire

develops, its impact on the structure, and how toxic products of combustion would

spread within a building enclosure.

Building codes and regulations traditionally prescribe solutions that are based on a

typical building with a limited set of parameters. These “one-size-fits-all” prescriptive

requirements specify exactly how a building must be constructed so that it can be

deemed to satisfy the safety objectives. Modern legal frameworks incorporate the per-

formance-based design (PBD) approach that allows designers to offer a unique and in-

novative solution that would satisfy the performance objectives, which are usually qual-

itative in nature. The PBD approach often requires that the design solution be validated

using established scientific principles to demonstrate that it is valid for the building and

3

its intended usage throughout its entire life-cycle. Fire engineers often resort to numer-

ical simulations for this purpose, which requires an accurate geometry of the space and

essential information such as the furnishing, fenestration, thermo-physical properties of

the building materials, and environmental conditions.

1.3 Enclosure Fire Dynamics Simulations

Enclosure Fire Dynamics pertains to the study of the fire behavior and the environmen-

tal response to the fire within an enclosure where there is a limited supply of fuel and

oxygen. There are three common physics based approaches to simulating enclosure fire

dynamics, namely lumped parameter or “zone models”, computational fluid dynamics

(CFD) models based on classical turbulence modelling techniques, and large eddy sim-

ulations (LES) techniques [7]. The latter provides the most realistic description of fire

phenomena developed to date.

Two commonly used software tools in the industry today for simulating enclosure

fire dynamics are B-RISK, a combined probabilistic/deterministic “zone model” devel-

oped by BRANZ (Building Research Association of New Zealand) [8] and FDS (Fire

Dynamics Simulator), a CFD model developed by NIST in the US [9]. These tools

represent two different types of computational fire model with distinct underlying phi-

losophies in representing fire scenarios within an enclosure. Consequently, they also

have different approaches in representing the building geometry for simulation pur-

poses. Zone models such as B-RIK treat a building as a series of rectangular rooms

interconnected to each other or to the outdoor by common openings of specified dimen-

sions. CFD models such as FDS rely on the exact placement of solid objects, openings,

and an accurate geometry of the building to determine the interaction between the fire

and the environment in each enclosure.

This paper will mainly focus on the transfer of information from IFC-based BIM to

FDS.

1.4 FDS (Fire Dynamics Simulator)

FDS (version 6.6 at the time of writing) defines each fire scenario within a three-di-

mensional computational domain consisting of rectilinear meshes with each mesh di-

vided into three-dimensional cuboid cells [9]. FDS treats solid objects within the com-

putational domain as flow obstructions, whereas openings such as doors and windows

as flow passages. FDS employs LES numerical techniques to solve large scale hydro-

dynamics turbulence appropriate for low speed, thermally-driven fluid flow with an

emphasis on smoke and heat transport from fires. Calculations occur in each cell and

the result of the calculations become a new set of input parameters to the calculations

in the adjoining cells. Depending on the input specification, FDS can determine various

aspects of a simulated enclosure fire incident such as the level of thermal radiation and

convection, the amount of fire products generate, and the level of concentrations of

certain gas species. Some of the simulation output parameters can be used in an audit

to determine if the assumed fire scenarios would be acceptable against prescribed legal

thresholds.

4

The outcome of FDS simulation can be visualised in a number of ways using the

companion tool SmokeView [10], depending on the output parameters specified in the

input file.

1.5 Similar Research

Similar research was conducted in 2007 to investigate the use of a purpose-built

IFCSTEP Parser tool, developed at the University of Christchurch in New Zealand, to

extract a subset of the IFC data model for specific applications in the fire engineering

domain [11]. A software interface, IFCSTEP-FDS, was developed in a subsequent re-

search project to map the building geometry information extracted by the IFCSTEP

Parser tool to an input dataset for FDS [12]. Several single-storey building models were

used in the research to illustrate the approach. As IFCSTEP was intended to be a generic

IFC parser for a specific domain, some calculations were necessary in the mapping

process to suit the FDS specification.

IFCSTEP Parser was a research tool that only supported the axis-aligned bounding

box (AABB) geometry representation. Consequently, it is limited to parsing objects

that conform to the AABB geometry. Another limitation of IfcSTEP parser is the de-

pendency on a specific software library that no longer supports later versions of the IFC

specification.

2 FDS Input and Output Data Modelling

2.1 Geometry Specification in FDS

FDS treats solid obstructions such as walls within a building as a series of orthogonal

cuboids with respect to each other. Each cuboid is represented by a bounding box and

specified using the coordinates of the Lower Left Bottom (LLB) and Upper Right Top

(URT) corners. The object is defined using the OBST namelist group in a line of data

specification between & and / delimiters, as follows:

&OBST XB=LLBx,URTx,LLBy,URTy,LLBz,URTz, SURF_ID=”Wall” /

In the above solid obstruction data specification, LLBx denotes the x-coordinate of the

LLB corner of the bounding box, and URTy denotes the y-coordinate of the URT cor-

ner of the bounding box, etc. The SURF_ID is an optional parameter that identifies

which specification of boundary condition parameters is applicable to this solid ob-

struction. For example, a SURF namelist group with ID=“Wall” may specify the ma-

terial composition and properties of the object. Boundary conditions of solid obstruc-

tions may also be specified with surface temperature, heat-flux, and other quantities or

as a fire source. Another relevant parameter on the SURF namelist group is GEOMETRY

=”CYLINDRICAL” or ”SPHERICAL”, which is useful to represent non-planar ob-

jects such as conduits or services ducts.

The computational efficiency in FDS is partly achieved using a rectilinear numerical

grid system, which is geometrically satisfactory for most building elements. However,

5

this may represent a limitation when certain objects have geometric features that do not

conform to the rectilinear grid. In such a case, the non-conforming objects must be

voxelised into multiple orthogonal cuboids that conform to the grid (Fig. 1). For exam-

ple, a wall that is non-orthogonal with respect to the axes must be transformed into a

set of voxels that best approximate its original shape while conforming to the grid. In

terms of calculations, the impact of this “sawtooth” profile on the boundary conditions

is currently handled by removing one of the vorticity terms in the equations of the flow

solver, which is triggered by a Boolean parameter input specification on the affected

object. The future release of FDS is planned to employ a high-order immersed-bound-

ary method (IBM) of calculations for better handling this phenomenon.

Fig. 1. Voxelised representation of a non-orthogonal object

2.2 Data Requirements for FDS

The following IFC elements are required for the purposes of FDS simulation:

• Walls (internal and external)

• Openings in walls (for doors and windows)

• Slabs

• Major structural columns or beams

• Stairs

• Major furnishing items such as desks, cabinets, or major equipment.

For solid obstructions such as walls, slabs, and major columns or beams, the follow-

ing properties and attributes are also required:

• The Globally Unique Identifier (GUID) of the object

• The short and long name as well as description of the object

• Coordinates of LLB and URT corners of each object represented as a bounding box

(in the World Coordinates System)

• For openings, an additional data is required, i.e. the sill height. This is particularly

relevant for windows or any opening that is at certain height above the floor level.

• The materials composition of walls, their layer index, name, and thickness.

6

3 Querying and Extracting IFC Data

There are several considerations that influence the preferred approaches in getting the

appropriate data from IFC. One important consideration is the ease of getting the right

information. IFC is a standard specification designed for data exchange, which makes

it very verbose and explicit. While it is an open standard that allows everyone to “see”

the specification and the data, one will still need quite an in-depth understanding of the

concept and the structure. This is made worse when one tries to connect two domains

that deal with the same basic information but in a different view point and in different

details, such as IFC and FDS. Many have tried to build the “bridge” between the two

systems. In general, such system becomes difficult to manage because of the burden to

deal with both systems in rather detailed knowledge.

The rise of an approach to treat IFC as a database, as evidenced in the gaining of

popularity of the open source BIMserver [2], provides a little relief to this woe, but it

is still inadequate. One of the difficulties is getting the right geometry data. The geom-

etry by nature is complex, and there is no exception with IFC. As alluded to in Section

1 of this paper, for example, BIMServer can serve the IFC geometry data, but it still

requires the consuming application to re-construct the data into the appropriate form

needed for the application.

3.1 The BIMRL approach

The following are two main considerations behind the use of the BIMRL query lan-

guage approach to share BIM data with FDS:

1. BIMRL is a simplified database representation of the IFC model. As a database, it

allows flexible queries to be performed against the data. This includes a pre-check

process to ensure the model has everything required to generate a good quality data

needed for FDS. Being built on top of a standard RDBMS (Relational Database

Management System), BIMRL queries can be performed using standard SQL state-

ments given certain level of knowledge on its simplified schema and an understand-

ing of the IFC data structure [13]. Using a generic tool like BIMRL releases the

burden for the application to deal with a lot of details in parsing the IFC data.

2. BIMRL has a built-in concept to support multiple geometry representations [14].

This concept allows integrated queries for both building elements and their geome-

tries. This includes not only the specification to re-construct the geometry, but the

shapes of the final geometry. BIMRL generates five geometric representations for

each object, i.e. AABB, OBB, Octree approximation, triangulated Polyhedron, and

BREP (Boundary Representation) by a set of enriched boundary faces (Fig. 2). This

may represent a redundancy, but also a flexibility of having different level of details

available for various applications. For example, AABB data is adequate to represent

orthogonal wall objects for FDS data, but the Octree cells representation is necessary

to represent voxelized objects in the case of non-orthogonal walls or objects with a

complex profile. All five geometry representations are pre-computed and persisted

in the database for querying efficiency.

7

Fig. 2. BIMRL Multiple Geometry Representations [14]

Given its support for multiple geometry representations, BIMRL can extract the re-

quired data for output in a form that would minimise downstream calculations needed

for the mapping to FDS. BIMRL can express the query output in JSON (Javascript

Object Notation) [15], which is most suitable for data exchange using web service ap-

plications. Below is the data requirements schema (in JSON) that can be used to design

the corresponding BIMRL query:

{
 StoreyId (string),
 StoreyName (string),
 StoreyLongName (string),
 Objects (Array of objects):
 {
 ElementId (string),

 ElementType (string),
 Name (string),
 Description (string),
 Material (array of material objects):
 [{

8

 LayerNo (int),
 Name (string),
 Thickness (double)
 }]
 IsOrthogonal (bool),
 CellBbox (array of LLB and URT coordinates)
 [{
 LLB:
 {x, y, z}
 URT:
 {x, y, z}
 }]
 SingleBox (an object)
 {
 Bbox (object),
 Openings (an array of objects)
 [{
 SillHeight (double),
 Bbox (CellBbox object)
 }]
 }
 }
}

BIMRL supports two types of data query, namely a standard triplet form and the un-

interpreted SQL pass-through. Below is an excerpt of the BIMRL triplet query based

on the data requirements schema:

CHECK

//Collect relevant objects, i.e. IfcWall (and

IfcWallStandardCase), IfcSlab, IfcColumn, and IfcStair

from the model into Set1

{(IfcWall, IfcSlab, IfcColumn, IfcStair) E

 Collect E.ElementId Eguid, E.ElementType Etype,

 E.Name Ename, E.Description Edesc, E.container cont

} as Set1;

//Collect all external walls (with IsExternal property

equals to TRUE) and add them into Set2

{IfcWall W Where Property(W,IsExternal)='true'

 Collect W.ElementId Eguid, Property(W,IsExternal)

 ExternalWall

} as Set2;

9

//Evaluate data after a Left Outer Join between Set1 and

Set2 based on the element guid (marking all objects plus

the external walls)

EVALUATE FireDataOutput(Eguid, Etype, Ename, Edesc,

 cont,"e:\\ifc2fds\\FDSOut.json") From Set1

 Left Outer Join Set2 using (Eguid);

//Print the result to the UI and to the JSON output file

ACTION print result;

In the above query, if the element returned an IfcWall object, then the query further

checks to see if the object has a property “IsExternal” with a value of “true” indicating

that it is an external wall. This is useful to identify as external walls can then be set with

a transparency value in FDS to improve the visualisation of the simulation output. The

extent of the computational domain can also be aligned with the outer face of the walls.

Based on the actual object geometry, BIMRL can automatically determine which

geometric representation (AABB or Octree Cells) is suitable to represent the object for

FDS. As explained earlier, Octree Cells would produce voxels to conform to the FDS

geometry specification.

3.2 The Blender Approach

Blender is a community supported open-source generic 3D modelling tool that supports

Python scripting natively for extending its basic functionality [5]. Consequently, there

are many open-source add-ons available. IfcBlender is one of these add-ons, which is

part of the IfcOpenShell software toolkit developed by Thomas Krijnen at the Univer-

sity of Eindhoven in the Netherlands [4]. IfcBlender adds the IFC geometry import

functionality to Blender. Another add-on relevant for the work described in this paper

is BlenderFDS [16], which allows one to compile the required data from within the

Blender’s modelling environment to create the input dataset for FDS.

The IFC model import for Blender is a straightforward and relatively efficient pro-

cess. Once the building model is imported, the object geometry and main properties

(GUID, name, and description) would then be readily available for access.

4 Generating FDS Input Data

FDS is a command line software application without any graphical user interface. Each

fire scenario is defined in a single text file containing namelist groups describing dif-

ferent aspects of the scenario to be simulated such as the duration of the simulation, the

size of the computational domain, the specification of solid obstructions, openings, and

material properties, boundary conditions, and output quantities, and so on.

Several third-party pre-processors are available to assist with the creation of the FDS

input. Exemplar commercial tools include Pyrosim [17], and more recently CYPECAD

MEP. Exemplar open-source software add-ons and scripts include BlenderFDS [17] for

10

Blender, 3dsolid2fds [18] for AutoCAD, and step2fds [19]. Neither FDS nor these

third-party user-interface tools currently support extracting data directly from the IFC.

4.1 The BIMRL Approach

BIMRL uses a specified data requirements schema (in JSON) as the basis for a query

on a given IFC model. The query extracts the required information and outputs the

result in the specified form (in JSON), which is then parsed by a JSON parser and

mapped to the FDS input dataset in a single process (Fig. 3). For this exercise, the

BIMRL query result is made available as a physical file for processing by a purpose-

built FDS input data mapping interface, which incorporates a JSON parser. An alterna-

tive data exchange method could be via a web service application, which enables a

remote application to make use of the query service provided by BIMRL.

Fig. 3. IFC to FDS Data Mapping using BIMRL

The BIMRL approach enables the FDS data mapping process to be integrated, for ex-

ample, with an automated compliance audit framework that can interface with FDS to

support the PBD approach.

4.2 The Blender Approach

The Blender approach uses two software add-ons to achieve the same objective. Firstly,

IfcBlender add-on tool is used to import the geometry of the IFC model of the sample

building. Once imported, the next step is to use the BlenderFDS add-on interface to

manually classify individual objects into the desired type of representation, i.e. either

as AABB or as Voxels. This is a time-consuming process that is dependent on the

placement and geometry of the object in relation to the intended computational grid in

FDS. As each object is classified, BlenderFDS would create the resulting OBST namel-

ist group formatted line of data for that object and save it into a collection. Eventually,

all objects are classified and the lines of data in the collection can then be compiled and

exported as the required FDS input dataset (Fig. 4).

BlenderFDS is an interface within the Blender modelling environment to guide the

user in creating the FDS input data, which includes non-geometrical information such

as material properties definition, computational domain setup and other parameters.

11

However, these information needs to be entered manually by the user as part of the FDS

input data modelling.

Fig. 4. IFC to FDS Data Mapping using Blender

The Blender approach effectively provides a graphical user-interface to FDS with the

advantage of being able to share the BIM geometry data.

5 Worked Example

A sample four-storey building model has been selected to illustrate the approach of

sharing BIM data described in this paper. This building model was originally developed

by the regulatory authority in New Zealand as a test case for the performance-based

compliant fire safety design verification method [20]. The actual model used for the

work described in this paper was developed using ARCHICAD 20 and exported to

IFC2x3.

Fig. 5 shows the exported model being viewed in the IFC viewer tool, a part of the

IFC Tools Project by APSTEX. New features such as fenestrations and a non-orthogo-

nal internal wall have been added to the model to demonstrate the challenges associated

with mapping the geometry data to suit the input specification of FDS.

12

Fig. 5. The IFC model of the sample building in the IfcViewer application

Each level of the building accommodates open plan offices. Fig. 6 is the ground level

layout plan showing two offices separated by an internal wall with an inclined middle

section (i.e. “Wall – 044”).

Fig. 6. Ground Level Layout Plan

The upper levels (levels 2 to 4) of the building has a typical floor layout, which is

shown in Fig. 7. An internal stairwell provides access to all levels through a corridor

13

on each level. The stairwell also serves as a single means of escape for occupants dur-

ing an emergency.

Fig. 7. Typical Upper Levels Layout Plan

5.1 The BIMRL Approach

The IFC model of the sample building is imported into BIMRL and processed by ex-

tracting every elements and properties from the model and storing them into the data-

base. Additionally, five geometric representations of each object are generated and

stored in the database. Fig. 8 shows a geometric representation of the entire building

model in BIMRL.

Fig. 8. A geometric representation of the building model in BIMRL

14

The execution of the query produced a large JSON output, which is due to the large

number of voxels generated for the slabs that have a cut-out profile around the stair-

well and also due to the representation of the stairs (Fig. 9).

Fig. 9. The Octree Cells (level 8) representation of the Stairs

Fig. 10. AABB and Octree Cells representations of different sections of a wall

Below is an excerpt of the query output for the ‘Wall – 011’ object that is orthogonal

with respect to the axes and has an opening, so the AABB geometry representation is

appropriate for the object.

15

{

 "ElementId":"19ALpexd7GHBgVjZMl6DWk",

 "ElementType":"IFCWALLSTANDARDCASE",

 "Name":"Wall - 011",

 "Description":"",

 "Materials":[

 {

 "LayerNo":1,

 "Name":"Concrete - Structural",

 "Thickness":0.2

 }

],

 "IsOrthogonal":true,

 "IsExternal":false,

 "CellBbox":null,

 "SingleBbox":{

 "Bbox":{

 "LLB":{

 "x":19.2672109375,

 "y":12.5232998046875,

 "z":0

 },

 "URT":{

 "x":27.467150390625,

 "y":12.7232998046875,

 "z":3.2

 }

 },

 "Openings":[

 {

 "SillHeight":0,

 "Bbox":{

 "LLB":{

 "x":20.54610072752,

 "y":12.1232997142,

 "z":0

 },

 "URT":{

 "x":21.44610072752,

 "y":12.7232997142,

 "z":2.1

 }

 }

 }

]

16

 }

}

Another example is ‘Wall – 044’, which is the inclined middle section of the internal

timber-framed wall on the ground level, which is subject to voxelization (Fig. 10).

Below is an excerpt of the query result showing 2 out of 29 voxels generated.

{

 "ElementId":"2dZqvRyzIpHuQM7C0wKNZH",

 "ElementType":"IFCWALL",

 "Name":"Wall - 044",

 "Description":"",

 "Materials":[

 {

 "LayerNo":1,

 "Name":"Timber - Wall",

 "Thickness":0.09

 }

],

 "IsOrthogonal":false,

 "CellBbox":[

 {

 "LLB":{

 "x":14.464227971062398,

 "y":13.697208381771718,

 "z":-0.0141062499999989

 },

 "URT":{

 "x":14.573928952424797,

 "y":13.757635718506444,

 "z":3.1010312500000000167

 }

 },

 {

 "LLB":{

 "x":14.9073928952424797,

 "y":14.133208381771718,

 "z":-0.0140624999999989

 },

 "URT":{

 "x":15.008629933787197,

 "y":14.234635718506444,

 "z":3.101703125000000167

 }

 }

17

5.2 The Blender Approach

Fig. 11 shows the IFC model of the sample building imported into Blender using the

IfcBlender add-on tool.

Fig. 11. The building model imported to Blender

The next step is to create the FDS input data by selecting each object in the model in-

dividually (Fig. 12) using the BlenderFDS user-interface and specify if the object is to

be represented as AABB or voxels. Additionally, the material composition (SURF ID

namelist group) can be selected for the object, if it has been defined.

Objects can be selected graphically or from the list of objects. Once an object has

been classified, its classification and other properties can be copied to other objects.

18

Fig. 12. The non-orthogonal wall being selected in Blender and classified as Voxels

5.3 Generated FDS Input Data

The non-geometrical information such as the simulation parameters are specific to FDS

that must either entered by the user, either via a set of default values (using the BIMRL

approach) or manually through a user interface (in the case of Blender).

The material composition of walls and its thickness are generally specified in BIM,

so the information can be extracted and used in the material property specification in

the FDS input file, as shown below. FDS can represent a composite material by speci-

fying the mass fraction of each component, i.e. MATL_MASS_FRACTION.

&MATL ID='Concrete - Structural',

 FYI='',

 SPECIFIC_HEAT=1.04,

 CONDUCTIVITY=1.8,

 DENSITY=2280.0/

&SURF ID='Wall - 020',

 COLOR='INVISIBLE',

 BACKING='INSULATED',

 MATL_ID(1,1)='Concrete',

 MATL_MASS_FRACTION(1,1)=1.0,

 THICKNESS(1)=0.20/

19

The thermo-physical properties of the material such as its specific heat, conductivity

and density are all assumed initial default values. As a good practice, it is expected

that any simulation input data would be checked for validity and appropriateness by

the user before the simulation is executed. As part of the validity check, the properties

of objects may be changed to more appropriate values depending on the application or

scenario.

Below is an excerpt of the generated obstruction specification for 2 different walls

in FDS. The first wall, ‘Wall – 044’, is represented by 29 voxels. The second wall,

‘Wall – 020’ is represented as a simple AABB.

// Wall – 044 represented by 29 voxels

&OBST ID='Wall - 044_0'

 XB=14.464,14.573,13.697,13.757,-0.001,3.101 /

&OBST ID='Wall - 044_1'

 XB=14.907,15.009,14.133,14.235,-0.001,3.101 /

// Wall – 020 external wall

&OBST ID='Wall - 020'

 XB=0.767,27.667,7.523,7.723,3.200,6.400,

SURF_ID='Wall - 020' /

Both approaches generated almost identical FDS input files. In general, the BIMRL

approach produces a lot more voxels than those by BlenderFDS. This is partly due to

the high level of Octree Cells selected for those objects in BIMRL. The generated FDS

input file is then executed with a zero simulation duration to produce a set of geometry

data that can be visualised using SmokeView (Fig. 13 and Fig. 14).

Fig. 13. The sample building model as represented in FDS, viewed in SmokeView

20

Fig. 14. Another view of the sample building as represented in FDS, viewed in SmokeView

6 Discussions and Conclusion

Two comparative approaches to share IFC geometrical data with the FDS simulation

tool has been described in this paper. The BIMRL approach offers a customised query

given a data requirements schema, which may include non-geometrical IFC data such

as single value properties of certain objects. This is superior to the Blender approach

where only geometrical data can be imported. Furthermore, the Blender approach relies

on the IfcBlender software add-on with a predefined mapping definition hard-coded

into the tool that cannot be modified easily.

Although the BIMRL approach allows extracting some of the semantical data perti-

nent to fire dynamics simulation such as thermo-physical properties of materials from

an IFC model, the actual data may not be present in the architectural model unless it

has been enriched with such information by a fire design engineer. Another set of in-

formation essential to enclosure fire dynamics simulations is the characteristics of the

fire such as its location, type of ignition source, and the potential energy release based

on the configuration of combustible materials in the enclosure. Fire design specific pa-

rameters are unlikely, if not inappropriate, to be incorporated into the IFC model during

the design phase, but would be provided directly into the simulation input dataset as

part of a good fire engineering design practice.

The BIMRL approach has an added potential to be integrated with, for example, an

automated compliance audit framework that can interface with FDS by generating an

input data for it and then using the simulation output (in a comma-delimited format) in

a compliance audit process in conjunction with specified normative criteria.

There are two other approaches similar to the Blender’s workflow that have not been

described in this paper. They involve using commercial tools such as Pyrosim and

CYPECAD MED and intermediate data exchanges in proprietary formats, which lacks

21

transparency. These alternative approaches provide a good user-interface for FDS input

data modelling with the advantage of being able to share BIM geometry data.

Future work may include an investigation for an optimised method of representing

voxels in BIMRL. Another potential future work is a case study of auditing certain

quantities in the FDS simulation output for compliance with specified criteria.

References

1. ISO 16739: ISO 16739:2013 Industry Foundation Classes (IFC) for data sharing in the

construction and facility management industries. International Organization for

Standardization, Geneva, Switzerland (2013)

2. Beetz, J., van Berlo, L.: bimserver.org - An Open Source IFC Model Server. In:

Proceedings of CIB W78 International Conference. pp. 1–8. , Cairo, Egypt (2010)

3. Schreyer, A.C.: Architectural Design with SketchUp: 3D Modeling, Extensions, BIM,

Rendering, Making, and Scripting. John Wiley & Sons, Inc. (2016)

4. Krijnen, T.: IfcOpenShell, http://ifcopenshell.org/. Last accessed 19 March 2018.

5. Brito, A.: Blender 3D: Architecture, Buildings, and Scenery. Packt Publishing Limited

(2008)

6. Dimyadi, J., Eastman, C., Amor, R., Solihin, W., Eastman, C., Amor, R.: Integrating

the BIM Rule Language into Compliant Design Audit Processes. In: Proceedings of

the 33th CIB W78 International Conference 2016. pp. 1–10. Queensland Institute of

Technology, Brisbane, Australia (2016)

7. Baum, H.R.: Simulating Enclosure Fire Dynamics. In: US National Research Council

Workshop to Foster Improved Fire Safety. pp. 107–116 (2003)

8. Baker, G., Wade, C., Spearpoint, M., Fleischmann, C.: Developing Probabilistic

Design Fires for Performance-based Fire Safety Engineering. Procedia Eng. 62, 639–

647 (2013). doi:10.1016/j.proeng.2013.08.109

9. McGrattan, K., McDermott, R., Weinschenk, C., Overholt, K., Hostikka, S., Floyd, J.:

Fire Dynamics Simulator User’s Guide. National Institute of Standards and

Technology (2015)

10. Forney, G.P.: Smokeview (Version 6) A Tool for Visualizing Fire Dynamics

Simulation Data Volume II: Technical Reference Guide. (2013)

11. Spearpoint, M.J., Dimyadi, J.: Sharing Fire Engineering Simulation Data Using the

IFC Building Information Model. In: International Congress on Modelling and

Simulation - MODSIM07. , Christchurch, New Zealand (2007)

12. Dimyadi, J., Spearpoint, M., Amor, R.: Sharing building information using the IFC

data model for FDS fire simulation. In: Karlsson, B. (ed.) Fire Safety Science -

Proceedings of 9th International Symposium. pp. 1329–1340. IAFSS, Karlsruhe,

Germany (2008)

13. Solihin, W., Eastman, C., Lee, Y.C., Yang, D.H.: A simplified relational database

schema for transformation of BIM data into a query-efficient and spatially enabled

database. Autom. Constr. 84, (2017). doi:10.1016/j.autcon.2017.10.002

14. Solihin, W., Eastman, C., Lee, Y.C.: Multiple representation approach to achieve high-

performance spatial queries of 3D BIM data using a relational database. Autom.

Constr. 81, 369–388 (2017). doi:10.1016/j.autcon.2017.03.014

15. Peng, D., Cao, L., Xu, W.: Using JSON for data exchanging in web service

applications. J. Comput. Inf. Syst. 7, 5883–5890 (2011)

16. Gissi, E., Bartola, R., Santis, N. De, Valpreda, F., Faletti, G., Overholt, K., Dimyadi,

J., Orvieto, R.: Blueprint for Blender + FDS. (2009)

17. Thunderhead Engineering: PyroSim: A Model Construction Tool for Fire Dynamics

Simulator (FDS). (2010)

22

18. Dimyadi, J. 3dsolid2fds, https://sites.google.com/site/jdimyadi/3dsolid2fds. Last

accessed 19 March 2018.

19. Wolfris: STEP2FDS, https://github.com/wolfris/step2fds. Last accessed 19 March

2018.

20. MBIE: C/VM2 Verification Method: Framework for Fire Safety Design For New

Zealand Building Code Clauses C1-C6 Protection from Fire. The Ministry of

Business, Innovation and Employment, Wellington, New Zealand (2014)

