
DevOps Competences and Maturity
for Software Producing Organizations

Rico de Feijter1, Sietse Overbeek1(B), Rob van Vliet2, Erik Jagroep2,
and Sjaak Brinkkemper1

1 Department of Information and Computing Sciences,
Utrecht University, Utrecht, The Netherlands

{R.deFeijter,S.J.Overbeek,S.Brinkkemper}@uu.nl
2 Centric, Gouda, The Netherlands

{Rob.van.Vliet,Erik.Jagroep}@centric.eu

Abstract. Software producing organizations aim to release high qual-
ity software faster, which triggers the adoption of DevOps. However, not
many artifacts are available that aid in adopting DevOps. In an attempt
to bridge this gap, a DevOps Competence Model showing an overview
of the areas to be considered in adopting DevOps is proposed. Also, a
DevOps Maturity Model is proposed that presents a growth path for
software producing organizations. Both these models incorporate per-
spectives that are made up of focus areas which in turn are made up of
capabilities. Apart from designing and validating these models by means
of expert workshops, a case study has been conducted where assessees
answered questions to gain insight into which capabilities were imple-
mented. From the answers, maturity profiles were extracted that sup-
ported the assessees in becoming more DevOps mature.

Keywords: Competence model · Design science · DevOps
Maturity model · Software producing organizations

1 Introduction

Software producing organizations (SPOs) are moving away from on-premise soft-
ware to cloud-based software that allows for faster releasing [13,16]. However,
striving for faster releasing against a high quality means that stakeholders in
SPOs should collaborate more closely and in order to achieve this DevOps pro-
vides a helping hand [23]. The term stresses improving collaboration between
stakeholders such as development (Dev), operations (Ops), product manage-
ment, and quality assurance [11] with the aim to provide the customer with high
quality releases by embracing practices related to creating a healthy culture and
improved collaboration. Moreover, the term addresses automating tasks, lean
thinking, and continuous improvement by leveraging monitoring and measure-
ment [14]. Despite the increasing popularity of DevOps and organizations having
an understanding of the motivations to adopt DevOps and the advantages the
c© Springer International Publishing AG, part of Springer Nature 2018
J. Gulden et al. (Eds.): BPMDS 2018/EMMSAD 2018, LNBIP 318, pp. 244–259, 2018.
https://doi.org/10.1007/978-3-319-91704-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91704-7_16&domain=pdf


DevOps Competences and Maturity for SPOs 245

notion brings [18], DevOps requires further investigation as there is no clear
overview of DevOps practices. This causes organizations to discover for them-
selves how to adopt DevOps [4].

The scientific contributions of this research are as fourfold. First, a set of
drivers and capabilities is proposed to establish a set of practices and to provide
support for DevOps adoption. Second, based on these drivers, capabilities, and
practices a DevOps competence model has been designed as is shown in Sect. 3.
This DevOps competence model shows which focus areas and perspectives are
of importance when adopting DevOps. Third, a DevOps maturity model has
been designed which is presented in Sect. 4, which is used to indicate on what
level of DevOps maturity a SPO can be positioned and what needs to be done
in order to reach higher levels of DevOps maturity. Fourth, and lastly, a case
study has been conducted in which different business units as part of a SPO have
performed a self-assessment to determine their DevOps maturity as is shown in
Sect. 5. For this purpose, we have developed a DevOps assessment tool that has
been used to perform these self-assessments. The paper ends with conclusions
and future research in Sect. 7. Before explaining the results of this research, the
research approach is discussed next.

2 Research Approach

This study was executed at Centric, a large SPO located in the Netherlands
and followed a design science approach [8]. A brief overview of how design sci-
ence was applied to conduct this research is provided in Fig. 1, which shows the
steps involved in the research and references to the paragraphs that explain the
research approach more in detail.

Design science

1.Data 
collection

- Semi-structured 
interviews
- Literature review

2.Analysis

- Constant 
comparison 
analysis

3.DevOps 
competence 
model 
construction

4.First 
validation 
round

- Expert opinions

5.Maturity 
model 
construction

6.Second 
validation 
round

- Expert opinions

7.Exploratory 
case study

- Self assessments

2.1 2.2 2.3 2.4

Fig. 1. Research approach

2.1 Data Collection and Analysis

In the data collection phase, a literature review, and semi-structured interviews
were conducted to identify DevOps drivers providing an understanding of the
motivations to adopt DevOps. The resulting drivers concerned Collaboration
Culture, Agility and Process Alignment, Automation, Quality, Development
and Deployment of Cloud Based Applications, and Continuous Improvement.
Aside from drivers, capabilities that support maturing in DevOps are identified.



246 R. de Feijter et al.

A full list of all identified capabilities is shown in the appendix. Keywords that
were used to obtain drivers from literature concerned DevOps, DevOps drivers,
DevOps motivation, need for DevOps, ‘why’ DevOps, and DevOps objectives.
The drivers found in literature have been used to form an interview protocol in
which the identified drivers acted as a guide to elicit capabilities from practice.
In total, 14 interviews were held at 3 SPOs and parts of the transcripts are
validated by the interviewees through e-mail and follow-up interviews. Parallel
to these interviews, a literature review was done to find DevOps capabilities by
using keywords that adhered to the following structure: DevOps [keyword] prac-
tices OR patterns OR principles, where [keyword] was replaced by the words
lean, continuous improvement, automation, quality, culture, collaboration, and
alignment. DevOps practices are in some cases also known as DevOps princi-
ples and patterns in literature implying that patterns and principles have also
been adopted in the search string. After obtaining data by conducting a liter-
ature review and semi-structured interviews, the data were analyzed by means
of constant comparison analysis, which enables the identification of themes in
qualitative data [15,17]. This technique helped to realize the drivers and the
initial capabilities, which are abstracted to focus areas that are defined in [19]
as defined subsets of a functional domain which is DevOps in this case. Even-
tually, focus areas are abstracted to perspectives. Important to note is that the
perspectives, focus areas, and capabilities not only emerged from the literature
review results and interviews, as the validation rounds and the case study also
contributed to their existence.

2.2 DevOps Competence Model Construction and Validation

Subsequently, a DevOps competence model showing the areas to focus on to
adopt DevOps was constructed on the basis of the earlier obtained capabilities,
focus areas, perspectives, literature and inherently also the drivers. To ensure
credibility of the DevOps competence model and the perspectives, focus areas,
and capabilities, a first validation round was executed. This first validation round
covered expert opinions [25] in the form of a workshop and four follow-up vali-
dation sessions. First, a workshop was held with seven DevOps experts. During
this workshop session, the DevOps competence model was explained after which
it was validated against criteria, which encompassed understandability and clar-
ity of the model. Thereafter, the perspectives, focus areas, and capabilities were
validated against understandability, relevance, and completeness of each focus
area and its corresponding capabilities. The correctness of the maturity order
of each set of capabilities belonging to a focus area was also discussed. After
the workshop, four follow-up validation sessions were executed with two of the
participants from the workshop session in order to validate the processed input
from the workshop. The final version of the DevOps competence model is shown
and described in Sect. 3.



DevOps Competences and Maturity for SPOs 247

2.3 Maturity Model Construction and Validation

Next, the validated perspectives, focus areas, capabilities, assessment data, lit-
erature, and interview data served as input for the DevOps maturity model,
which is a DevOps maturity measurement instrument and supports maturing
in DevOps in a step-by-step way. After creating the DevOps maturity model
by transferring the validated perspectives and focus areas to the DevOps matu-
rity model and positioning the capabilities in the DevOps maturity model, a
second validation round involving expert opinions took place. This validation
round covered a validation of the DevOps maturity model together with a sec-
ond validation of the perspectives, focus areas, and capabilities. Four experts
validated the correctness of the positioning of the capabilities in the DevOps
maturity model by asking whether the expert agreed with the positioning of
the capabilities within a focus area (i.e. intra-dependencies [21]). Further, the
DevOps maturity model was also validated by one of the authors of [21] at a
later stage. This session brought forward the acknowledgement of dependencies
among capabilities from different focus areas, i.e., interdependencies. In follow-
ing this input, interdependencies were added to the DevOps maturity model to
the extent these could be detected. The final version of the DevOps maturity
model is shown and described in Sect. 4.

2.4 Exploratory Case Study

The last part of the study encompassed the execution of a multiple holistic
exploratory case study by adhering to a protocol as advocated in [26]. The case
study served as a means to justify the application of the capabilities and the
constructed DevOps maturity model. Moreover, the exploratory case study com-
prised forty-five questions that were based on the capabilities. These questions
were part of a self assessment that was sent out to nineteen assessees from the
organization Centric at which this study took place. These assessees belonged
to highly divergent business units and each assessee was involved in the creation
of a certain product. In total, eight assessees filled out the self assessment and
seven of the eight self assessments were found useful and were used to make up
maturity plots [19]. The case study also gave rise to an extra capability (see
Infrastructure - Capability B in the appendix) and is further detailed in Sect. 5.

3 A DevOps Competence Model

A DevOps competence model was constructed, which is shown in Fig. 2. The
model represents a software house, which is an organization involved in product
development [3] and comprises three overarching perspectives that cover focus
areas. The perspectives, which are Culture and Collaboration (CC), Product,
Process and Quality (PPQ), and Foundation (F) are discussed below.



248 R. de Feijter et al.

Product, Process and Quality

Culture and 
Collabora on

Development Test Acceptance

Internal
Stakeholders

External
Stakeholders

Founda on

Produc on

Release for produc on

Release heartbeat

Test automa on

Incident handling

Deployment automa on

(Product) 
management

Development

Test/QA

Opera ons

Architecture

Configura on management

Customers

Dev quality 
improve-

ment

Build 
automa on

Branch and 
merge

Communi-
ca on

Knowledge 
sharing

Trust and 
respect

Team 
organiza on

Release 
alignment

Architecture alignment

Infrastructure

Perspec ve Focus area
Rela on

Stakeholder

Customers

Third par es

Fig. 2. The DevOps competence model (Color figure online)

3.1 Culture and Collaboration

The Culture and Collaboration perspective covers the soft part of DevOps and
forms the ‘roof of the house’. Moreover, the perspective covers five focus areas,
which are: Team Organization, Communication, Trust and Respect, Knowledge
Sharing, and Release Alignment. This perspective reflects a prominent part of
the model, because the organization itself should be in place to perform work.
In order to perform work, interdisciplinary professionals should at least com-
municate indirectly with each other. Ideally, professionals also share knowledge,
have trust and respect for one another, work in teams, and there should be some
form of alignment between internal and external dependencies in order to timely
deploy software.

3.2 Product, Process and Quality

The PPQ perspective visualizes the process of releasing a product and feedback
loops. Moreover, when viewing this perspective, it can be discerned that the
focus area in this layer touches upon four environments that together represent



DevOps Competences and Maturity for SPOs 249

the DTAP-street, which is an acronym for development, testing, acceptance,
and production and represents the environments on which development, testing,
and running software in production occurs. The DTAP-street is a well-known
industry practice [7], which makes its inclusion in the DevOps competence model
understandable and recognizable for practitioners.

The model is thus set up in such a way that the focus areas branch and merge,
build automation, and development quality improvement are mainly concerned
with development and thus reside in the development environment. However, the
release heartbeat, test automation, deployment automation, release for produc-
tion, and incident handling focus areas are concerned with the remainder of the
environments as well. For instance, when looking at release heartbeat, require-
ments can be gathered from production and validation of functionality can occur
on testing and acceptance environments but also on production environments.
Testing, on the other hand, could involve regression or unit tests, acceptance
tests, or resilience testing which occurs in production. Deployment automation
touches upon all environments and release for production concerns all environ-
ments as software is only declared done in a DevOps context once it is developed
according to wishes, passed all tests, works in production, and leverages value
to the customer. Lastly, incident handling involves repairing an incident, testing
the fix, and releasing the fix. Meanwhile, production needs to be monitored to
pro-actively act on incidents.

When further scrutinizing the environments, a green arrow can be perceived
that explicitly denotes a feedback loop. This arrow explicates that software is
continuously pushed to production, while at the same time usage data from
production is fed back to product management in order to better comply with
customers wishes. Note, however, that the arrow not only concentrates on the
feedback loop from production to product management, since along the way to
production, other feedback loops can be observed as well. For instance, when a
test on the testing environment or the acceptance environment fails, developers
might have to fix the code after which the tester needs to perform another test
on the software build. Furthermore, relations show that the Product, Process
and Quality perspective relates to the Culture and Collaboration perspective,
while this also applies the other way around. Indeed, when an incident comes in,
product management, developers, testers, and operations should communicate
such that the resulting fix can be put into production again in a timely fashion.

3.3 Foundation

The foundation perspective encompasses the configuration management, archi-
tecture and infrastructure focus areas that stretch from development to produc-
tion and aim to support the process depicted in the product, process and quality
perspective. The reason for stretching these in such a way is underpinned by the
fact that for all displayed environments configuration items such as OS, mid-
dleware, database versions and so on should be managed [9]. Additionally, each
environment has a technical architecture, which is also concerned with the soft-
ware architecture. Also, infrastructure inherently mirrors all environments, as



250 R. de Feijter et al.

environments are a representation of infrastructure [9]. The relation between
the foundation perspective and four environments is also clarified by the arrows
between the Product, Process and Quality, and Foundation perspectives.

Next to the aforementioned, the three focus areas at the bottom are asso-
ciated with one another. That is, provisioning infrastructure with the correct
configuration items to make environment ready for deployment requires configu-
ration management. Indeed, configurations with which environments are provi-
sioned are retrieved from a certain location, be it an Excel document or a version
control system in which the configuration items are managed. Further, architec-
ture alignment is associated with configuration management, since the archi-
tecture, i.e., both software and technical, describes the configuration including
source code and infrastructure configurations such as middleware configurations
at a higher abstraction level [6,22]. Additionally, the relation between configura-
tion management and architecture is made clear as adaption of the configuration
leads to adaption of the architecture and vice versa. Besides, when looking at
the relation between the infrastructure and the architecture, an architecture
describes the structure of the infrastructure at a higher abstraction level [6,12].
The adaption of either of these leads to a modification of the other.

As can be inferred from the aforementioned description the earlier mentioned
drivers are reflected in the model and, apart from that, the DevOps competence
model incorporates internal and external stakeholders that reside in a DevOps
context. Internal stakeholders are represented by management, such as unit man-
agers and product management, who look after requirements management and
release planning related activities, among others. Further, software and technical
architects are represented by architecture and are concerned with the structure
of the software and the technical landscape on which the software should land,
respectively. Further, the model includes developers, testers (including informa-
tion security), and Ops professionals. External stakeholders are customers and
third parties from which software is used in the development of a product.

The DevOps competence model as depicted in Fig. 2 attempts to capture the
different focus areas DevOps touches upon by presenting these in the form of
perspectives. The model also attempts to illustrate the coherency of the perspec-
tives and focus areas, which are cultural, procedural, and technical in nature.
The model also makes clear which stakeholders could be involved in DevOps.

4 DevOps Maturity Model

The DevOps maturity model as is shown in Fig. 3 includes focus areas and
enables a SPO to mature in a fine grained way, which is in contrast with the
CMM model that enables organizations to mature in a generic way [19]. The
focus area maturity model also allows for more than five maturity levels to
be distinguished and dependencies to exist among capabilities. When observing
Fig. 3 more closely, the relation with the DevOps competence model becomes
directly clear as the perspectives and focus areas are also present in this model.

The letters residing in the DevOps maturity model represent the sixty-three
capabilities detected throughout this study. Note, however, that excerpts of these



DevOps Competences and Maturity for SPOs 251

capabilities can be found in the appendix, while full descriptions of the capabilities
can be consulted in [5]. In the maturity model these capabilities are positioned in
increasing order of maturity. For example, Build automation - B is more mature
than Build automation - A, which makes that Build automation - B is positioned
further to the right.

Also, ten levels were determined together with the positioning of the capa-
bilities by taking into account situations that were observed, while conducting
interviews and scrutinizing earlier assessment data reflecting the interview sit-
uations. Moreover, premature observed situations that were not yet adopting
DevOps gave rise to the positioning of the capabilities in levels 1 to 5. A situ-
ation transitioning to a DevOps situation gave input to the positioning of the
capabilities in levels 5 and 6. Situations in which DevOps already was adopted
to a more mature extent gave input to the positioning of the capabilities in levels
5 to 10. Further, positioning was also determined by literature and by taking
into account dependencies among capabilities. For instance, it makes sense to
first gather and prioritize requirements (Release heartbeat - A) before creating
a software build (Build automation - A). Hence, Release heartbeat - A is placed
one level lower than Build automation - A.

Focus area \ Level 0 1 2 3 4 5 6 7 8 9 10

Communica on A B C D E
Knowledge sharing A B C D
Trust and respect A B C
Team organiza on A B C D
Release alignment A B C

Release heartbeat A B C D E F
Branch and merge A B C D
Build automa on A B C
Development quality improvement A B C D E
Test automa on A B C D E
Deployment automa on A B C D
Release for produc on A B C D
Incident handling A B C D

Configura on management A B C
Architecture alignment A B
Infrastructure A B C D

Culture and collabora on

Product, Process and Quality

Founda on

Fig. 3. The DevOps maturity model

5 Measuring of DevOps Maturity

A case study was carried out at Centric to justify the capabilities and DevOps
maturity model in practice. As said in Sect. 2, the case study yielded seven useful
filled in assessments, which were transformed into maturity plots. This transfor-
mation was done by qualitatively analyzing the responses from the assessees,
who were able to answer if a capability was implemented or not and give an
extra explanation to clarify their answer by using the DevOps assessment tool
that is shown in Fig. 4. The answers in conjunction with their explanation thus
made clear what capabilities were implemented, which made it possible to create



252 R. de Feijter et al.

Fig. 4. DevOps assessment tool

maturity plots. Two of the cases for which maturity plots were made are adopted
in this paper and are shown in Figs. 5 and 6. The choice for adopting these cases
lies in the fact that no space is available to adopt all seven cases and that the
first case shows a less mature detected situation, whereas the second case shows
the most mature situation as found in the context of the case study. Both matu-
rity plots show a green bar that demonstrates the extent to which capabilities
have been implemented and also displays the next steps to take in order to grow
more mature. A concrete description for each of these cases follows in which no
contextual information is provided due to confidentiality reasons (Table 1).

Table 1. Case information

Product Age Number of teams

Case1 On-premise product 23 2

Case2 Cloud product 3 8

The case in which professionals were working on an on-premise product is
shown in Fig. 5. This product was hosted at the customer’s site and was twenty-
three years of age. In total, two teams worked on the product. When looking
at the corresponding plot of the case, the observation is made that this case
reached a maturity level of two, since all level 2 capabilities were adopted. In
order to grow towards level 3, dependencies with teams that deliver shared com-
ponents (i.e., components that are developed by other teams and used in mul-
tiple products) are advised to be taken into account in the road map (Release
alignment - Capability A) and configuration items are advised to be managed
in tooling rather than in documents (Configuration management - Capability B).



DevOps Competences and Maturity for SPOs 253

Focus area \ Level 0 1 2 3 4 5 6 7 8 9 10

Communica on A B C D E
Knowledge sharing A B C D
Trust and respect A B C
Team organiza on A B C D
Release alignment A B C

Release heartbeat A B C D E F
Branch and merge A B C D
Build automa on A B C
Development quality improvement A B C D E
Test automa on A B C D E
Deployment automa on A B C D
Release for produc on A B C D
Incident handling A B C D

Configura on management A B C
Architecture alignment A B
Infrastructure A B C D

Culture and collabora on

Product, Process and Quality

Founda on

Fig. 5. Case 1 DevOps maturity profile (Color figure online)

Figure 6 shows a more mature case. Here, professionals were working on a cloud
solution of three years of age. This product was either hosted at an own data
center or at the customers premises and eight teams worked on this product.
As can be inferred from the maturity profile, this case already reached level 7
on the DevOps maturity model and even shows that a number of level 8 capa-
bilities were implemented. However, although many tasks were carried out in a
cross functional manner including Ops (e.g., setting up system concepts and load
tests), no cross functional teams with Ops were present. An advise pertaining
to this case is thus to involve Ops in the cross functional teams (Team organi-
zation - Capability C) that already consisted of developers and testers. Other
advises to this case in order to grow more mature involve adopting automated
acceptance testing and conduct these systematically (Test automation - Capa-
bility D) and adopting a definition of done that stretches to the customer, so
that a feature is only declared done once it yields customer value (Release for
production - Capability C). Finally, blameless postmortems (Incident handling -
Capability C) is advised to be implemented to completely attain level 8.

6 Discussion and Limitations

As has been mentioned in the introduction of this paper, no processes and meth-
ods were observed that concentrate on the adoption of DevOps. An aim of this
work was thus to fill this gap. To this end, a DevOps competence model showing
the focus areas to be considered in order to implement DevOps from a balanced
perspective and a DevOps maturity model showing a fine grained approach to
grow towards a more mature DevOps situation were created. It is safe to say
that these artifacts filled the identified gap to a slight extent, since the artifacts



254 R. de Feijter et al.

Focus area \ Level 0 1 2 3 4 5 6 7 8 9 10

Communica on A B C D E
Knowledge sharing A B C D
Trust and respect A B C
Team organiza on A B C D
Release alignment A B C

Release heartbeat A B C D E F
Branch and merge A B C D
Build automa on A B C
Development quality improvement A B C D E
Test automa on A B C D E
Deployment automa on A B C D
Release for produc on A B C D
Incident handling A B C D

Configura on management A B C
Architecture alignment A B
Infrastructure A B C D

Culture and collabora on

Product, Process and Quality

Founda on

Fig. 6. Case 2 DevOps maturity profile (Color figure online)

came not without limitations. The first limitation concerns the fact that twelve
of the interviews were conducted at the same organization, which causes inter-
view data to be biased towards one organization. Also, all participants involved
in the first validation round came from the same organization. This limitation
impacted the generalizability of the results. Another limitation is that none of
the participants participating in the first round validation was a real DevOps
expert, although all participants had affinity with sub domains of DevOps.

A limitation in the second validation round is that validation sessions with
the interviewees and experts were conducted separately. This caused criteria to
be made up to process validation input, as no consensus reaching among partici-
pants could be reached. When moving on to the validation of the DevOps matu-
rity model, the validation of the positioning of the capabilities in the DevOps
maturity model was done in parallel with the validation of the capabilities them-
selves in a second validation round due to time constraints. However, validating
both the capabilities and the positioning of the capabilities in parallel formed a
limitation within this research. Indeed, additions to existing capabilities solely
recognized by interviewees could not be validated properly in conjunction with
the capabilities their positions by the experts, as the contents of the capabilities
were not updated, while executing the second validation round. The capabilities
for which this was the case were Development quality improvement - Capabil-
ity A and Infrastructure - Capability C. Additionally, capability B, C, and D
from Release for production and their positions were not validated, since these
capabilities arose as new capabilities during the second validation round. Also,
the case study impacted the capabilities and their positioning, since Infrastruc-
ture - Capability B was added and positioned and Configuration management -
Capability C was repositioned due to newly gained insights from the conducted



DevOps Competences and Maturity for SPOs 255

case study. However, this also yielded the fact that Infrastructure - Capability
B, its position and the newly assigned position from Configuration manage-
ment - Capability C were not validated, as the case study occurred after the
second validation round. Next, albeit dependencies between capabilities from
different focus areas (i.e. interdependencies) were advocated to be adopted in
the DevOps maturity model during a validation session, the identified interde-
pendencies themselves have not been validated and also affected dependencies
between capabilities residing in the same focus area (i.e. intradependencies) that
were validated earlier with the 4 experts.

Lastly, a constraint of the case study is that the questions were scoped to Dev
and Ops, thereby leaving out other interdisciplinary professionals. Also, a num-
ber of capabilities that were assumed not to be present in the case organization
were left out to create more to the point questions and yield a greater chance of
obtaining higher response. When further observing the case study limitations, a
key remark is that only 8 filled in assessments were obtained. This could be con-
sidered a limitation, as more response might have better evaluated the maturity
ordering of the capabilities, as in one case Development quality improvement -
capability D was implemented, while Development quality improvement - capa-
bility C was not. This might imply an incorrect maturity order. Aside from the
aforementioned, the case study was conducted in different contexts but in one
organization, which poses a limitation on the generalizability of the case study
results.

7 Conclusions and Future Research

To become more DevOps mature, a SPO can utilize the DevOps competence
model to gain an understanding of the areas to be considered when adopting
DevOps and leverage the DevOps maturity model to measure its current DevOps
maturity level and determine the next steps to become more DevOps mature.
Hence, the combination of the set of capabilities, the DevOps competence model
and the DevOps maturity model can be considered the key contributions of
this study that contribute to bridging the gap mentioned in [4], where it is
concretely stated that there is no clear overview of DevOps practices indicating
that organizations are left to discover for themselves how to adopt DevOps.
Further, Sect. 6 showed that the research came with a number of limitations
that form input to future research. First, to ensure a richer body of drivers
and capabilities requires the execution of interviews at multiple independent
SPOs. Second, to generalize the DevOps competence model, the model needs to
be validated by experts, who are known for their DevOps expertise and come
from different SPOs. Third, an amount of capabilities and their corresponding



256 R. de Feijter et al.

positions require better validation. Fourth, further validation of the intra and
interdependencies could be part of further future work. These validations should
preferably occur in a group setting instead of an individual setting to be able to
reach group consensus. Fifth and last, all capabilities should be evaluated in a
case study to their fullest extent and to better evaluate maturity ordering of the
capabilities, a broader case study should be done. Finally, future work could aim
at studying the intertwinement of high level product management processes such
as portfolio management with DevOps and situational factors, which consider
the context of a SPO and are of use to determine the correct set of capabilities
to be implemented in a certain SPO context [1].

Appendix: Focus areas and Capabilities

CC - Communication
A. Indirect communication communication between
interdisciplinary professionals, among which are Dev and
Ops professionals, is indirectly established (e.g. through
managers, procedures). B. Facilitated communication
direct communication between interdisciplinary profes-
sionals, among which are Dev and Ops professionals, is
facilitated by management by stimulating professionals
to communicate directly. C. Direct communication
direct interdisciplinary communication between profes-
sionals, among which are Dev and Ops professionals
while working towards a release is present. This direct
communication could occur through mailing lists, per-
sonal contact etc. D. Structured communication a
structure for interdisciplinary communication is in place
(e.g. by holding daily standups and retrospectives with
interdisciplinary professionals including Dev and Ops,
and by maintaining contact with (product) management
to discuss about impediments along the way, work to be
done the upcoming sprints, and the technical debt situa-
tion, among others). E. Communication improvement
communication among management and interdisciplinary
professionals, including Dev and Ops, is improved (e.g.
by adopting and trying out new communication practices
from industry, learning from experiences and by tracking
projects or using instruments such as skill matrices and
peer feedback mechanisms over time).

CC - Knowledge sharing
A. Decentralized knowledge sharing knowledge is
shared between interdisciplinary professionals, among
which are Dev and Ops professionals in a decentralized
way (i.e. through notes or documents). B. Centralized
knowledge sharing knowledge is shared between inter-
disciplinary professionals, among which are Dev and Ops
professionals, through centralized knowledge sharing fa-
cilities. C. Active knowledge sharing knowledge is
shared actively between interdisciplinary professionals,
among which are Dev and Ops professionals.
D. Communities of practice knowledge is shared
through communities of practice, which are composed
of multidisciplinary professionals that share a common
interest.

CC - Trust and respect
A. Culture of trust and respect imitation dynamics,

level of autonomy, and planning are open for collab-
oration and creation of trust and respect between in-
terdisciplinary professionals, among which are Dev and
Ops people. An example here is a DevOps duty rotation
where developers take on operational tasks. B. Cul-
ture of trust and respect facilitation a culture of
trust and respect is facilitated by management. Facili-
tation by management means that management should
not manage by fear, but should act as a servant leader
that supports professionals in day-to-day tasks, has an
understanding of operational tasks, and allows interdis-
ciplinary professionals, among which are Dev and Ops
professionals, to learn quickly from mistakes. C. Cul-
ture of trust and respect shared core values the
culture of trust and respect between interdisciplinary
professionals, among which are Dev and Ops profession-
als, is maintained by following shared core values such
as rewarding Dev and Ops as a group when a release
is successful, being transparent and open towards one
another to prevent blaming, and working towards shared
goals.

CC - Team organization
A. Separate teams separate teams are present (e.g. de-
velopment teams, operations teams etc). B. Cross func-
tional teams excluding Ops cross functional teams are
present that exclude operations (e.g. teams consisting
of developers and testers are present). C. Cross func-
tional teams including Ops cross functional teams are
present that include operations. D. Cross functional
teams with knowledge overlap cross functional teams
are present in which professionals have boundary cross-
ing knowledge (e.g. T-shaped professionals that have
Dev and Ops knowledge).

CC - Release alignment
A. Roadmap alignment alignment with dependent in-
ternal and external stakeholders (e.g. third parties) is
considered in the roadmap. B. Internal release heart-
beat alignment the release heartbeat is aligned with
dependent internal stakeholders. An example of such
an alignment could be reflected in adopting the same
deployment moments or adhering to a common sprint
cadence. C. External release heartbeat alignment
the release heartbeat is aligned with dependent external
stakeholders such as third parties from which software



DevOps Competences and Maturity for SPOs 257

is used in the development of a product.

PPQ - Release heartbeat
A. Requirements and incidents gathering and pri-
oritization Functional and nonfunctional requirements
and incidents are gathered from and prioritized with
internal stakeholders and external stakeholders (e.g.
customers). B. Fixed release heartbeat and valida-
tion a fixed release heartbeat is present and validation
of functionality occurs with internal stakeholders and
external stakeholders (e.g. customers) by demoing the
functionality on a test or acceptance environment or
the like. C. Production requirements and incident
gathering functional and nonfunctional requirements
and incidents are gathered from production by monitor-
ing the production environment(s). D. Gradual release
and production validation functionality is released
gradually (e.g. functionality is first released to internal
stakeholders, whereafter it is released to stakeholders
that have close bonds with the organization. Finally, the
software is released to end-customers) and validation of
functionality occurs in production. E. Feature exper-
iments experiments are run with slices of features in
order to support the prioritization of the contents in the
backlog (e.g. A/B testing). F. Release heartbeat im-
provement the value stream is continuously improved
by identifying and eliminating activities that do not add
any value, shortening lead times and shortening feedback
loops such as the time between feedback moments with
the customer.

PPQ - Branch and merge
A. Version controlled source code source code is
stored under version control. B. Branching/merging
strategy a branching/merging strategy is adhered to
that allows multiple developers to collaborate and allows
code to be branched and merged. C. DevOps branch-
ing/merging strategy a branching/merging strategy is
adhered to that is DevOps compatible. An example of
such a strategy is trunk based development. D. Feature
toggles feature toggles are used to release functionality
to customers by making completed functionality avail-
able.

PPQ - Build automation
Manual build creation a software build is created
manually. Automated build creation a build is cre-
ated automatically (e.g. by running a scheduled build
at night). Continuous build creation a CI build is
created after each check-in to verify that the integrated
code still yields a working software build.

PPQ - Development quality improvement
A. Manual code quality monitoring manual code
quality improvement mechanisms are in place such
as pair programming, code reviews, and adherence to
code conventions. B. Broken build detection broken
software builds are detected, made visual and quickly
repaired. C. Gated check-in gated check-ins are per-
formed. D. Automated code quality monitoring code
quality is monitored automatically (e.g. automated code
reviews). E. Quality gates quality gates are defined
against which the quality of code is measured.

PPQ - Test automation
A. Systematic testing Manual unit and acceptance
tests are performed systematically. B. Advanced sys-
tematic testing manual integration (chain) and regres-
sion tests are performed systematically and test driven
development practices are used in testing such as us-
ing mocking frameworks and writing unit tests before
writing code. C. Automated systematic testing au-
tomated unit and nonfunctional tests are performed
systematically. D. Advanced automated systematic
testing automated regression, integration (chain) and
acceptance tests are performed systematically. E. Au-
tomated recoverability and resilience testing auto-
mated recoverability and resilience tests are randomly
performed in production.

PPQ - Deployment automation
A. Manual deployment software is deployed to envi-
ronments in a manual fashion. In addition, rollback is
possible, where data is brought back to a stable state. B.
Partly automated deployment software is deployed
automatically to some environments. C. Continuous
delivery deployment to all environments occurs in an
automated manner (e.g. via self service deployments),
where data model changes are also processed automat-
ically. D. Continuous deployment each check-in is
continuously deployed to production, where data model
changes are also processed and automated rollback is
possible.

PPQ - Release for production
A. Definition of done a definition of done that incor-
porates development and testing criteria, among others
to be complied with during a sprint, is followed. B.
Definition of release a definition of release that incor-
porates Ops criteria (e.g. verifying whether the software
works in production) to be complied with before releas-
ing to customers, is followed. C. Done according to
customer functionality is declared done when customer
satisfaction has been reached. D. Automated mate-
rial generation Supporting materials such as release
documentation, training documentation etc. are auto-
matically generated.

PPQ - Incident handling
A. Reactive incident handling incidents are reactively
acted upon by interdisciplinary professionals, among
which are Dev and Ops professionals. B. Proactive in-
cident handling incidents are proactively acted upon
by interdisciplinary professionals, among which are Dev
and Ops professionals C. Blameless root cause de-
tection root causes are identified without blaming one
another by conducting blameless postmortems involving
both Dev and Ops. D. Automated root cause de-
tection the identification of root causes of incidents is
supported by analytics.

F - Configuration management
A. Manual configuration management Supported
versions of configuration items (e.g. OS, middleware
etc.) and their relationships are managed manually, for
instance in documents or excel sheets. B. Automated
configuration management Supported versions of con-
figuration times and their relationships are managed in a
configuration management tool. C. Version controlled
configuration management Supported versions of the
configuration items and their relationships are managed
in version control.

F - Architecture alignment
A. Software and technical architecture alignment
the software architecture of an application is aligned
with a technical architecture before a release. B. Con-
tinuous architecture evolvement the software and
technical architecture evolve mutually in a continuous
fashion in such a way that these architectures are con-
tinuously aligned and kept up to date.

F - Infrastructure
A. Manually provisioned infrastructure infrastruc-
ture such as development, test, acceptance and produc-
tion infrastructure is available and provisioned manually.
B. Partly automatically provisioned infrastructure
A part of the infrastructure between development and
production is equivalent in terms of configuration and
hardware and some or all environments are provisioned
automatically. C. Automatically provisioned infras-
tructure infrastructure between development and pro-
duction is equivalent in terms of configuration and hard-
ware and provisioned automatically. D. Managed plat-
form services platform services (such as a web server
and a database server) are preconfigured in the plat-
form and allow for applications being directly deployed,
among others, while rights and rolls are managed per en-
vironment. This is also known as platform as a service.



258 R. de Feijter et al.

References

1. Bekkers, W., van de Weerd, I., Spruit, M., Brinkkemper, S.: A framework for
process improvement in software product management. In: Riel, A., O’Connor,
R., Tichkiewitch, S., Messnarz, R. (eds.) EuroSPI 2010. CCIS, vol. 99, pp. 1–12.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15666-3 1

2. Nord, R.L., Ozkaya, I., Kruchten, P.: Agile in distress: architecture to the rescue.
In: Dingsøyr, T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K.
(eds.) XP 2014. LNBIP, vol. 199, pp. 43–57. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-14358-3 5

3. Derniame, J.-C., Kaba, B.A., Wastell, D. (eds.): Software Process: Principles,
Methodology, and Technology. LNCS, vol. 1500. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49205-4

4. Erich, F., Amrit, C., Daneva, M.: Cooperation between software development and
operations: a literature review. In: The 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. ACM, Torino (2014)

5. de Feijter, R., van Vliet, R., Jagroep, E., Overbeek, S., Brinkkemper, S.: Towards
the adoption of DevOps in software product organizations: a maturity model app-
roach. Technical report, Utrecht University (2017)

6. Hall, R.S., Heimbigner, D., van der Hoek, A., Wolf, A.L.: An architecture for
post-development configuration management in a wide-area network. In: The 17th
International Conference on Distributed Computing Systems, pp. 269–278. IEEE,
Baltimore (1997)

7. Heitlager, I., Jansen, S., Helms, R., Brinkkemper, S.: Understanding the dynamics
of product software development using the concept of coevolution. In: The 2nd
international workshop on Software Evolvability, pp. 16–22. IEEE, Philadelphia
(2006)

8. Hevner, A., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28, 75–105 (2004)

9. Humble, J., Farley, D., Spafford, G.: Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation. Pearson Education,
Boston (2010)

10. Iden, J., Tessem, B., Päivärinta, T.: Problems in the interplay of development
and it operations in system development projects: a delphi study of norwegian it
experts. Inf. Softw. Technol. 53, 394–406 (2011)

11. Kim, G., Behr, K., Spafford, G.: The Phoenix Project: A Novel About It, DevOps,
and Helping Your Business Win. IT Revolution, Portland (2014)

12. Laan, S.: It Infrastructure Architecture-Infrastructure Building Blocks and Con-
cepts, 2nd edn. Lulu Press, Raleigh (2013)

13. Lawton, G.: Developing software online with platform-as-a-service technology.
Computer 41, 13–15 (2008)

14. Lwakatare, L.E., Kuvaja, P., Oivo, M.: Dimensions of DevOps. In: Lassenius,
C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212, pp. 212–217.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18612-2 19

15. Onwuegbuzie, A.J., Leech, N.L., Collins, K.M.: Qualitative analysis techniques for
the review of the literature. Qual. Rep. 17, 1–30 (2012)

16. Pahl, C., Xiong, H., Walshe, R.: A comparison of on-premise to cloud migration
approaches. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013.
LNCS, vol. 8135, pp. 212–226. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40651-5 18

https://doi.org/10.1007/978-3-642-15666-3_1
https://doi.org/10.1007/978-3-319-14358-3_5
https://doi.org/10.1007/978-3-319-14358-3_5
https://doi.org/10.1007/3-540-49205-4
https://doi.org/10.1007/978-3-319-18612-2_19
https://doi.org/10.1007/978-3-642-40651-5_18
https://doi.org/10.1007/978-3-642-40651-5_18


DevOps Competences and Maturity for SPOs 259

17. Saldaña, J.: The Coding Manual for Qualitative Researchers. Sage, Thousand Oaks
(2015)

18. Smeds, J., Nybom, K., Porres, I.: DevOps: a definition and perceived adoption
impediments. In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015.
LNBIP, vol. 212, pp. 166–177. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18612-2 14

19. Steenbergen, M., Bos, M., Brinkkemper, S., van de Weerd, I., Bekkers, W.: Improv-
ing is functions step by step: the use of focus area maturity models. Scand. J. Inf.
Syst. 25, 35–56 (2013)

20. Waller, G., Ehmke, N., Hasselbring, W.: Including performance benchmarks into
continuous integration to enable DevOps. ACM SIGSOFT Softw. Eng. Notes 40,
1–4 (2015)

21. van de Weerd, I., Bekkers, W., Brinkkemper, S.: Developing a maturity matrix for
software product management. In: Tyrväinen, P., Jansen, S., Cusumano, M.A.
(eds.) ICSOB 2010. LNBIP, vol. 51, pp. 76–89. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13633-7 7

22. Westfechtel, B., Conradi, R.: Software architecture and software configuration man-
agement. In: Westfechtel, B., van der Hoek, A. (eds.) SCM 2001/2003. LNCS,
vol. 2649, pp. 24–39. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
39195-9 3

23. Wettinger, J., Andrikopoulos, V., Leymann, F.: Enabling DevOps collaboration
and continuous delivery using diverse application environments. In: Debruyne, C.,
Panetto, H., Meersman, R., Dillon, T., Weichhart, G., An, Y., Ardagna, C.A. (eds.)
OTM 2015. LNCS, vol. 9415, pp. 348–358. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-26148-5 23

24. Wettinger, J., Breitenbücher, U., Leymann, F.: Compensation-based vs. convergent
deployment automation for services operated in the cloud. In: Franch, X., Ghose,
A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 336–350.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45391-9 23

25. Wieringa, R.J.: Design Science Methodology for Information Systems and Soft-
ware Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43839-8

26. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Thou-
sand Oaks (2013)

https://doi.org/10.1007/978-3-319-18612-2_14
https://doi.org/10.1007/978-3-319-18612-2_14
https://doi.org/10.1007/978-3-642-13633-7_7
https://doi.org/10.1007/3-540-39195-9_3
https://doi.org/10.1007/3-540-39195-9_3
https://doi.org/10.1007/978-3-319-26148-5_23
https://doi.org/10.1007/978-3-319-26148-5_23
https://doi.org/10.1007/978-3-662-45391-9_23
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8

	DevOps Competences and Maturity for Software Producing Organizations
	1 Introduction
	2 Research Approach
	2.1 Data Collection and Analysis
	2.2 DevOps Competence Model Construction and Validation
	2.3 Maturity Model Construction and Validation
	2.4 Exploratory Case Study

	3 A DevOps Competence Model
	3.1 Culture and Collaboration
	3.2 Product, Process and Quality
	3.3 Foundation

	4 DevOps Maturity Model
	5 Measuring of DevOps Maturity
	6 Discussion and Limitations
	7 Conclusions and Future Research
	References




