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Abstract. In this paper, we present E2SM, an End-to-End Security Model and a 
set of algorithms to protect data confidentiality in complex adaptive Service-
oriented applications SOA. Starting from initial and intuitive business security 
constraints’ settings, E2SM synthesizes a complete security configuration that 
is formally verified. E2SM is adapted to dynamic security constraints’ modifi-
cations and to services’ architecture reconfiguration. Thanks to its composition-
al verification, only impacted services’ security is rechecked which makes 
E2SM suitable to adaptive and scalable SOA. 

Keywords: Configuration synthesis, Security Formal checking, SOA, adapta-
tion. 

1 Introduction 

SOA applications are generally built from existing services and based on standard 
tools for service composition like Web Services (WS) [1]. These applications are 
deployed in various domains like e-health systems, e-commerce and social networks. 
They exchange critical information between mistrusted parties and networks and have 
to preserve people’s privacy and business data confidentiality. Several standards and 
tools [2][3][4] are currently used to secure WS communications. They are generally 
based on access control policies that focus on point-to-point communications. Never-
theless, end-to-end security is required and implies tracking information flow through 
all the system services and analyzing data dependencies. Typically, forwarding confi-
dential data to unauthorized services has to be detected. Consequently, data depend-
ence has to be tracked and explicitly exposed; otherwise, security composition can 
induce security leaks called interference [5].  

An application free of this problem is said to satisfy the non-interference property 
[8]. To check that a WS satisfies non-interference, a classical technique consists in 
classifying WS data with respect to its security level and verifying that data with low-
level security constraint (like public data) is not influenced or calculated from any 
data with high-level security constraint (like confidential data). Furthermore, the secu-
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rity classification model has to consider authorization rules and trust between services 
and consider the network not unique as potential attacker. Indeed, current SOA appli-
cations are generally composed of loosely coupled services that come from different 
providers. Tracking data flow to non-authorized services is not an easy task in a dis-
tributed system [6]. 

Standard orchestration languages like BPEL (Business Process Execution Lan-
guage) [7] are practical to build complex composed WS and to track their execution 
for reliability reasons mainly. Nevertheless, these languages, as well as WS security 
standards, provide no way to define data security classification and to check non-
interference property. There is a clear need for a new security model and a practical 
tool that helps administrators setting intuitive security configuration parameters and 
synthesizes automatically the whole security configuration. The tool has to be robust 
proving formally that the security configuration satisfies security policies. It has to be 
scalable, that is when the number of services’ activities is huge or when the number 
of composed services is important, security configuration is calculated within an ac-
ceptable reasonable time. Furthermore, security configuration has to be adaptable to 
special cases like emergency where security constraints have to be relaxed. For exam-
ple, in a home gateway application, if a fire is detected, the information has to reach a 
remote monitor service in a short time even though such information is not protected 
with cryptography encryption. More generally, a compromise between security con-
straints and functionality needs has to be found and relaxing some information secre-
cy is sometimes needed to reach this compromise. This feature is called declassifica-
tion and is still a hard problem in security research field and is rarely implemented in 
real applications like SOA [9] [10]. Another aspect of adaptation is when the system 
architecture is modified. Typically, removing or adding new services or modifying 
some security configuration settings may require the security configuration synthesis 
that has to be executed rapidly not to slow down the adaptation time. 

 
In this paper, we propose E2SM (End-to-End Security Model), a security model for 

composed and adaptive SOA applications construct as a composition of BPEL pro-
cesses. The main idea of E2SM is to abstract BPEL processes to a set of graphs to 
show data dependences and starting from a few initial configuration settings, the 
whole system configuration is generated while checking its non-interference property. 
Non-interference checking is modular: to check that a hierarchical BPEL process is 
secure, it is sufficient to check that each involved BPEL process is secure. Further-
more, E2SM assists users (service designers, developers or administrators) to set-up 
business oriented security constraints at a high level, checks constraints coherence 
and synthesizes a complete secure configuration. If the user’s security constraints 
induce non-secure configuration, the user is guided to correct his initial configuration 
by relaxing some constraints or modifying his initial configuration. Dynamically, 
E2SM checks any security re-configuration. It tracks the affected service parts and 
regenerates the new security configuration in an acceptable time. Our solution is prac-
tical since users do not need to be security experts, robust since the security model 
and algorithms are based on formal bases, scalable thanks to the compositional check-
ing and adaptable to SOA dynamic reconfiguration. 
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The rest of the paper is structured as follows. Section II describes program depend-
ence graphs as abstractions for BPEL workflows. Section III presents the security 
model and E2SM configuration synthesis algorithms. Section IV evaluates E2SM 
mainly the algorithm performance. Section V presents related work and section VI 
concludes the paper and presents its perspectives. 

2 Dependence Graph abstraction 

In this section, we describe program dependence graphs (PDG) as abstraction for 
BPEL processes for data tracking and the system dependence graphs (SDG), our ex-
tension to PDG to abstract composed BPEL processes. 

2.1 Program Dependence Graphs 

Program dependence graphs (PDG) are a standard tool to model information flow 
through a program [11]. Graph nodes represent program statements or expressions. A 
data dependence edge, represented with an arrow, x → y means that statement x as-
signs a variable which is used in statement y (without being reassigned underway). A 
control dependence edge x → y means that the mere execution of y depends on the 
value of the expression x (which is typically a condition in an if- or while-statement). 
A path x →* y means that information can flow from node x to node y. Contrarily, if 
no path exists from node x to y, it is guaranteed there is no information flow from x to 
y. To identify all statements influencing a node y, the backward slice is defined as 
BS(y) = {x | x →* y}. PDG is classically used in imperative languages like Java 
[8][11]. We implemented in a previous work [22] a PDG generator for BPEL pro-
cesses. A BPEL process is composed mainly of two types of activities, that are (1) 
basic activities, such as receive, reply, invoke, assign, throw, exit, and (2) structured 
activities, such as sequence, if, while, repeat − until, pick, f low. First, a BPEL control 
dependence sub-graph is constructed where nodes represent BPEL activities and edg-
es represent possible execution sequences of the activities. This is applicable mainly 
for condition activities like < if... > or < switch... >. For example, a control flow edge 
x → y means that the activity represented by y may execute immediately after the 
execution of the activity represented by x. Second, a data dependence analysis is per-
formed attributing the system variables to their activities and based on a Definition-
Use relation. For each ordered pair (nd,nu), where a statement called nd contains a 
definition of a variable v and used in a statement nu, a data dependence is identified 
[12].  For example, Fig. 1. illustrates the graphical representation of the BPEL process 
of a laboratory service deployed on a cloud. It receives a patient medical record and 
following the record type, it forwards the record to the radio laboratory service or the 
blood laboratory service. The activities are indexed with their node number. 
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Fig. 1.  Graphical representation of the Laboratories BPEL and the correspondent PDG 

For example, node (01) corresponds to the receive BPEL activity and node (02) corre-
sponds to the copy instruction of the assign activity. In (01), variable in-
put_from_reception is used and in (02) this variable is copied to the newly defined 
record variable. Since there is a Definition-Use relation between the two activities 
w.r.t input from reception variable, a graph edge is created between node (01) and 
(02). Similarly, there is an edge between node(01) and (03). Node (04) corresponds to 
a structured if activity where variable record type is used. The Definition-Use relation 
with respect to variable record_type allows creating the graph edge between (02) and 
(04). On the other hand, a control dependence creates the edge between (04) and (05) 
and between (04) and (05) due to the condition activity at node (04). 

2.2 System dependence graphs 

For composed BPEL processes, SDG describes the information flow for the entire 
system. To build it, we consider the PDG of all services and connect them with bind-
ing edges. Each binding edge corresponds to an inter-service connection: the source is 
the sender output endpoint and the sink is the destination service endpoint. Further-
more, for each primitive service, we construct a restricted PDG with nodes corre-
sponding to input and output variables and edges joining the input nodes to the output 
nodes they depend on. Variable dependence in atomic services can be identified either 
using classical program dependence graphs [13] or using a description of the service 
behavior. In the worst case, we consider that all service outputs depend on all service 
inputs. Hereafter, we give a formal definition of SDG. 

Definition 1 (System Dependence Graph). Let WSS be a WS system composed of n 
services (Si)i=1,n. For each service Si , let Gi = (Ni , Ei ) be its associated PDG. The 
system dependence graph G = (N,E) is constructed as follows: N = ∪i=1,n Ni and E = 
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Einter ∪ ∪i=1,n Ei where Einter is the set of edges corresponding to inter-service bindings. 

3 E2SEM security model 

Many security annotation models are proposed in the literature [5]. Nevertheless, 
DLM, the decentralized label model [14] initially proposed for Java programs, is 
more appropriate for distributed services with mutual distrust. We extend DLM for 
SOA and we define non-interference for BPEL-based workflows. Afterwards, we 
propose two algorithms for non-interference checking and configuration synthesis. 

3.1 Decentralized Label Model 

The essentials of DLM are objects containing information to protect, principals and 
labels. Objects can be variables, storage locations or input/output communication 
channels receiving/sending data. Principals are persons or programs that own or ac-
cess pieces of system information. To express confidentiality policy, labels are asso-
ciated to objects and a principal can be owner initiating the information or reader 
authorized to access that information. A label general structure is L = {o1 : r11,r12,··· ; 
o2 : r21,r22,··· ; ··· ; on : rn1,rn2,···} where oi are owners and rij are readers. For exam-
ple, in a clinical SOA, the medical record can be labeled L = {patient : clinic,doctor} 
which indicates that the patient principal allows the clinic and the doctor to access his 
information. Labels are ordered using the no more restrictive than relation, represent-
ed by ⊆ symbol. Given two labels L1 and L2, we have L1 ⊆ L2 if and only if owners 
of L1 are included in L1 and, for a given owner, the readers of L2 are included in 
those of L1. For example, if L1 = {clinic : doctor1} and L2 = {patient : doctor1, doc-
tor2}, we have L2 ⊆  L1. During program computation, when information is labeled 
with L1 and L2, respectively, the result should have the least restrictive label that 
maintains all the flow restrictions specified by L1 and L2. This least restrictive label, 
the join of L1 and L2 (written as L1∪L2), is constructed so that owners is the union  
of L1 and L2 owners and the reader set for each owner in L1 and L2 is the intersec-
tion of their corresponding reader sets. For example, let us suppose that a medical 
record is composed of two parts so that the first part is labeled L1 = {patient : doc-
tor1} and the second one is labeled L2 = {patient : doctor1,doctor2}. The medical 
record has to respect both constraints and then only doctor1 is allowed to read the 
medical record content with label L1 ∪ L2 = {patient : doctor1}. Note that security 
labels represent a lattice (L, ⊆) [14] where L denotes the finite set of labels that is 
partially ordered by ⊆. We denote by * the weakest principal used to annotate public 
information. For example, label {p : *} indicates that information is owned by princi-
pal p which allows all principals access its information. 

   Principals can delegate their information ownership to other principals with regard 
to a trust relation. According to trust hierarchy, information can be relabeled in a safe 
way following two forms. In the first form, label ownership is changed. A label’s 
owner O can be replaced by owner O’ so that O trusts O’. The second form of relabel-
ing is declassification, which allows relaxing security constraints in a safe way. The 
information is copied in a fresh variable and relabeled to a less restrictive security 
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label. This is allowed only by data owner or by another principal trusted by the owner. 
The new label is usually calculated from the information label by adding readers 
(more principals are allowed to access information) or removing some policies (own-
ers with their respective readers), which imposes less reading constraints on that in-
formation. For example, in the Fig.1. use-case, the patient record labeled L={patient: 
laboratory} does not allow initially blood-Lab nor radio-Lab to read data. Neverthe-
less, since these labs are trusted by the patient, they can be added as readers and L is 
declassified to L2={patient, laboratory, blood-Lab, radio-Lab}. 

   Since we have two kinds of services in SOA, managed and external services, we 
extend DLM with required and provided labels. Required labels are immutable la-
bels that represent external constraints, typically third-party service requirements that 
cannot be changed by the administrator. Provided labels are labels set on managed 
resources and can be modified by the administrator when needed. 

3.2 PDG-based non-interference checking 

Let N be the set of PDG nodes, X the set of program variables and L the set of securi-
ty labels. Let S: N∪X→L be a function assigning security labels L to nodes in N ∪ X 
defined as follows. For a program statement represented by a node n, if a variable v is 
defined in that statement, then S(n) = S(v). For example, in Fig.1., we have S((01)) = 
S(input_from_reception). If no variable is defined in the statement represented by the 
node n, then S(n) = ∪i Li where Li represents the security label of ith variable used in 
that statement  [11].  Non-interference property is satisfied in annotated PDG with S if 
and only if for every edge x → y it holds S(x) ⊆ S(y). Classically, non-interference is 
iteratively checked starting from specific nodes called slicing criteria that we define 
hereafter. For a statement of interest represented by a node x, the backward slice 
BS(x) extracts those statements that potentially have an influence onto that statement. 
This later is called the slicing criterion. In our work, we define slicing criteria are the 
nodes that have required labels. Typically, a slicing criterion is a node representing an 
endpoint to an external service and imposing its security constraint. Consequently, 
required security label specifies a limit so that only information having a smaller se-
curity label may reach that statement. Inversely, provided labels can be assigned to 
any node in PDG. Formally, provided labels are defined by a partial function P: N∪X 
→ L∪{⊥}. Similarly, required security is defined as a partial function R: N∪X → 
L∪{⊥}. In this model, the security label S(n) of every node n must moreover satisfy: 
P(n) ⊆ S(n) ⊆ R(n) whenever P(n) and/or R(n) are defined. In this extended model, 
the non-interference property in an annotated PDG can be verified as follows.  

Proposition 1 (Non-interference checking - version 1). In a PDG with P and R the 
functions assigning respectively the provided and required security labels, the non-
interference property holds if the following condition is satisfied: ���∀n ∈ dom(R), ∀x ∈ 
dom(P ) ∩ BS(n), P (x) ⊆ R(n). Considering actual security labels S, the next propo-
sition  provides an alternative way for checking non-interference [11].   
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Proposition 2 (Non-interference checking - version 2). In a PDG with P and R the 
functions assigning respectively provided and required security labels, non-
interference property is satisfied if the following condition holds: ∀n ∈ dom(R), S(n) 
⊆ R(n). 

   Starting from an initial annotation for provided and required security levels R and P, 
Algorithm 1 calculates the actual security configuration S using an iterative method. 
Algorithm 1 can be considered as a flavor of the classical Bellman-Ford algorithm. 
The number of iterations depends on relabeling occurrence which depends itself on 
the number of vertices, the graph connectivity and the initial label distribution. 

   Regarding declassification, specific nodes are selected to be declassification nodes 
[15]. A declassification node d has a security label S(d) and a required security label 
R(d) so that the relation S(d) ⊆ R(d) is not satisfied. Declassification implies that the 
user authorizes lowering S(d) to R(d). Non-interference with declassification holds if 
for each path from node x to y where the relation S(x) ⊆ S(y) is not true, there is a 
declassification node d on the path with S(x) ⊆ R(d) and S(d) ⊆ S(y) (assuming that 
there is no other declassification node on that path) [11]. Therefore, information flow 
control with declassification is no longer transitive. For confidentiality checking with 
declassification, a simple solution is to represent declassification nodes as barriers 
where slicing stops [16]. Barrier slices are defined as follows. 

Definition 2 (Barrier slice). Let G = (N, E) be a PDG, C a slicing criterion and B the 
set of barrier nodes. The barrier slice BS(C,B) for the slicing criterion C is the set of 
nodes on which a node n ∈ C (transitively) depends via a path that does not contain 
any node of B [16]. 

Algorithm	
  1:	
  Secure	
  configuration	
  without	
  declassification 

Input:	
  G	
  =	
  (N,	
  →)	
  a	
  PDG	
  graph,	
  X	
  a	
  set	
  of	
  variables, 

P,	
  R	
  provided	
  and	
  required	
  security	
  annotations	
  on	
  N	
  ∪	
  X 

Output:	
  S	
  complete	
  label	
  assignment	
  on	
  N	
  ∪	
  X 

/*	
  Initialization	
  */ 

foreach	
  n	
  ∈	
  N	
  ∪	
  X	
  do 

	
  	
  	
  S(n)	
  :=	
  {⊥} 

	
  	
  	
  if	
  P(n)	
  defined	
  then	
  S(n)	
  :=	
  P(n)	
  endif 

end 

/*	
  Main	
  Loop	
  */ 

while	
  (S	
  changes)	
  do 

	
  	
  	
  foreach	
  n	
  ∈	
  N	
  do 

	
  	
  	
  	
  	
  	
  S(n)	
  :=	
  S(n)	
  ∪	
  ∪
n′∈BS(n)

S(n′) 

	
  	
  	
  	
  	
  	
  if	
  (node	
  n	
  defines	
  variable	
  x)	
  then 

	
  	
  	
  	
  	
  	
  	
  	
  S(n)	
  :=	
  S(n)	
  ∪	
  S(x)	
  	
  	
  	
  ;	
  	
  	
  S(x)	
  :=	
  S(n)	
  	
  endif 
end 

foreach	
  n	
  ∈	
  N	
  ∪	
  X	
  do 

	
  	
  	
  if	
  R(n)	
  defined	
  and	
  S(n)	
  ⊄	
  R(n))	
  then 

	
  	
  	
  	
  	
  	
  stop	
  	
  /*	
  required	
  security	
  label	
  exceeded	
  at	
  n	
  */	
  endif	
  

end	
  

Algorithm	
  2:	
  Secure	
  configuration	
  with	
  declassification 

Input:	
  G=(N,→)	
  a	
  PDG,	
  e	
  the	
  root	
  node,	
   
	
  X	
  a	
  set	
  of	
  variables,	
  	
  	
  
P,	
  R	
  provided	
  and	
  required	
  security	
  annotations	
  on	
  	
  N	
  ∪	
  X 

Output:	
  D,	
  the	
  set	
  of	
  declassified	
  nodes	
   
/*	
  Declassification	
  nodes	
  is	
  initially	
  empty	
  */ 

D	
  :=	
  ∅ 

	
  
/*	
  Main	
  loop	
  */	
   
while	
  (D	
  changes)	
  do 

	
  	
  	
  /*	
  Compute	
  candidates	
  for	
  declassification	
  */	
  
	
  	
  	
  Z	
  :=	
  {	
  z∈N	
  /	
  z	
  defines	
  a	
  variable,	
  ∃x∈dom(P),	
  	
  	
  	
  	
  	
   
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  x∈BS({z},D∪{e}),	
  ∃y∈dom(R),	
   
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  z∈BS({y},D∪{e}),	
  P(x)	
  ⊄ R(y),	
   
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  checkTrust(this,	
  P	
  (x),	
  R(y))	
  } 
	
  
/*	
  Interact	
  with	
  user	
  to	
  select	
  a	
  subset	
  Z′	
  for	
  declassification	
  */	
   
	
  	
  	
  Z′	
  :=	
  chooseForDeclassification(Z)	
   
/*	
  Augment	
  the	
  set	
  of	
  declassified	
  nodes	
  */ 

	
  	
  	
  D	
  :=	
  D	
  ∪	
  Z′	
   
end 

/*	
  Final	
  check	
  */ 

	
  	
  	
  if	
  conditions	
  of	
  Prop	
  3	
  hold	
  then	
   
	
  	
  	
  	
  	
  	
  exit	
  	
  /*	
  secure	
  configuration	
  obtained	
  	
  	
  */ 
	
   
end 
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Checking confidentiality with declassification implies checking non-interference con-
sidering barrier slices instead of backward slices where the barrier nodes are com-
posed of the declassified nodes and the entry node (corresponding to the entry point in 
the program). The slicing criterion is composed of the join of nodes with required 
labels and declassified nodes. Consequently, proposition 1 can be adapted considering 
slices with barriers as follows. 

Proposition 3 (Non-interference with declassification checking). In a PDG with P 
and R the partial functions assigning respectively the provided and required security 
labels, D a set of declassified nodes, e the root of the PDG (corresponding to the entry 
point of the program) and B a barrier node set where B = D ∪ {e}. Non-interference 
with declassification is satisfied if the following condition holds: 

∀n ∈ dom(R)∪D, ∀x ∈ dom(P )∩BS({n}, B), P (x) ⊆ R(n) 

Based on this definition, we propose Algorithm 2 that helps users checking and build-
ing secure configurations with declassification. Algorithm 2 calls the checkTrust(S, 
L1 , L2 ) function that, for each service S and labels L1 and L2, verifies the declassi-
fication condition based on trustfulness between principals. 

Proposition 4. The algorithm Secure configuration checking accepts secure configu-
rations and rejects non-secure ones. 

Proof. Let S be the computed configuration. For each node x with required security, 
we have one of the following conditions: either S(x) ⊆ R(x) or x is a declassified 
node. Otherwise, the algorithm stops. By definition, we have a secure PDG and then S 
is a secure configuration. 

3.3 SDG-based non-interference checking 

To deal with system security, we extend the definition of security configuration de-
fined for single WS (see Definition 1) to WS composition. A security system configu-
ration is an assignment of security labels to variables and nodes within all the PDG of 
services composing the WS system. 

Definition 3 (Security system configuration S). Let WSS be a WS system composed 
of a set of n services (Si)i=1,n. For each service Si , let Gi = (Ni , Ei ) be the associat-
ed PDG and let Xi the set of its variables. Let Einter be the set of edges corresponding 
to inter-service bindings. Let L be the set of labels, X the set of all service variables 
and N the set of all PDG nodes associated to WSS. We define a security configuration 
for a WS system as a mapping S : X∪N → L that associates security labels to varia-
bles and nodes. Moreover, we require the following three matching conditions 
amongst the different categories, for all i, j: (1) ∀v∈Xi,∀nv∈Gi, v defined at nv 
⇒S(v)=S(nv) , (2) ∀v∈Xi,∀nv∈Gi, v used in nv ⇒S(v)⊆S(nv)  and (3) 
∀n∈Gi,∀m∈Gj, (n,m)∈Einter ⇒ S(n)=S(m). 
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   The two first conditions correspond to security configuration definition for a single 
service. The third condition states that the nodes corresponding to binding edges have 
the same security label since they hold the same information. By analogy to secure 
PDG, we define now a secure SDG as a connection of secure PDG. For SDG, we 
have two kinds of barrier slices: internal barrier slices inside PDG joining input varia-
ble nodes to output variable nodes and external barrier slices that correspond to inter-
service bindings. For internal slices, since PDG are assumed to be secure, we have the 
guarantee that information does not flow from high level labels to low level labels 
except for declassification nodes. For external slices, the security enforcement ensures 
a matching between labels of inter-service nodes connecting PDG. Furthermore, in 
SDG, there is no room to declassification since it was treated locally to each PDG and 
for each declassified node ni, its actual security label was assigned to its required one, 
that is S(ni) = R(ni). 

Definition 4 (Secure SDG). Let G = (N,E) be an SDG of a WS system and Gi = (Ni, 
Ei) the set of PDG of services composing the system for 1 ≤ i ≤ n. We say that G is 
secure iff ∀1≤i≤n,Gi is a secure PDG. 

   We define an end-to-end secure system as a system where information do not flow 
from high-level sources to lower level destinations except for special destinations 
where the user authorizes information declassification. Information dependence is 
detected thanks to PDG for BPEL activities and for atomic service programs. 

Definition 5 (End-to-end secure WS System). Let WSS be a WS system comprising a 
set of composed WS services and let S the security configuration of the system. We 
say that WSS is end-to-end secure if for all y, x two variables, y depends on x implies 
S(x) ⊆ S(y). 

Proposition 5. Let WSS be a WS system and G its associated SDG. If G is secure 
then WSS is end-to-end secure. 

Proof. We prove the proposition by induction on the number n of composed services 
the information flows through. Consider the basic case where n = 1. This means that 
information flows inside a single composed service. Let us consider any two variables 
y and x so that y depends on x. That means, there exist a path in the PDG from a node 
nx to a node ny where respectively x and y are defined. Since the PDG is secure, we 
have S (nx ) ⊆ S (ny ). By matching variable and node labels, we have S(x) ⊆ S(y). 
Consider now that the proposition is true for any WS system composed of n−1 ser-
vices for some n > 1. We prove that it is true for n composed services. Let S1 , .., Sn 
be the system services, G1 , .., Gn their PDGs supposed secure and consider that in-
formation flows from variables x to y, which moreover belong to separate services S1 
and Sn. Let z be the output variable calculated from x inside S1. Since, G1 is secure, 
we have S(x) ⊆ S(z). (1)  

Suppose that z is further received by S2. By the induction hypothesis, the system 
composed of n − 1 services S2 , .., Sn is end-to-end secure. Then S(z) ⊆ S(y). (2) 
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(1) and (2) implies S(x) ⊆ S(y). As a conclusion, the proposition is true for a WS 
system with any number n of composed services. As illustrated in Algorithm 1, inside 
each process, the binding between the process and the service endpoints it communi-
cates with, is checked before checking security inside the process. Applying the pre-
vious proposition, this ensures that the system is end-to-end secure. 

3.4 Non-interference runtime checking 

At run time, non-interference re-checking occurs when a label value changes corre-
sponding to a security constraint modification. The non-interference checking and 
configuration synthesis is executed for the concerned process. If the label of a binding 
edge changes, the other edge’s label is updated and then the affected service has its 
security configuration re-checked and synthesized. The same logic is applied when a 
structural re-configuration occurs in the SOA. Indeed, adding or removing a service to 
the application implies adding or removing a binding and this may induce modifica-
tions to edge labels. 

4 E2ESEM evaluation 

Scalability is ensured thanks to the composed checking and security configuration 
synthesis that can be performed in a parallel way. For the algorithm’s performance 
evaluation, we generate a single source graph so that the number of vertices ranges 
from 5 to 4000 vertices and generates edges in a probabilistic way. We use Erdos-
Renyi model to generate edges. So edges are generated with a probability p where p is 
set to three values: 0.1 for weakly connected graph, 0.5 for moderated connected 
graph and 1 for full connected graph. Without loss of generality, we consider two 
security levels : secret and public. We distribute randomly public and private labels 
on graph edges and do not consider required labels not to stop the program iteration 
before visiting all edges. 

 

Fig. 2. Performance evaluation of configuration’s 
synthesis program 

Adaptability to special cases is ensured thanks to the declassification feature, which 

Fig.2. shows the average time 
obtained after repeating the pro-
gram execution 10 times. The 
bench is executed on a Mac OS 
version 10.8.5 with processor 1.3 
GHz Intel Core i5 and 4GB of 
Memory. The execution time in-
creases with the number of vertices 
in the PDG and with the number of 
connectivity. We clearly see that 
the execution time is very accepta-
ble and does not exceed 1 second 
for 4000 vertices and a fully con-
nected PDG. 
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allows a controlled relaxation of security constraints. E2SEM declassification can be 
extended to other kinds of declassification like temporal declassification [9]. Regard-
ing system’s reconfiguration by adding or removing a service, thanks to the composi-
tional verification, there is no need to recheck the whole newly obtained application, 
only affected processes have their security configuration re-checked and synthesized. 

5 Related Work 

Our work is related to information flow security solutions for SOA. SEWSEC [17] is 
an end-to-end security tool for WS security. Compared to SEWSEC, our work allows 
not only non-interference checking but also security configuration synthesis, provides 
a formal security model and deals with adaptation. In [18], a security configuration 
synthesis is provided but the adopted model does not deal with declassification and 
adaptation. Similarly, in [19], information flow security is applied to component-
based systems. Nevertheless, component code is required for label propagation, no 
formal model is provided and adaptation is not considered. Information flow control 
is also treated for event-based communications like those described in BPEL [20][21]. 
For data dependence tracking, systems are modeled as Petri-nets [22] [23] or propaga-
tion graphs from workflow’s log data [24]. A language based information flow is 
proposed in [25] to check non-interference but declassification and adaptation are not 
supported. In [26], [27], authors deal with chained services with no centralized or-
chestration service composing them. A recent work extends BPEL-orchestration en-
gine [28] and requires BPEL processes’ annotation whereas we propose a more prac-
tical approach with minimal configuration effort and configuration synthesis. 

6 Conclusion 

In this paper, we propose a robust security model to protect confidential data in com-
plex business applications. Even though, we concentrate on BPEL, the work is appli-
cable to other types of SOA composition languages. They only need to be mapped to 
program dependency graphs. We are currently implementing E2SM associated tool 
and experimenting it to secure e-health real SOA application. 
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