Skip to main content

Symbolic Detection of Steady States of Autonomous Differential Biological Systems by Transformation into Block Triangular Form

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10849))

Abstract

In this paper we propose a method for transforming a square polynomial set into block triangular form by using Tarjan’s algorithm. The proposed method is then applied to symbolic detection of steady states of autonomous differential biological systems which are usually sparse systems with a large number of loosely coupling variables. Two biological systems of 12 and 43 variables respectively are studied to illustrate the effectiveness of the proposed method.

This work was partially supported by the National Natural Science Foundation of China (NSFC 11401018 and 11771034).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allen, L.J.: Some discrete-time SI, SIR, and SIS epidemic models. Math. Biosci. 124(1), 83–105 (1994)

    Article  Google Scholar 

  2. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symbolic Comput. 28(1–2), 105–124 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bock, H.G.: Numerical treatment of inverse problems in chemical reaction kinetics. In: Ebert, K.H., Deuflhard, P., Jäger, W. (eds.) Modelling of Chemical Reaction Systems. Springer Series in Chemical Physics, vol. 18, pp. 102–125. Springer, Heidelberg (1981). https://doi.org/10.1007/978-3-642-68220-9_8

    Chapter  Google Scholar 

  4. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Universität Innsbruck, Austria (1965)

    Google Scholar 

  5. Cifuentes, D., Parrilo, P.A.: Exploiting chordal structure in polynomial ideals: A Gröbner bases approach. SIAM J. Discrete Math. 30(3), 1534–1570 (2016)

    Article  MathSciNet  Google Scholar 

  6. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Brakhage, H. (ed.) Automata Theory and Formal Languages 2nd GI Conference. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4_17

    Chapter  Google Scholar 

  7. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symbolic Comput. 12(3), 299–328 (1991)

    Article  MathSciNet  Google Scholar 

  8. Duff, I.S.: On algorithms for obtaining a maximum transversal. ACM Trans. Math. Softw. 7(3), 315–330 (1981)

    Article  Google Scholar 

  9. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford University Press, New York (1986)

    MATH  Google Scholar 

  10. El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination in a software-component architecture. J. Symbolic Comput. 30(2), 161–179 (2000)

    Article  MathSciNet  Google Scholar 

  11. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (\({F_4}\)). J. Pure Appl. Algebra 139(1–3), 61–88 (1999)

    Article  MathSciNet  Google Scholar 

  12. Faugère, J.C., Mou, C.: Sparse FGLM algorithms. J. Symbolic Comput. 80(3), 538–569 (2017)

    Article  MathSciNet  Google Scholar 

  13. Faugère, J.C., Rahmany, S.: Solving systems of polynomial equations with symmetries using SAGBI-Gröbner bases. In: May, J.P. (ed.) Proceedings of ISSAC 2009, pp. 151–158. ACM (2009)

    Google Scholar 

  14. Faugère, J.C., Spaenlehauer, P.J., Svartz, J.: Sparse Gröbner bases: The unmixed case. In: Nabeshima, K., Nagasaka, K. (eds.) Proceedings of ISSAC 2014, pp. 178–185. ACM (2014)

    Google Scholar 

  15. Ferrell, J.E., Tsai, T.Y.C., Yang, Q.: Modeling the cell cycle: why do certain circuits oscillate? Cell 144(6), 874–885 (2011)

    Article  Google Scholar 

  16. Gatermann, K., Huber, B.: A family of sparse polynomial systems arising in chemical reaction systems. J. Symbolic Comput. 33(3), 275–305 (2002)

    Article  MathSciNet  Google Scholar 

  17. Laubenbacher, R., Sturmfels, B.: Computer algebra in systems biology. Am. Math. Monthly 116(10), 882–891 (2009)

    Article  MathSciNet  Google Scholar 

  18. Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., et al.: Biomodels database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst. Biol. 4(1), 92 (2010)

    Article  Google Scholar 

  19. Li, X., Mou, C., Niu, W., Wang, D.: Stability analysis for discrete biological models using algebraic methods. Math. Comput. Sci. 5(3), 247–262 (2011)

    Article  MathSciNet  Google Scholar 

  20. Mayr, E., Meyer, A.: The complexity of the word problems for commutative semigroups and polynomial ideals. Adv. Math. 46(3), 305–329 (1982)

    Article  MathSciNet  Google Scholar 

  21. Mol, M., Patole, M.S., Singh, S.: Immune signal transduction in leishmaniasis from natural to artificial systems: role of feedback loop insertion. Biochim. Biophys. Acta Gen. Subj. 1840(1), 71–79 (2014)

    Article  Google Scholar 

  22. Mou, C., Bai, Y.: On the chordality of polynomial sets in triangular decomposition in top-down style (2018). arXiv:1802.01752

  23. Niu, W., Wang, D.: Algebraic analysis of bifurcation and limit cycles for biological systems. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 156–171. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85101-1_12

    Chapter  MATH  Google Scholar 

  24. Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems. Math. Comput. Sci. 1(3), 507–539 (2008)

    Article  MathSciNet  Google Scholar 

  25. Sturm, T., Weber, A., Abdel-Rahman, E.O., El Kahoui, M.: Investigating algebraic and logical algorithms to solve Hopf bifurcation problems in algebraic biology. Math. Comput. Sci. 2(3), 493–515 (2009)

    Article  MathSciNet  Google Scholar 

  26. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  Google Scholar 

  27. Wang, D.: Elimination Methods. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-7091-6202-6

    Book  MATH  Google Scholar 

  28. Wang, D., Xia, B.: Stability analysis of biological systems with real solution classification. In: Kauers, M. (ed.) Proceedings of ISSAC 2005, pp. 354–361. ACM Press (2005)

    Google Scholar 

  29. Yang, L., Xia, B.: Real solution classifications of parametric semi-algebraic systems. In: Proceedings of A3L 2005, pp. 281–289. Herstellung und Verlag, Norderstedt (2005)

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Yufei Gao and Yishan Cui for their help in the investigation on Tarjan’s algorithm and the biological database and the anonymous reviewers for their helpful comments which lead to improvement on this manuscript and potential enrichment in its extended version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenqi Mou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mou, C. (2018). Symbolic Detection of Steady States of Autonomous Differential Biological Systems by Transformation into Block Triangular Form. In: Jansson, J., Martín-Vide, C., Vega-Rodríguez, M. (eds) Algorithms for Computational Biology. AlCoB 2018. Lecture Notes in Computer Science(), vol 10849. Springer, Cham. https://doi.org/10.1007/978-3-319-91938-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91938-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91937-9

  • Online ISBN: 978-3-319-91938-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics