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Abstract

Recent research has revealed new and unexpected applications of
network control science within biomedicine, pharmacology, and medical
therapeutics. These new insights and new applications generated in
turn a rediscovery of some old, unresolved algorithmic problems. One of
these problems is the Structural Target Control optimization problem,
known in previous literature also as Structural Output Controllability
problem, which is defined as follows. Given a directed network and a
target subset of nodes, the task is to select a small (or the smallest)
set of nodes from which the target can be independently controlled,
i.e., there exists a set of paths from the selected set of nodes (called
driver nodes) to the target nodes such that no two paths intersect
at the same distance from their targets. Recently, Structural Target
Control optimization problem has been shown to be NP-hard, and
several heuristic algorithms were introduced and analyzed, both on
randomly generated networks, and on biomedical ones.
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In this paper, we show that the Structural Target Controllability
problem is fixed parameter tractable when parameterized by the number
of target nodes. We also prove that the problem is hard to approximate
at a factor better than O(log n). Taking into consideration the real case
formulations of this problem we identify two more parameters which
are naturally constrained by smaller bounds: the maximal length of a
controlling path and the size of the set of nodes from which the control
can start. With these new parameters we provide an approximation
algorithm which is of exponential complexity in the size of the set of
nodes from which the control can start and polynomial in all the other
parameters.

Keywords: Structural control, Network control, Optimization algo-
rithm, Fixed parameter algorithm, NP-hardness, Linear networks.

1 Introduction

The network control research field has been investigated for more than 50
years, with some of its algorithmic questions only recently being able to
be solved. The general topic is concerned with the optimization of output
intervention needed in order to drive a linear, time-invariant, dynamical
system from an arbitrary initial state, to a precise final configuration, in
finite time. Although many real-life dynamical systems tend not to be
linear, most of these systems are known to be well approximated by such
dynamics, or could behave as such in specific conditions, such as at their
steady state. Inquiries into this field have been initiated in the 60’s and 70’s,
see, e.g. [16, 13, 24]. However, only in 2011 Liu et al. [17] proved that the
full network control optimization problem can be solved in polynomial time
via a reduction to the maximum matching problem in directed graphs. The
result received a lot of interest, and sparked a renewal of the field. Since
then, the network control theory and its newly discovered results have been
successively applied to the study of control over power grid networks [12],
of biomedical signaling processes [14, 11, 27], and even the control of social
networks [15, 17].

Driven by this new insight into the field as well as by its new applications
into the current world of Big (or just Large) Data, researchers have realized
that full control can sometimes still be too expensive. For example, network
control theory has been recently applied in the case of cancer-related bio-
medical networks [14, 11], with the aim of using known drugs in order
to drive the system towards a more favorable state. Thus, researchers
aimed to use the protein signaling network in order to drive cancerous
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cells towards apoptosis, i.e., programmed cell death. However, the full
controllability of sparse homogeneous networks, such as many bio-medical
networks (e.g., gene signaling networks, metabolic networks, gene regulating
networks, etc.) requires a lot of effort, sometimes needing a direct outside
control over up to 70% of the initial nodes of the network [14, 17]. As
in these cases an outside control equivalents to the use of specific drugs,
and since these protein networks contain up to 2-3 thousands nodes, a 70%
direct outside control would imply an unfeasible solution. Thus, we have a
new controllability problem, that is a variant of the initial control-theory
problem, namely that of target-control. Instead of enforcing the control of
the entire network, one alternative goal is to optimize the outside intervention
needed to control only a well-specified target, i.e., a subset of the initial
network. The aforementioned goal proves to be particularly well-fitted with
the study of protein signaling networks, as recent research has emphasized
the existence of disease-specific essential genes, i.e., disease-specific sets of
genes/proteins which, if knocked down, would drive the corresponding cells to
apoptosis [2, 28, 31]. As is the case, new formulations lead to new problems.
The Structural Target Control (optimization) problem (STC) [10, 4] asks
to provide an optimum amount of outside intervention in order to drive a
linear dynamical system from any initial state to a desired final state of the
chosen targets.

Contrary to the full network control case, the Structural Target Con-
trollability problem was proved to be NP-hard [4]. Several heuristic ap-
proaches have been implemented and applied to the study of biomedical
networks [10, 4, 14, 11]. However, approximation algorithms for this problem
are not known.

Assuming the widely believed conjecture, that P 6= NP , no polynomial
time exact algorithms exist for any NP-hard problems. Thus, there are
several alternative methods to tackle the difficulty of these problems, such as
approximation algorithms and fixed parameter algorithms. Approximation
algorithms run in polynomial time and provide a suboptimal solution. Nev-
ertheless, unlike heuristic algorithms, approximation algorithms guarantee
that on every input instance the solution they return is within a certain
factor of the optimal solution. For example, a 2-approximation algorithm
for a minimization problem guarantees that on every input the solution
returned is at most twice the cost of the optimal solution on that input.
However, some problems, such as the one studied in this paper, might not
have approximation algorithms with a constant approximation factor, unless
P = NP . See [26] for a textbook on approximation algorithms.
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In practice, many problems have parameters that are typically much
smaller than the input size. We can exploit the existence of these parameters
in order to design faster algorithms for these problems. Parameterized
complexity [9, 5] aims to classify problems according to various parameters
that are independent of the size of the input. A fixed parameter algorithm
runs in time f(k)O(nc), where n is the input size, c is a constant, and k
is the value of a parameter (independent of the input size). A problem is
termed fixed parameter tractable (FPT) if it has an FPT algorithm.

In this paper we show that the Structural Target Controllability problem
is fixed parameter tractable when parameterized by the number of target
nodes. Also, if a second parameter is allowed, namely the maximal length
of a controlling path (which is known in practice to have low values), the
resulting fixed parameter algorithm has a considerably improved complexity.
Moreover, we formally prove that the STC problem is hard to approximate
within a factor better than O(log n).

Taking into consideration the medical and pharmaceutical insights on
how this problem is formulated in the biomedical setting, we identify yet
another parameter which is bounded by a lower value. This parameter is the
size of the set of nodes from the network which can potentially be influenced
by outside interventions, i.e., from which we can select our controlling
nodes. These nodes correspond to known proteins which are targets of actual
drugs, aka. drug-targets. The resulting formulation of the problem, i.e., the
Driver Restricted STC has itself a fixed parameter algorithm, which has
a considerably improved time complexity. However, even with the above
mentioned additional constraint, the problem is intractable for real-case
networks consisting of 100+ nodes. Thus, we design an approximation
algorithm, which is of exponential complexity only in the size of the set of
nodes from which the control can start and low polynomial in all the other
parameters of the problem, i.e., the total number of nodes of the network,
the size of the target set, and the maximal length of a controlling path.

2 Notation and Preliminaries

A linear, time invariant dynamical system (ltis) is a system

dx(t)

dt
= Ax(t) (1)

where x(t) = (x1(t), . . . , xn(t))T is the n-dimensional vector describing the
system’s state at time t, and A ∈ Rn×n is the time-invariant state transition
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matrix. The elements in x are called the variables of the system. We denote
by X the set of these variables.

The external control over the system is performed through the action
of m external driver nodes, u(t) = (u1(t), . . . , um(t))T . Their influence over
the n variables of the system is described by the time-invariant input matrix
B ∈ Rn×m; then the ltis (1), now denoted as (A,B), becomes:

dx(t)

dt
= Ax(t) +Bu(t) (2)

Let T ⊆ X, T = {t1, . . . , tk} for some k ≤ n be a subset of a particular
interest for the variables X, a.k.a., the target set. We say that the ltis
(A,B) is T -target controllable if for any initial state of the variables in X
and any target variables, there exists a time-dependent input vector u(t) =
(u1(t), . . . , um(t))T that can drive the system in finite time from its initial
state to a state in which the target variables are in the desired final setup. We
associate to the k-target set T the characteristic matrix CT ∈ {0, 1}k×n where
CT (i, j) = 1 iff i = j and i, j ∈ T (otherwise, CT (i, j) = 0). It is known, see
e.g. [10], that a system (A,B) is T -target controllable if and only if

rankOC(A,B,CT ) = |T | (3)

where the matrix OC(A,B,CT ) := [CTB | CTAB | CTA
2B | . . . | CTA

n−1B]
is called the controllability matrix.

In the particular case when the target is the entire n variable set X,
the above condition translates to the well known Kalman’s condition for full
controllability [13], i.e., an ltis (A,B) is (fully) controllable if and only if
rank[B | AB | A2B | . . . | An−1B] = n.

The notion of target controllability and the focus of imposing a con-
trolling effect only on a subset of the variables of the system, has been
introduced and studied only recently, see e.g., [10, 4, 14, 11]. However, this
notion can be seen as a special case of output controllability, a topic which
received considerate attention in the 80’s and 90’s, see. e.g. the works of
Poljak and Murota [21, 22, 20].

Although the control methodology seems to be very dependent on the
input data, i.e., the transition matrix A, it turns out that this is not the case.
We say that an ltis (A,B) is T -structurally target controllable (with respect
to a given size-k target set T ) if there exists a time-dependent input vector
u(t) = (u1(t), . . . , um(t))T and matrices A and B with non-zero values, that
can drive the state of the target nodes to any desired output in finite time. A
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deep result of [16, 24] shows that a system is structurally target controllable
if and only if it is target controllable for all structurally equivalent matrices A
and B , except a so-called “thin” set of matrices; we say that two matrices
are structurally equivalent iff they have the same dimensions and differ only
on their non-zero values.5 Thus, almost all matrices A and B are “a good
choice”. According to equation (3) above, for a k-sized target T , a system
(A,B) is structurally T -target controllable if and only if there exist values
for the non-zero entries in A, B such that rankOC(A,B,CT ) = |T | = k.

It was shown in [4] that from a practical perspective, it is more mean-
ingful to analyze the controllability optimization problem from the point
of view of minimizing the number of driven nodes. Thus, we focus on this
particular formulation of the optimization problem. Thus, we impose that
each driver node is connected to exactly one driven node, i.e., in the matrix
representation of the above network we require that the input matrix B
contains exactly one non-zero element on each column. We define the notion
of optimization for structural target controllability in case of ltis as follows:

Definition 1 (The Structural Target Control (Optimization) prob-
lem in case of LTIS)

Input: The size-n variable set X, the associate transition matrix A of size
n× n, and a size-k target subset T ⊆ X, with k ≤ n.

Output: Matrix B of size n×m such that

(a) every column of B contains exactly one non-zero value,

(b) SrankOC(A,B,CT ) = k, where SrankOC(A,B,CT ), is the
generic rank (or structural rank) of the structural ma-
trix OC(A,B,CT ), i.e., the maximal value for the rank of
OC(A,B,CT ) for matrices A, B, and CT that have non-zero
values on the non-empty entries of A, B, and CT , respectively.

(c) m (i.e., the number of columns of B) is minimum among all
feasible matrices.

It is known, see e.g. [21, 22], that the structural controllability problem
has a counterpart formulation in terms of graphs/networks. Given an LTIS

5It is beyond the goal of this paper to define the topological notion of thin sets; we only
give here the intuition that such sets consist of isolated cases that may be easily replaced
with nearby favorable cases.
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(A,B), we associate to it the graph G(A,B) = (V,E) where the n variables
of the system {x1, . . . , xn} and the size-m external controller {u1, . . . , um}
are the nodes of the graphs, while directed edges correspond to the non-zero
values in the state transition matrix and input matrix, respectively. That
is, there exists a directed edge from the node corresponding to variable xi
to the node corresponding to xj if and only if A(xj , xi) 6= 0.6 Similarly,
there exists a directed edge from ui to xj if and only if B(xj , ui) 6= 0.
The nodes {u1, . . . , um} are called driver nodes, while the nodes xj such
that there exists i with B(xj , ui) 6= 0 are called the driven nodes of the
network. In the literature, the driver and the driven nodes are sometimes
known as input and controlled nodes [10, 17]. To a rough understanding,
the difference between driver and driven nodes is as follows. The set of
driver nodes is describing the complexity of an outside controller, assuming
this controller can interact/influence independently several well specified
nodes of the network. Meanwhile, the set of driven nodes provides the exact
collection of network nodes that are used in order to ultimately control the
entire set of targets. From an algebraic perspective, the number of driver
nodes is given by the number of (nonzero) columns of the control matrix B,
while the number of driven nodes is given by the number of nonzero rows
of B.

Given an LTIS (A,B) and its associated graph G(A,B) = (V,E), the n
variables of the system are (all) structurally controllable from the m-sized
input controller u (and control matrix B) if and only if we can select a
set of n directed paths from driver nodes as starting points (we denote
this set as U) to each of the network nodes, as ending points, such that
no two paths would intersect at the same distance d from their end points.
The above formulation is closely related to the concepts of linking and
dynamic graph as investigated in [22, 21]. In case of the target controllability
problem, for a given target set T = {t1, t2, . . . , tk} ⊆ X, the above graph
formulation is naturally adjusted as follows. We introduce k new output
nodes CT = {c1, c2, . . . , ck} (also denoted as C when clear from the context)
and edges (ti, ci), for all 1 ≤ i ≤ k. Note that the output matrix CT describes
exactly the above mapping. Now, the objective is to find a path family
containing k directed paths, connecting all the driver nodes (as start-points)
to the output nodes (as end-points), such that no two paths intersect at the
same distance d from their end-points. In contrast to the case of full control,
the graph condition is only necessary for target control, but not sufficient [21].

6We implicitly interchange the usage of xi and i for matrix indices.
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However, as investigated in [4], only in very restrictive cases the existence
of such a path family does not translate into the algebraic definition of
structural control. Thus, from all practical purposes, the algorithmic process
of finding such a family of k directed paths is equivalent to verifying that
the system is structural target controllable.

We give now the formal definition of the Structural Target Control
(Optimization) problem in terms of graph theory.

Definition 2 (The Structural Target Control (Optimization) prob-
lem in terms of graphs (in short STC))

The input consists of a directed graph G = (V,E) and a set of nodes
T = {t1, t2, . . . , tk} ⊆ V . The goal is to find a set of nodes S ⊆ V of
minimum cardinality that controls T . A set S ⊆ V controls T if there
exists k paths, P1,P2, . . . ,Pk, where Pi starts with a node in S and ends
with ti and any two paths Pi and Pj do not intersect at the same distance d
from their endpoints.

3 Fixed Parameter Algorithms

In this section we prove that the STC problem is fixed parameter tractable,
when parameterized by several variables of our problem. First, we show
that one parameter, namely the number of target nodes |T | = k, suffices in
generating such a fixed parameter algorithm. On the other hand, considering
the practical instances that motivate this problem, namely the targeted
control of human protein signaling networks in cancer, we identify several
other variables of this problem which are known to have significantly lower
values, i.e., one or even two orders of magnitude lower than the total
number of input nodes. Thus, we design more efficient FPT algorithms
for the structural target control optimization problem using several other
parameters.

3.1 A One-parameter STC Algorithm

In this subsection we present the FPT algorithm parameterized only by
|T | = k, the size of the target set. Our algorithm uses as a subroutine an
algorithm for the Set Cover problem and, thus, we first define the Set Cover
problem.
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Definition 3 (Set Cover) Given a universe of elements U = {u1, . . . , uk}
and a family consisting of n subsets of U , S = {S1, . . . , Sn}, find the smallest
sub-collection S ′ ⊆ S, such that the union of all the sets S ′ is U .

Informally, our algorithm carries out the following steps. Firstly, for
each node v in the input graph, we compute all possible subsets of T that v
can control. Since |T | = k, there can be at most 2k such subsets for each
node v. Then, we enumerate over all possible subsets of 2T (notice that there

are precisely 22
k

such subsets). For each such subset D ⊆ 2T , we check if
there exists a collection of |D| nodes, such that each node controls precisely
one set in D. If so, we solve exactly the set cover instance (D, T ) and store
the solution if it is better than the previously found solutions (i.e., needs less
nodes than the previous solutions to control the target nodes). Algorithm 1
describes our procedure in detail.

Algorithm 1 An FPT algorithm for the STC problem

Input: An directed graph G = (V,E) and a set of nodes T ⊆ V , |T | = k
Output: A set of nodes S ⊆ V of minimum cardinality that controls T .

1. For every node v ∈ V , compute all possible sets of target nodes Cv ∈ 2T

that v can control at the same time.

2. OPT :=∞, S = ∅

3. For every D = {D1, D2, . . . , D`} ⊆ 2T such that there exist nodes
v1, v2, . . . , v` such that Cv1 = D1, Cv2 = D2, . . . , Cv` = D`, do:

(a) Solve exactly the set cover problem on instance (D, T ).

(b) Let D′ = {Du1 , Du2 , . . . , Dux} be the sets in the optimal set cover.
If x < OPT , then OPT := x and S := {u1, u2, . . . , ux}.

return S

Before we show the correctness of Algorithm 1, we prove the following
lemma. Informally, Lemma 1 allows us to perform step 3b) of Algorithm 1,
that is to safely combine the sets controlled by two or more different nodes.

Lemma 1 Assume that the sets Du1 , Du2 , . . . , Dux ⊆ V are controlled by the
nodes u1, u2, . . . , ux ∈ V , respectively. Then, the set S := {u1, u2, . . . , ux}
controls Du1 ∪Du2 ∪ · · · ∪Dux.
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Proof: Observe that it is enough to prove the lemma for two subsets Du1

(simply denoted as D1 in the following) and Du2 (denoted as D2) controlled
by the nodes u1 and u2, respectively; the generalization follows immediately.

Let A be the generic matrix associated to our graph, and B1, B2 be the
column vectors describing the action of input nodes u1 and u2 over the net-
work. Then, by Equation (3) above and Definition 1, there exist values for
the non-zero entries of A, B1 and B2, such that rankOC(A,B1, CD1) =
rank[CD1B1|CD1AB1| . . . |CD1A

n−1B1] =|D1| and rankOC(A,B1, CD2) =
rank[CD2B2|CD2AB2| . . . |CD2A

n−1B2] = |D2|.
Let M1,M2, . . . ,M|D1| and N1, N2, . . . , N|D2| denote some linear inde-

pendent columns from OC(A,B1, CD1) and OC(A,B2, CD2), respectively,
such that det(M1|M2| . . . |MD1) 6= 0 and det(N1|N2| . . . |ND2) 6= 0.

Let D=D1∪D2, B=[B1|B2], and let investigate the rank ofOC(A,B,CD):
|D| ≥ rankOC(A,B,CD) = rank[CDB|CDAB|CDA

2B| . . . |CDA
n−1B] =

rank[CDB1|CDAB1| . . . |CDA
n−1B1| . . . |CDB2|CDAB2| . . . CDA

n−1B2|] ≥
rank[M1|M2| . . . |M|D1||N1|N2| . . . |N|D2|] = |D|; where the M ’s and N ’s
columns are obtained by extending the M ’s and N ’s columns to the entire
domain D, and the last equality can be deduced for example by performing
the Gaussian elimination steps specific to matrices [M1|M2| . . . |MD1 ] and
[N1|N2| . . . |ND2 ], respectively.

Thus, rankOC(A,B,CD) = |D|, which means that within the current
network, the set {u1, u2} is controlling the nodes in D = D1 ∪D2. 2

The correctness of Algorithm 1 follows from Lemma 1. The next theorem
analyzes the running time of the algorithm.

Theorem 1 Given a graph G = (V,E), such that |V | = n and a target
set T ⊆ V with |T | = k, Algorithm 1 solves the STC problem in time
O(f(k)p(n)). Thus, the STC problem is fixed parameter tractable.

Proof: We present in more detail and analyze the running time of each
step of Algorithm 1.

Step 1. For each node v ∈ V , we compute and store as follows all
the sets of nodes in T that v can simultaneously control. Firstly, we show
how to decide if a node v ∈ V covers a given subset of nodes T ′ ⊆ T in
polynomial time in |V |. Given a set of nodes X ⊆ V , let N(X) be the open
neighborhood of X, that is N(X) = {v ∈ V : ∃a ∈ X s.t. (v, a) ∈ E}. We
define the graph Gv,T ′ = (V ′, E′), where:

1. Let T0 = T and Ti+1 = N(Ti), ∀0 ≤ i < n. The node set V ′ of the
graph Gv,T ′ consists of all the sets Ti plus two other nodes {s, t}. Since,
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the node set V ′ may contain more copies of the same nodes from V , we
refer to a node p ∈ V that is in the set Ti as pi. Notice that a node p
cannot appear twice in a set Ti.

2. In the edge set E′ of the graph Gv,T ′ we add an edge (ai+1, bi) if
(a, b) ∈ E. Moreover, we add an edge between (s, vi), if vi ∈ Ti.
Finally we add an edge (a, t), ∀a ∈ T ′.

The node v can control simultaneously the nodes in the set T ′ if and only
if there exists k′-node disjoint paths from s to t, where k′ = |T ′|. Observe
that the graph Gv,T ′ was constructed such that any two node disjoint paths
from s to t in Gv,T ′ correspond to paths in G from v to a node in T ′, paths
that do not intersect at the same distance from the nodes in T ′. The k nodes
disjoint paths problem between two nodes is solvable in time O(k(n+m))
on a graph with n nodes and m edges [3]. Thus, since Gv,T ′ has at most n2

nodes and n3 edges, finding k disjoint paths between s and t takes time at
most kn3.

Then, to complete Step 1 of Algorithm 1, we repeat the procedure
described above for every node v ∈ V and any subset T ′ ⊆ T . Since there
are 2k subsets of T , the total running time of Step 1 of Algorithm 1 is
O(k2kn4).

Step 3. Any set Cv has at most k elements and, thus, any set D has
at most 2k elements. Moreover, to decide if we enter the loop in Step 3, for
every set of D we check if it is one of the sets Cv computed at Step 1. Thus,
the complexity of Step 3 of Algorithm 1 is O(n4k22

k
) times the running time

of Steps 3a) and 3b), where the n comes from the running time required to
compare two sets of size n.

Notice that since the number of sets in the set cover instance is bounded
by 2k and the number of elements is k, then we can solve the set cover
in O(2k2k) = O(4k), since one can solve Set Cover with set family F and
universe U in O(|F | ∗ 2|U |) time.

Thus, the overall running time of Algorithm 1 is O(k2kn4 + n42k22
k
).

2

3.2 Towards Efficient FPT Algorithms Using Multiple Pa-
rameters

In recent years, the STC problem has received significant attention in
connection to its applicability in bio-medicine and pharmacology, see
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e.g. [4, 14, 11]. In this setting, one is required to select a small amount of
drugs which, by enabling cascading effects in the protein signaling network,
would drive a set of well established key target nodes/proteins to a particular
configuration. In turn, this configuration of the target proteins, also known
as essential proteins, is expected to correlate with a positive therapeutic
effect over the patient. In this setting, the number of internal nodes of the
graph G corresponds to the number of proteins within our network, usually
in the order of 1000 to 3000. Also, the target T will be given by the set
of disease-specific essential proteins present in the network, which in these
cases was observed to be in the order of 100 to 200 proteins, i.e., one can
roughly assume a 1 to 10 ratio between the number of targets and that of
total number of nodes. What is also specific to this setting is that the size
of a controlling path, from a driven node to a target, must also be relatively
small, i.e., smaller than 10 and preferably around 5. This requirement is due
to the fact that such paths translate to cascading effects in the signaling
network and, thus, the more intermediary elements within, the less reliable
the entire process and the desired outcome becomes.

In the following, we present a fixed parameter tractable algorithm
for STC whose time complexity is exponential in the parameters k and p,
corresponding to the size of the target set T and the maximum length of
the controlling path from a driver to a target node, respectively, and low
polynomial in n, the total number of nodes in the network. The algorithm
generalizes a Greedy approach first reported in [10] and later analyzed and
improved in [4, 14, 11].

Theorem 2 Given a graph G = (V,E) and a target set T ⊆ V with |T | = k
and |V | = n, Algorithm 2 solves the Target Controllability Problem in time

O(kn · ( e(n+k)
k )

kp
).

Proof: In the following, we present in more detail and analyze the
running time of each step of Algorithm 2 and of its Control sub-function,
i.e., Algorithm 3.

The final controlling set, Sbest, can be updated only after p nested
applications of the iterative Control algorithm. In each of these p nested
steps, we need to generate a bipartite graph, enumerate all possible maximal
matchings, and form the set S, which will then be fed into the next application
of the iterative function Control. While the construction of the bipartite
graph can be done in O(kn) time, enumerating all its maximal matchings
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Algorithm 2 An FPT algorithm for the STC problem parameterized by k,
the size of the target set and p, the maximum length of the controlling path

Input: A directed graph G = (V,E), a set of nodes T ⊆ V , |T | = k, and
an integer p.
Output: A set of nodes U ⊆ V of minimum cardinality that controls T .

1. We create a new graph G′ = (V ′, E′). For determining V ′ we add to V
a number of k nodes (denoted u1, u2, . . . , uk) and for E′ we add to E
a number of k edges, such that the edge (ui → ti) ∈ E′, ∀1 ≤ i ≤ k.

2. We set Sbest = T and S = ∅.

3. We apply the iterative algorithm Control (Algorithm 3) for (G′ =
(V ′, E′), i = 1, T0 = T, p, S).

return Sbest

requires O(n) per maximal matching, see e.g. [25]. In the worst case scenario,
when we are dealing with a complete graph G, all of the intermediary
bipartite graphs Gi will also be complete. Thus, in each case, the number
of edges will be bounded by k · (n+ k) (since we have |V ′| = n+ k nodes
on the left side, and |Ti| ≤ k nodes on the right side) while the number of
maximal matchings will be upper bounded by

(
n+k
k

)
. Therefore, the overall

time complexity can be upper bounded by:

O(kn+

(
n+ k

k

)
· (kn+

(
n+ k

k

)
· (. . . )))︸ ︷︷ ︸

p times

i.e., O(
(
n+k
k

)p · kn). The (. . . ) denote that we have kn+
(
n+k
k

)
nested. As(

n+k
k

)
≤ ( e(n+k)

k )
k
, we get that the running time of the algorithm can be

upper bounded by O(kn · ( e(n+k)
k )

kp
). 2

Another sensitive parameter which arises from the applicability of
this method in the medical setting comes from restricting the set of nodes
from which the control over the target can be initiated, i.e., the set of
potential driver nodes. This set corresponds to a medium-sized set of
proteins, called drug-targets, which are known to be directly affected (usually
down-proliferated) by the use of known drugs. By further specific filtering
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Algorithm 3 The iterative function Control called in the main program

Input: A directed graph G = (V,E), an integer i - the current level in the
linking graph, a set of nodes Ti−1 - the current target in the ith level of the
linking graph, an integer p - the maximum expansion of the linking graph,
and a set of nodes S - the current solution (incomplete if i < p),
Output: The set Ti which is the target in the (i+ 1)th level of the linking
graph and an update of S, the current solution for the driven set. If i = p, a
possible update of the Sbest solution.

1. We build a bipartite graph Gi with the nodes in V on the left side
(denoted Ti), and the nodes in Ti−1 on the right side. We add to Gi all
of the edges in E that have the source node in Ti and the destination
node in Ti−1.

2. We enumerate all maximal matchings in the graph Gi between the
nodes in Ti and the nodes in Ti−1.

3. For each maximal matching, do:

(a) We remove from Ti all of the nodes left unmatched. We add all
unmatched nodes from Ti−1 to S, if these nodes are not already
there.

(b) (Optionally, to speed up the search, we check if |S| ≥ |Sbest|, and
if so we backtrack).

(c) If i = p, we add to S all of the nodes in Ti. If |S| < Sbest, then
Sbest ← S.

(d) If i 6= p, we repeat again the iterative algorithm for (G′ =
(V ′, E′), i+ 1, Ti, p, S).

of the types of drugs that the user wants to focus on, the size of this set
can be further modified. For example, in [14], the authors use the set of
U.S. Food and Drug Administration (FDA) approved drugs, which selects
a set of 1500 direct drug-target proteins out of a total of approx 20 000
proteins7 (excluding post-translational modification and other variants of
these, such as phosphorilation, acetilation, etc.). This set can be enlarged

7This number comes from the approximate total of 20 000 genes encoded in the human
genome.
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or restricted by making further choices such as: considering also drugs in
clinical trials, experimental drugs, drugs used in oncology, etc. Overall, such
a set of potential driver nodes can range from 1/10 to 1/100 of the total set
of nodes, which is a substantial restricting parameter. However, limiting the
number of potential driver nodes to a subset S of the graph nodes slightly
modifies the type of problem we have to study. Indeed, by making this
assumption we can no more guarantee that the entire desired target can be
controlled. Thus, the Structural Target Controllability Problem becomes a
min-max type of question and is defined below. We call this variant of the
problem the Driver Restricted STC (DRSTC) Problem.

Definition 4 (Driver Restricted STC Problem (DRSTC)) What is
the minimum number of driver nodes, selected out of the subset S, which can
control a maximum number of nodes from T , the target set. Potentially, we
can also ask for the specific sets of selected driver nodes and the subsequent
controlled nodes.

In the following, we provide a fixed parameter tractable min-max op-
timization algorithm for DRSTC, whose time complexity is exponential in
the parameters s and p, corresponding to the size of the potential driver
set S and the maximum length of the controlling path from a driver to a
target node, respectively. Note that from practical purposes, p is a rather
small integer, e.g., p ≤ 10. The algorithm is a further tailored variant of our
initial fixed parameter tractable Algorithm 1.

Theorem 3 Given a graph G = (V,E), a target set T ⊆ V with |T | = k, a
set of nodes from which the control can be initiated S ⊆ V with |S| = s, and
an integer p corresponding to the maximal length of a controlling path from
a driver to a target node, Algorithm 4 solves the Driver Restricted Target
Controllability Problem in time O(nkps), where n = |V |.

Proof: In the following, we present in more details and analyze the
running time of each step of Algorithm 4.

In Step 1, for each di, each set T j
di
⊆ T, j ≤ p can contain at most k

elements; computing these sets is done in O(nkp), where n = |V | is the total
number of nodes. Since Tdi ⊆ T , the maximum number of ways in which
we can select Tdi in Step 2 is k(k − 1)(k − 2) . . . (k − p+ 1) < kp, for each
di ∈ S.

The most computational expensive part of the Algorithm is Step 3,
where we have to compute all possible unions of |S| sets, where each set i is
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Algorithm 4 An FPT algorithm for the Driver Restricted STC problem
parameterized by k, the size of the target set, s, the size of the restricted
driver nodes set, and p, the maximum length of the controlling path.

Input: A directed graph G = (V,E), a set of target nodes T ⊆ V , |T | = k,
a set of potential driver nodes S ⊆ V , |S| = s, and an integer p, the maximum
length of a controlling path from a driver to a target node.
Output: A set of nodes U ⊆ S of minimum cardinality that controls a
maximum subset of T , i.e., the subset of T controllable from S.

1. For each di ∈ S, 1 ≤ i ≤ s compute the sets T 1
di
, T 2

di
, . . . , T p

di
, where

T j
di
⊆ T, j ≤ p contains all those target nodes t ∈ T from which there

exists a directed path of length j from di to t, i.e., the nodes from T
which are controllable in exactly j steps from di.

2. Compute all possible sets Tdi such that exactly one element for each

T j
di
⊆ T, j ≤ p is added to Tdi .

3. Compute all possible unions TS for each choices of the sets Tdi , i.e.,
TS = {

⋃
di∈S′ Tdi | S′ ⊆ S and Tdi computed from above}.

return minimal S′ such that there exists Tdi , di ∈ S′ such that
⋃

di∈S′ Tdi
is a maximal element of TS .

either one of the possible choices of Tdi or ∅, if in that configuration di /∈ S′.
Thus, we have to assemble a total of O((kp)s) sets.

In order to output the result we have to keep track of the maximal
elements of the above sets, as well as the underlying S′ ⊆ S which generate
them. Thus, the complexity of the algorithm is in O(nkps). 2

We mention that at the end of Algorithm 4 we can also output the
elements of the set

⋃
di∈S′ Tdi , which represents the subset of target nodes

controlled from S′.

Note regarding Algorithm 4: Despite the major reduction of the algorithmic
complexity of the STC problem for the restricted case, even moderate sized
instances, e.g. Network 3 from Table 1 which has 67 nodes, 14 targets,
and 15 potential driver nodes, the algorithm does not end in a reasonable
amount of time, i.e. 24 hours on a powerful desktop computer. This tends
to suggest that either a considerable improvement needs to be performed
to such an exhaustive search algorithm, or the real-case instances of this
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problem remains to be tackled only by approximation correspondents.

In Section 5 we introduce a new variation of Algorithm 4 which has a
considerable improved complexity, leading it to the possibility of analyzing
even real-case instances. The efficiency in the running of the algorithm
comes with the drawback that our algorithm is not guaranteed to always
return the optimal solution. Nevertheless, we show that our algorithm is
almost always optimal.

4 Hardness of Approximation

In this section, we show that the Structural Target Controllability (optimiza-
tion) problem cannot be approximated within a factor of (1− ε) ln k, ∀ε > 0,
unless NP ⊆ DTIME(nlog log k), where k is the number of nodes in the tar-
get set T . We prove this via an approximation preserving reduction from the
Set Cover problem (see Definition 3). Feige [8] showed that Set Cover is hard
to approximate within (1− ε) ln k,∀ε > 0, unless NP ⊆ DTIME(klog log k),
where k is the number of elements in the universe.

Theorem 4 Unless NP ⊆ DTIME(klog log k), the STC problem cannot be
approximated within a factor of (1− ε) ln k, ∀ε > 0.

Proof: Given an instance of the Set Cover problem, i.e., a set U =
{u1, u2, . . . , uk} with k elements and n sets S1, S2, . . . , Sn ⊆ U , we construct
the following instance of the STC problem.

1. Add a node si ∈ V corresponding to each set Si in the Set Cover
instance.

2. Add a node ti ∈ V corresponding to each element ui in the set U .

3. For each Si, add qi = |Si|(|Si| − 1)/2 auxiliary nodes in V . We term
these nodes ai1, a

i
2, a

i
3, . . . , a

i
qi .

4. The target set T consists of all the nodes ti ∈ V .

5. For each set Si of the set cover instance, we construct |Si| paths
of length 2, 3, 4 . . . |Si| + 1 as follows. Let Si = {u1, u2, . . . u|Si|}.
Then we construct the paths: {si, t1}, {si, ai1, t2}, {si, ai2, ai3, t3}, . . . ,
{si, aiqi−|Si|+1, a

i
qi−1, . . . , a

i
qi , t|Si|}
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We will now show that the Set Cover instance has a solution with x
sets if and only if the target set T can be controlled with x driver nodes.
Thus, the existence of an approximation algorithm of (1− ε) ln k, for some
ε > 0, implies the existence of an approximation algorithm with the same
factor for the Set Cover problem which implies NP ⊆ DTIME(nlog log k).

Given a Set Cover with x sets Si1 , Si2 , . . . Six , then the driver nodes
si1 , si2 , . . . six control all the target nodes since each sij controls precisely
the target nodes corresponding to the elements in Sij . This holds since each
path from the node sij to nodes in T has a different length.

Conversely, given a set of x driver nodes that control all the target
nodes, we reconstruct a valid Set Cover with x sets, by choosing the sets
corresponding to the driver nodes. Thus, the theorem follows. 2

5 An Algebraic Approach for Solving the Driver
Restricted Structural Target Controllability
Problem

In this section we present a probabilistic heuristic algorithm for the DRSTC
problem (Definition 4), algorithm that uses an algebraic approach. As ex-
plained in Section 2, the STC problem has an innate algebraic representation
(see Definition 1). In the case of a restricting set S ⊆ X of potential driver
nodes, the input matrix B is restricted itself by selecting only those nodes
from S, i.e., for any S′ ⊆ S, S′ = {xi1 , xi2 , . . . , xim} we define BS′ ∈ Rn×m

having non-zero values only on the m positions B(ij , ij), i ≤ j ≤ m. Thus,
given such a restricting set S ⊆ X and a bound p ≤ n on maximal length
of a controlling path from a driver to a target node, the above algebraic
formulation becomes:

Compute a minimal subset S′ ⊆ S, |S′| = m, such that
SrankOCp(A,BS′ , CT ) = SrankOCp(A,BS , CT ), where OCp(A,BS′ , CT ) is
the length p controllability matrix OCp(A,BS′ , CT ) := [CTBS′ | CTABS′ |
CTA

2BS′ | . . . | CTA
pBS′ ].

As in the case of Algorithm 4, we are going to consider all the sub-
sets S′ of S, by eliminating elements from S one-by-one. Then, we will
(approximately) compute the generic rank SrankOCp(A,BS′ , CT ), and we
will compare it with the maximal choice SrankOCp(A,BS , CT ). The generic
rank of a matrix cannot be computed in polynomial time [7]. However, it is
known from early works on structural network controllability [21, 29] that
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for any LTIS (A,B,CT ), the set K = {(A,B,CT ) | rankOC(A,B,CT ) =
SrankOC(A,B,CT )} is open and dense with respect to operator norm and
moreover, more importantly, its complement is of measure zero. That is, the
set of values for the non-zero entries in the matrices A,B, and CT for which
rankOCp(A,B,CT ) < SrankOCp(A,B,CT ) is a very sparse set. Thus, for
computing the generic rank SrankOCp(A,B,CT ), it is enough to compute
the rankOCp(A,B,CT ) (e.g., using the Gaussian Elimination method) for
one or several random valuations of the non-zero values in these matrices.
Algorithm 5 is a min-max approximation algorithm for DRSTC, whose time
complexity is exponential in the parameters s, corresponding to the size of
the potential driver set S, times a polynomial in parameters s, p, n and k,
corresponding to the maximal length of the controlling path from a driver
to a target node, the total number of nodes, and the size of the target set,
respectively.

By increasing the number of times the rank computation is repeated,
with different random valuations, the algorithm produces a solution closer
to the optimum. By the algorithm’s design, the algorithm will never output
a subset S′ which actually does not control a maximal subset of T . Notice
that if we were able to compute exactly the generic rank of a matrix, then
we can make Algorithm 4 an exact algorithm.

Depending on the level of approximation desired, we choose the constant
Q ≥ 1, as explained in Note 3 below. From practical perspective it is enough
to have Q = 3. In the next theorem, we show the correctness of Algorithm 5.

Theorem 5 Given a graph G = (V,E), a target set T ⊆ V with |T | = k,
a set of nodes from which the control can be initiated S ⊆ V with |S| = s,
and an integer p corresponding to the maximal length of a controlling path
from a driver to a target node, Algorithm 5 produces a feasible (but possibly
suboptimal) solution for the Driver Restricted Target Controllability Problem
in time O(2s × n5).

Proof: In the following, we present in more details and analyze the
running time of each step of Algorithm 5.

Exploring all possible subsets of S has clearly complexity 2|S| (see Note 1
below for a discussion on how to speed up this process in practice).

The next step of the algorithm is to choose Q random valuations for the
non-zero values of matrices A,BS , and CT : (A1, B1

S , C
1
T ) . . . (AQ, BQ

S , C
Q
T ).

For all these valuations compute the rank of OCp(A,BS , CT ) as:

OCp(A,BS , CT ) := [CTBS | CTABS | CTA
2BS | . . . | CTA

pBS ] ∈ Rk×ps,
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Algorithm 5 A probabilistic heuristic algorithm for the Driver Restricted
STC problem parameterized by k, the size of the target set, s, the size of
the restricted driver nodes set, and p, the maximal length of the controlling
path.

Input: A directed graph G = (V,E), a set of target nodes T ⊆ V , |T | = k,
a set of potential driver nodes S ⊆ V , |S| = s, and an integer p, the maximal
length of a controlling path from a driver to a target node.
Output: A set of nodes U ⊆ S of minimum cardinality that controls a
maximal subset of T , i.e., the subset of T controllable from S.

• For each subset S′ ⊆ S:

– Compute Q times the rank of OCp(A,BS′ , CT ) for a random
assignment of the non-zero elements of matrices A,BS′ , and CT

– Let Srank’OCp(A,BS′ , CT ) be the maximum of the ranks com-
puted at the previous step

return minimal S′ such that Srank’OCp(A,BS′ , CT ) =
Srank’OCp(A,BS , CT )

and approximate SrankOCp(A,BS , CT ) as: Srank’OCp(A,BS , CT ) :=

max{rankOCp(A1, B1
S , C

1
T ), . . . , rankOCp(AQ, BQ

S , C
Q
T )}.

Computing OCp(A,BS , CT ) for each of the valuations is performed
in O(pn3) time and since p is bounded by n, computing OCp(A,BS , CT )
takes at most O(n4) time. Also, the rank calculation can be performed
using e.g. the Gaussian Elimination method. While this method involves
O(n3) operations, the implementation of the method may create numbers
with exponentially many bits. Nevertheless, there is a variant of Gaussian
elimination, called the Bareiss algorithm[1], that avoids this exponential
growth of the intermediate entries and has a time complexity of O(n5).

For each of the subsets S′ ⊆ S explored above, derive the re-
stricted valuations B1

S′ , . . . , B
Q
S′ out of the valuations for BS . Then, as

above, compute OCp(A1, B1
S′ , C1

T ) and its rank. If rankOCp(A1, B1
S′ , C1

T ) <
Srank’OCp(A,BS , CT ) re-compute the rank for the next valuation. We con-
sider that Srank’OCp(A,BS′ , CT ) = Srank’OCp(A,BS , CT ) iff for at least
one of the above valuations we have an equality.

In order to output the result we have to keep track of the minimal
S′ ⊆ S for which Srank’OCp(A,BS′ , CT ) = Srank’OCp(A,BS , CT ). Also,
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unless this was performed in the initial Gaussian Elimination method imple-
mentation, we have to determine which of the lines in OCp(A,BS′ , CT ) are
linearly independent, i.e., which of the targets from T are controlled from S′.
Thus, the time complexity of Algorithm 5 is O(2sn5). 2

5.1 Notes on the Implementation of Algorithm 5

Given the prohibitively high computational complexity of all previous al-
gorithms, we only considered the implementation of Algorithm 5, which is
itself a more real-life scenario-oriented version of Algorithm 4. Furthermore,
while its computational complexity cannot be improved, we detail below a
few algorithmic features which considerably boosted the efficiency of the
implementation.
Note 1: This note discusses a Branch and Bound improvement on the
Algorithm 5. At the core of Algorithm 5 is a complete subset exploration
of S, the collection of potential driver nodes. Moreover, we are interested
in finding a minimal S′ ⊆ S which can control as much as the entire S.
Thus, in our exploration, it makes sense to explore these subsets only as
long as they are smaller than the best subset identified so far. In this way
the search tree is considerably pruned, significantly improving the run-time
of the algorithm.
Note 2: On a similar note, while the algorithm provides a complete subset
exploration, there are a number of subsets that can safely be discarded. For
example, in the most favorable scenario, each source node would control the
maximum of p+ 1 target nodes (itself, and p others), so there must be at

least bSrank’OCp(A,BS ,CT )
p+1 c source nodes in the solution. Similarly, in the

least favorable scenario, each target node is controlled by a different source
node, so there can be at most Srank’OCp(A,BS , CT ) source nodes in the
solution.
Note 3: In our implementation of calculating the generic rank of matrices
OC(A,B,C) we have seldom encountered cases when two different random
valuations of the structural matrices A,B, and C would generate a different
rank. More importantly, it has never happened that a third random valuation
would generate yet another rank value. Thus, in our implementation of
Algorithm 5 we have used Q = 3.
Note 4: As the algorithm is intended to be applied in the biological domain,
where shorter path lengths are to be desired due to the quick dissipation
of a drug’s effects over long signalling pathways, we used a maximum path
length of p = 5.
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5.2 Results of Algorithm 5

In order to assess the efficiency and the utility of Algorithm 5 for the DRSTC
problem, we have run it on several real-life networks of different domains.
Firstly, we used the social networks documented in [30] (1) and [18] (2),
where the nodes represent people and the edges the positive sentiment from
one person to another. Then, we considered the electronic networks presented
in [19] (1, 2, 3), where the nodes represent logic gates and the edges the
connections between them. Finally, we generated several protein-protein
interaction networks starting from the essential genes for breast cancer (1, 3)
and pancreatic cancer (2) described in [14], using the OmniPath [6] database,
and considering the interactions between the essential genes (1, 2), or the
interactions between the essential genes with one intermediary gene (3). For
each network, we randomly generated three sets of target nodes (with the
sizes of 10, 20 and 30) from the set of nodes with at least one incoming edge.
Similarly, for each network, we also randomly generated three sets of source
nodes from the set of nodes with at least one outgoing edge. If not enough
suitable nodes existed in a network to form a set of certain size, then the
corresponding run of the algorithm was skipped.

The results are presented in Table 1, and are available, together with the
implementation and the data sets, at [23]. In Table 1, the last three columns
are, CT: number of controlled target nodes; CS: number of controlling source
nodes; TS: running time, in seconds.

The runs that did not complete within two days have been omitted /
marked with ∗. As it can be seen in Table 1, Algorithm 5 can be successfully
applied on real-life networks.

As expected, the parameters with the biggest influence on the running
time are the size of the set of source nodes and the number of nodes in the
network. While the total running time of the algorithm mostly depends
on the total number of subset (and, thus, on the size of the set of source
nodes) and was significantly decreased by skipping the invalid subsets and
not taking into consideration the larger solutions once a smaller one was
found, the running time per subset is dependent on the rank computations
(which, in turn, depends on the number of nodes in the network, and to a
lesser extent on the size of the sets of nodes).

Furthermore, this strategy helps the algorithm perform faster on well-
connected networks, where few source nodes can control the target set of
nodes and, thus, are quickly found. This can be observed in the case of the
largest protein-protein interaction network (which is the most well-connected
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Network Nodes Edges Targets Sources CT CS TS

Social
Interaction 1

32 96

10 10 10 2 0.11
10 20 10 2 2.5
10 30 10 2 2863.6
20 10 20 4 0.23
20 20 20 4 2.39
20 30 20 4 2886.38

Social
Interaction 2

67 182

10 10 10 3 0.22
10 20 10 2 2.43
10 30 10 2 5766.48
20 10 20 4 0.3
20 20 20 4 2.95
30 10 30 6 0.53
30 20 29 5 3.4

Electronic
Circuit 1

122 189

10 10 3 3 0.28
10 20 8 3 73.62
10 30 9 5 29228.78
20 10 10 6 2.9
20 20 18 6 284.15
30 10 13 5 2.63
30 20 25 8 655.04

Electronic
Circuit 2

208 189

10 10 3 3 1.21
10 20 3 3 11.62
10 30 6 3 8764.32
20 10 5 5 5.46
20 20 5 4 120.75
30 10 7 7 12.76
30 20 3 3 6.08

Electronic
Circuit 3

512 819

10 10 4 3 10.53
10 20 3 2 26.15
20 10 10 6 150.67
20 20 8 6 5482.52
30 10 12 7 158.38
30 20 12 6 106267.06

Protein-Protein
Interaction 1

64 94

10 10 7 3 0.19
10 20 8 3 2.73
10 30 10 4 6870.62
20 10 12 4 0.32
20 20 18 8 387.45
30 10 18 4 0.31
30 20 28 11 843.31

Protein-Protein
Interaction 2

58 64

10 10 7 3 0.18
10 20 10 4 6.07
10 30 10 4 3951.35
20 10 8 4 0.35
20 20 11 6 390.33
30 10 13 4 0.37
30 20 20 10 1041.5

Protein-Protein
Interaction 3

433 1604

10 10 10 3 5.85
10 20 10 3 17.89
10 30 10 3 2921.13
20 10 18 4 11.68
20 20 18 4 108.76
30 10 29 7 42.74
30 20 28 6 1474.74

Table 1: Results of Algorithm 5.

of the analyzed networks), on which the algorithm completed significantly
faster for all sets compared to the largest similarly-sized electronic circuit
(which is less-connected).

The order of the nodes within the sets of source nodes also has a large
influence on the final running time. For example, if the last node in the
list would be required for the best solution, then the said best solution can
only be found within the last half of the checked subsets (based on the order
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the algorithm generates and iterates through them), while the algorithm
would still check all previous subsets, resulting in a significant increase of
the running time.

However, the final running time could be further improved by decreasing
the number of times that the rank of the corresponding matrices is computed,
further shortening the maximum path length, or by using a different order
(and stopping condition) for analyzing the subsets.

6 Conclusions and Future Work

Network Science has been proven to be highly relevant within the current
developments of medicine and personalized therapeutics. Within this field,
structural network control is a powerful and efficient tool for steering the
involved bio-medical systems towards desirable configurations. Thus, the
algorithmic optimization problems studied in this manuscript are relevant for
the computational bio-medicine community, as highly optimized solutions
have a significant chance of translating into efficient therapeutics. Although
the Structural Target Control (Optimization) problem has been proven to
be NP-hard in its general case and can not even be approximated within a
constant factor, and although it is a known fact that bio-medical networks
are rather large, containing thousands of nodes and (tens of thousands of)
interactions, in practice, several of the involved parameters can still be
considerably bounded to significantly lower values. In this research, we
took advantage of these insights in order to provide several optimization
algorithms which remain of low polynomial complexity with regards to the
size of the network, and are exponential only in those chosen parameters.
Out of these algorithms, one in particular has been shown to be tractable for
real-case networks containing up to 200+ nodes. Moreover, on all non-trivial
test-cases, this latter algorithm gave more detailed and complete output
than the current state of the art software dealing with this problem.
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