
HAL Id: hal-01821067
https://inria.hal.science/hal-01821067

Submitted on 22 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Greedy Heuristics for Automatic Synthesis of Efficient
Block-Structured Scheduling Processes from Declarative

Specifications
Amelia Bădică, Costin Bădică, Daniela Dănciulescu, Doina Logofătu

To cite this version:
Amelia Bădică, Costin Bădică, Daniela Dănciulescu, Doina Logofătu. Greedy Heuristics for Automatic
Synthesis of Efficient Block-Structured Scheduling Processes from Declarative Specifications. 14th
IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), May
2018, Rhodes, Greece. pp.183-195, �10.1007/978-3-319-92007-8_16�. �hal-01821067�

https://inria.hal.science/hal-01821067
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Greedy Heuristics for Automatic Synthesis of Efficient
Block-Structured Scheduling Processes from Declarative

Specifications

Amelia Bădică1, Costin Bădică1, Daniela Dănciulescu1, and Doina Logofătu2

1 University of Craiova, Romania,
ameliabd@yahoo.com,cbadica@software.ucv.ro,
2 University of Applied Sciences, Frankfurt, Germany,

logofatu@fb2.fra-uas.de

Abstract. This paper introduces a new Greedy heuristic algorithm for the auto-
matic synthesis of block-structured scheduling processes that satisfy a given set
of declarative ordering constraints, as well as basic theoretical results that sup-
port the correctness of this algorithm. We propose two heuristics that can be used
with this algorithm: hierarchical decomposition heuristic and critical path heuris-
tic. We also present initial experimental results supporting the effectiveness and
efficiency of our proposed algorithm and heuristics.

Keywords: Greedy algorithm, process model, ordering constraints, optimization

1 Introduction

There are many formalisms for the specification of business process models. Block-
structured models have certain advantages compared with other approaches [3].

It is useful and quite intuitive to declaratively specify desired properties of process
models. We are interested in constructing process models that are consistent with the
given declarative specification [6]. This problem has practical applications in schedul-
ing tasks encountered in manufacturing systems [4].

Manual construction of large process models satisfying a set of ordering constraints
is almost impossible or at least not scalable. Automatic generation based on exhaustive
exploration of the space of possibilities is difficult because of the huge number of po-
tential candidates. The only feasible solution is to design automatic approaches based
on efficient heuristic algorithms that are able to drastically prune the huge search space.

In this paper we focus on scheduling processes. In this case, the declarative spec-
ification defines the scheduling constraints. We are interested in determining optimal
or at least, as efficient as possible, block-structured scheduling processes that satisfy
the scheduling constraints. The optimization criterion requires the minimization of the
total completion time. Optionally, we can add other constraints, like for example im-
posing upper bounds for the amount of parallel work. This constraint may result from
the practical restriction regarding the limited availability of certain resources. In par-
ticular: i) our processes are defined only using sequential and parallel composition; ii)
each activity must have exactly one instance in the schedule.

2 Amelia Bădică et al.

Our work was mainly influenced by previous results of [4, 5]. Nevertheless, our
results are different in many aspects. Most important, our heuristics are deterministic
and different. We are using the hierarchical decomposition of a graph, while [4, 5] are
based on the more complex modular decomposition. We also provide theoretical results
to support our work. Finally, we performed experiments with larger graphs, and our
preliminary results suggest that our algorithm might be faster.

Note that there are many theoretical studies on evolutionary algorithms and ran-
domized (meta/hyper) heuristics applied to combinatorial optimization algorithms [1].
Such works could be considered for the further expansion of our results by comparison
of our method with different, but related approaches.

2 Process Models

Let us consider a finite nonempty set of activities Σ. A trace t ∈ Σ∗ is a sequence of zero
or more activities 3. The length of a trace t = a1a2 . . . an is n and this is denoted as |t| = n.
The empty trace is denoted by ε and |ε| = 0. For each nonempty trace t = a1a2 . . . an we
define: i) the head of t as head(t) = a1, and ii) the tail of t as tail(t) = a2 . . . an.

A language L ⊆ 2Σ
∗

is defined as a set of traces. We can define certain operations
with languages. The sequential composition of two languages L1 and L2 denoted by
L1 → L2, is defined as follows:

L1 → L2 = {w = l1l2 | l1 ∈ L1 and l2 ∈ L2}

This notation can be extended for a trace t and a language L as: t → L = {t} → L.
The parallel composition of two traces t1 and t2, denoted by t1 ‖ t2, is defined as:

– For each nonempty trace t we have: t ‖ ε = ε ‖ t = {t}
– For each nonempty traces t1 and t2 we have:

t1 → t2 = (head(t1)→ (tail(t1) ‖ t2)) ∪ (head(t2)→ (t1 ‖ tail(t2)))

The parallel composition L1 ‖ L2 of two languages L1 and L2 is now defined as:

L1 ‖ L2 = ∪t1∈L1,t2∈L2 t1 ‖ t2

Let us consider the set {→, |, ‖} of three binary operators used for constructing block-
structured processes. The operator → denotes sequential composition, the operator |
denotes the nondeterministic choice, and the operator ‖ denotes parallel composition.

Let us denote with a, b, c, . . . the activities of Σ and with P,Q,R, . . . process terms.
Process terms can be defined recursively as follows:

P ::= a | P→ Q | P | Q | P ‖ Q

The language L(P) of process P is recursively defined as follows:

– L(a) = {a}

3 Σ∗ is the set of all sequences consisting of zero or more elements of Σ.

Heuristic Algorithm for Efficient Block-Structured Processes 3

– L(P→ Q) = L(P)→ L(Q)
– L(P | Q) = L(P) ∪ L(Q)
– L(P ‖ Q) = L(P) ‖ L(Q)

Operator ‖ has higher precedence, operator→ has middle precedence, and operator |
has lower precedence. All operators are associative, while ‖ and | are also commutative.

Process terms represent models of processes and they can be graphically depicted
as trees or as block-structured flowcharts, as shown in Figure 1.

→

‖a

b c

a ‖

b

c

‖

Fig. 1. Tree model of process a→ b ‖ c (left) and its equivalent block-structured model (right)

In what follows we focus on process models with the following particularities:

– They represent sets of possible activity schedules. A schedule must contain exactly
one instance of each activity.

– They use sequential (→) and parallel (‖) operators. Scheduling processes are deter-
ministic, explaining why nondeterministic choice is not used in their definition.

Rigorously defining scheduling processes requires the introduction of the support
set supp(P) of a process P that denotes the set of activities that occur in process P.

A block-structured scheduling process is recursively defined as follows:

– If a is an activity then a is also a process such that supp(a) = {a}.
– If P and Q are processes such that supp(P) ∩ supp(Q) = ∅ then P→ Q and P ‖ Q

are processes with supp(P→ Q) = supp(P ‖ Q) = supp(P) ∪ supp(Q).

For example, processes a ‖ c→ b and a ‖ (c→ b) are well-formed, and:

– supp(a ‖ c→ b) = supp(a ‖ (c→ b)) = {a, b, c}
– L(a ‖ c→ b) = {acb, cab}
– L(a ‖ (c→ b)) = {acb, cab, cba}

It is not difficult to observe that if P is a well-formed block-structured scheduling
process then all its traces t ∈ L(P) have the same length |t| = |supp(P)|.

3 Declarative Specification of Ordering Constraints

3.1 Activity Ordering Graph

Based on domain-specific semantics, one can impose ordering constraints of the activ-
ities of a process. For example if two activities are independent and there are enough

4 Amelia Bădică et al.

resources to be allocated to each of them then those activities can be scheduled for
parallel execution. However, if an activity depends on the output produced by another
activity, then the first activity can be scheduled for execution only after the completion
of the second activity, i.e. there is a sequencing constraint between their execution order.
Finally, if two activities define distinct action options then their execution is incompat-
ible, so it cannot occur within the same schedule, i.e. they are mutually exclusive.

The ordering constraints imposed on each trace of a scheduling process are declar-
atively specified using an activity ordering graph G = 〈V, E〉 [5] such that:

– V is the set of nodes and each node represents an activity.
– E ⊆ V ×V is the set of edges. Each edge represents an ordering constraint. Set E is

partitioned into two disjoint sets E→ and E, with the following meaning:
• Set E→ specifies sequential ordering constraints. If (u, v) ∈ E→ then activity v

cannot occur in a schedule without being preceded by activity u. E→ is a partial
ordering, i.e. it is transitive and antisymmetric, so it cannot define cycles.

• Set E, specifies mutual exclusion constraints. If (u, v) ∈ E, then activities u
and v are incompatible, so they cannot occur within the same schedule. Set E,
defines a symmetric relation.

Intuitively, satisfaction of mutual exclusion constraints requires the availability of
nondeterministic choice operator in process definition. As we assumed that this operator
is not available for scheduling processes, we will now focus only on sequential ordering
constraints, i.e. we assume that E, = ∅ so E = E→. This means that the ordering graph
is a directed acyclic graph with arcs defining sequential ordering constraints.

If t = a1a2 . . . an is a trace of a scheduling process and u, v are two activities of t
then u precedes v in t, i.e. u

t
→ v if there are 1 ≤ i < j ≤ n such that ai = u and a j = v.

Let G = 〈V, E〉 be an ordering graph and let t be a trace containing all the activities
of V with no repetition. Then t satisfies G, written as t |= G, if and only if E→ ⊆

t
→. This

means that trace t cannot contain activities ordered differently than as specified by G.
The language L(G) of an ordering graph G is the set of all traces that satisfy G, i.e:

L(G) = {t | t |= G}

Let P be a scheduling process and let G = 〈V, E〉 be an ordering graph. P satisfies G
written as P |= G, if and only if:

– L(P) ⊆ L(G), i.e. each trace of P satisfies G, and
– supp(P) = V , i.e. all the activities of V are relevant and occur in P.

The set of processes P such that P |= G is nonempty, as it contains at least one
sequential process defined by the topological sorting of G.

3.2 Optimal Scheduling Processes

Each activity has an estimated duration of execution that is represented using a function
d : Σ → R+. The duration of execution d(P) of a process P is defined as follows:

– If P = a then d(P) = d(a).

Heuristic Algorithm for Efficient Block-Structured Processes 5

– d(P→ Q) = d(P) + d(Q).
– d(P ‖ Q) = max {d(P), d(Q)}.

The minimum duration of execution of a process that satisfies a given ordering graph
G, denoted with dMIN(G), is defined as:

dMIN(G) = min
P|=G
{d(P)}

An optimal scheduling process that satisfies a given ordering graph G is a process
P∗ with a minimum duration of execution, i.e. it satisfies:

– P∗ |= G, and
– d(P∗) = dMIN(G).

There is a finite and nonempty set of processes that satisfy an ordering graph G,
so the optimal scheduling process trivially exists. Moreover, as there is an exponential
number of candidate processes satisfying G, we postulate that the computation of the
optimal scheduling process is generally an intractable problem. Therefore, we will be
focusing on developing efficient heuristic algorithms that are able to produce “subopti-
mal” or “good enough” scheduling processes using a reasonable computational effort.

4 Heuristics for Suboptimal Processes

We introduce two heuristics that are used to derive an efficient Greedy heuristic algo-
rithm for computing a suboptimal scheduling process satisfying an ordering graph.

4.1 Hierarchical Decomposition Heuristic

Let G = 〈V, E〉 be an ordering graph. Remember that G is a directed acyclic graph
defining the sequential ordering constraints imposed on a scheduling process.

– For each node v ∈ V we define the set I(v) of input neighbors of v as follows:
I(v) = {u ∈ V | (u, v) ∈ E}.

– For each node v ∈ V we define the level l(v) of v as a function l : v→ N such that:
• If I(v) = ∅ then l(v) = 0.
• If I(v) , ∅ then l(v) = 1 + max

u∈I(v)
{l(u)}.

– The height l(G) of graph G is defined as l(G) = max
v∈V
{l(v)}.

– If m = l(G) ≥ 0 then the family of m + 1 sets {V0,V1, . . . ,Vm} defined as Vi =

{v | l(v) = i} for all 0 ≤ i ≤ m is a partition of V . If Gi is the subgraph of G in-
duced by Vi then the family of graphs {G0,G1, . . . ,Gm} is known as the hierarchical
decomposition of G.

Proposition 1. (Hierarchical Decomposition Process) Let G = 〈V, E〉 be an ordering
graph. The hierarchical decomposition process PHD(G) associated to G is defined as:

– Pi = ‖v∈Vi v for all 0 ≤ i ≤ m.
– PHD(G) = P0 → P1 → · · · → Pm.

6 Amelia Bădică et al.

Then PHD(G) |= G. Moreover, the duration of execution of the hierarchical decom-
position process associated to an ordering graph, denoted as dHD(G) = d(PHD(G)), rep-
resents a non-trivial upper bound of the duration of execution of the optimal scheduling
process dMIN(G), i.e. dHD(G) ≥ dMIN(G).

a

c

b

→

‖

a c

b

‖

→

a b

c

Fig. 2. Ordering graph G1 (left), process P1 (middle) and process P2 (right)

Figure 2 shows an ordering graph G1, and two processes P1 and P2 such that G1 |=

P1 and G1 |= P2. The hierarchical decomposition of G1 is induced by the partition of
its vertices {{a, c}, {b}}, so we can easily notice that P1 is the hierarchical decomposition
process of G1. Observe that:

– dHD(G1) = d(P1) = max {d(a), d(c)} + d(b)
– d(P2) = max {d(a) + d(b), d(c)}

Clearly d(P1) ≥ d(P2) and P2 is optimal (other satisfying processes are strictly
sequential, incurring a higher duration of execution). But note that if d(a) ≥ d(c)
then d(P1) = d(P2) = d(a) + d(b) so the optimal scheduling process has duration
dHD(G1) which shows that we can have equality in the inequality resulted from Propo-
sition 1. However, if d(a) < d(c) the optimal scheduling process has duration d(P2) =

max {d(a) + d(b), d(c)} < dHD(G1) = d(c) + d(b).

4.2 Critical Path Heuristic

Observe that an activity u cannot start unless all the neighboring activities from the input
set I(u) are finished. This time point is denoted with start(u). Activity u that started at
start(u) will finish at time f inish(u) = start(u)+d(u). The values start(u) and f inish(u)
for each activity u ∈ V can be computed using the critical path method [2], as follows:

– If I(u) = ∅ then start(u) = 0 and f inish(u) = d(u).
– If I(u) , ∅ then start(u) = max

v∈I(u)
{ f inish(v)} and f inish(u) = start(u) + d(u).

The maximum value of the finishing time of each activity, known as critical path
length, is a lower bound for the duration of execution of the optimal scheduling process.

Proposition 2. (Critical Path) Let G = 〈V, E〉 be an ordering graph and let dCP(G) be
its critical path length. Then dCP(G) is a lower bound of the duration of execution of
the optimal scheduling process dMIN(G), i.e. dMIN(G) ≥ dCP(G).

Heuristic Algorithm for Efficient Block-Structured Processes 7

a

c

b

d

→

‖ ‖

a c b d

Fig. 3. Ordering graph G2 (left) and process P3 (right)

Figure 3 shows an ordering graph G2 and its hierarchical decomposition process P3.
The critical path length of G2 is trivially dCP(G2) = max {d(a) + d(b), d(a) + d(d), d(c) +

d(d)}, while d(P3) = max {d(a), d(c)} + max {d(b), d(d)} = max {d(a) + d(b), d(a) +

d(d), d(c) + d(b), d(c) + d(d)} = max {dCP(G2), d(c) + d(b)} ≥ d(G2). Note that:

– If d(c) + d(b) ≤ max {d(a) + d(b), d(a) + d(d), d(c) + d(d)} then dCP(G2) = d(P3),
i.e. the hierarchical decomposition process has a duration of execution equal to the
critical path length. This clearly shows that dMIN(G2) = dCP(G2).

– If d(c) + d(b) > max {d(a) + d(b), d(a) + d(d), d(c) + d(d)} then we infer that
d(c) > d(a), d(b) > d(d), and d(P3) = d(b) + d(c). However, we do not know yet if
in this case dMIN(G2) is equal to or strictly higher than dCP(G2). This depends on the
other processes that satisfy G2. Two such processes are P4 and P5 (see Figure 4).
Observe that if we choose d(c) + d(d) > d(b) and d(a) + d(b) > d(c) then dCP(G2) =

max {d(a) + d(b), d(c) + d(d)}, while dMIN(G2) = min {d(P3), d(P4), d(P5)} =

min {d(b) + d(c), d(a) + d(c) + d(d), d(a) + d(b) + d(d)}, that clearly shows that
dMIN(G2) > dCP(G2), i.e. the inequality from Proposition 2 is strict.

→

‖

→

a

c

b

d

→

‖

→

a

c

b

d

Fig. 4. Two other processes P4 (left) and P5 (right) that satisfy the ordering graph G2

4.3 Reducing the Duration of Execution

Analyzing Figure 2, we can observe that the duration of execution of the hierarchical
decomposition process can be reduced by doing a transformation that pushes the par-
allel composition operations upper in the process tree. However, this transformation is

8 Amelia Bădică et al.

not always possible. We now provide sufficient conditions that enable the transforma-
tion and guarantee that the duration of execution of the resulted process is lower than of
the original process. Referring at Figure 2, the key observation is that the set of nodes
of graph G1 can be partitioned in two subsets U0 = {a, b} and U1 = {c} such that there
are no arcs cross-linking nodes in U0 to nodes in U1 or nodes in U1 to nodes in U0.
Note that such a decomposition is not possible for the graph G2 from Figure 2.

We consider the most general situation of reducing the duration of execution of a
process (P1 ‖ P2)→ (Q1 ‖ Q2). Similar results can be obtained for the processes of the
form (P1 ‖ P2)→ Q and P→ (Q1 ‖ Q2).

Proposition 3. (Reducing the Duration of Execution) Let P = (P1 ‖ P2) → (Q1 ‖ Q2)
and let G = 〈V, E〉 be an ordering graph such that P |= G. Let us also assume that
((supp(P1 → Q1) � supp(P2 → Q2)) ∩ E = ∅4. Then it follows that:

– Process P′ = (P1 → Q1) ‖ (P2 → Q2) is well-formed,
– P′ |= G, and
– d(P) ≥ d(P′).

4.4 Automatic Synthesis Algorithm

Let G = 〈V, E〉 be an ordering graph and let U be the undirected graph obtained by
removing the orientation of arcs of graph G. We denote with G(W) andU(W) the sub-
graphs of G andU induced by a subset W ⊆ V of nodes.

Let {V0,V1, . . . ,Vm} be the partition of node set V defined by the hierarchical de-
composition of G. We define the following sets of nodes:

– W0 = V0
– W1 = W0 ∪ V1

. . .
– Wm = Wm−1 ∪ Vm = V

LetUi = U(Wi) and Gi = G(Wi) for each 0 ≤ i ≤ m. Each undirected graphUi can
be partitioned into connected components that induce the partition {U1,U2, . . . ,Uki } of
the set Wi of nodes such that ki > 1. This situation is intuitively described in Figure 5.

Following the result of Proposition 3, the hierarchical decomposition process P de-
fined for subgraph Gi can be transformed into process P′ such that:

– P′ = ‖
ki
j=1 P j

– supp(P j) = U j for all 1 ≤ j ≤ ki
– d(P) ≥ d(P′)

Consider for example the sample ordering graph G3 from Figure 6. The parti-
tion of nodes corresponding to the hierarchical decomposition of G3 is {V0,V1,V2} =

{{a, c}, {b, d}, {e}} and its height is m = 2. The hierarchical decomposition process of G3
is P6 = (a ‖ c)→ (b ‖ d)→ e. Its duration of execution is 46.

We observe that for i = 1 the set W1 = V0 ∪ V1 = {a, b, c, d} can be partitioned into
{{a, b}, {c, d}}, so k1 = 2. Using this observation we determine the transformed process

4 Operator � denotes the symmetric cartesian product defined as A � B = (A × B) ∪ (B × A)

Heuristic Algorithm for Efficient Block-Structured Processes 9

V0 V1

. . .

Vi

Wi

⇒

Uki

. . .

U2

U1

Wi

Fig. 5. Transformation to reduce duration of execution.

a b

c d

e

Fig. 6. Ordering graphG3. Activity durations: d(a) = 10, d(b) = 18, d(c) = 20, d(d) = 7, d(e) = 8.

P7 = ((a → b) ‖ (c → d)) → e. This process has the duration of execution of 36 < 46.
It follows that by applying our proposed transformation we were able to significantly
reduce the duration of execution of process P6 from d(P6) = 46 to d(P7) = 36.

We can combine this transformation with the hierarchical decomposition heuris-
tic dHD provided by Proposition 1 or with the critical path heuristic dCP provided by
Proposition 2 to design an efficient Greedy algorithm for the automatic synthesis of a
suboptimal scheduling process that is consistent with a declarative specification.

Let G = 〈V, E〉 be an ordering graph. The algorithm can be defined as a function
proc(W,G(W)) that takes a subset of nodes W ⊆ V , the subgraph G(W) of G induced
by W and returns a suboptimal process that satisfies G(W).

Let {V0,V1, . . . ,Vm} be the partition of node set V defined by the hierarchical de-
composition of G. Function proc(V,G(V)) is recursively defined as follows:

– If m = 0 then proc(V,G(V)) = ‖v∈V v.
– If m > 0 and V0 = {v} is a singleton set then proc(V,G(V)) = v → proc(V \
{v},G(V \ {v})).

– If m > 0 and V0 has at least two elements then for each 0 ≤ i ≤ m determine the
number ki of the sets of the partition of set Wi induced by the connected components
of the undirected graphUi obtained from the directed graph Gi. We have k0 ≥ k1 ≥

· · · ≥ km ≥ 1. Let i be the largest index for which ki > 1. Such an index always
exists as k0 = |V0| > 1. Select an index 0 ≤ j ≤ i for which the estimated duration of
execution of the “synthesized process” (to be defined in what follows) is minimized.

10 Amelia Bădică et al.

We now recursively define the “synthesized process” and its estimated duration
of execution, in terms of function proc. Let G = 〈V, E〉 be an ordering graph, let
{V0,V1, . . . ,Vm} be the partition of node set V defined by the hierarchical decompo-
sition of G, and let us assume that m > 0 and |V0| > 1. The “synthesized process” P j

and its estimated duration of execution dG−ES T (P j) with ES T ∈ {HD,CP} is:

– If j = 0 then P0 = ‖v∈V0→ proc(V \ V0,G(V \ V0)) and is duration of execution is
estimated to dG−ES T (P0) = max{d(v)}

v∈V0

+ dG−ES T (G(V \ V0)).

– If 0 < j < m then let us consider the partition {Y1,Y2, . . . ,Yk j } of W j. Then P j =

(‖k j

i=1 proc(Yi,G(Yi))) → proc(V \ W j,G(V \ W j)) and is duration of execution is
estimated to dG−ES T (P j) = maxk j

i=1 {dG−ES T (Yi)} + dG−ES T (V \W j).
– If j = m then let us consider the partition {Y1,Y2, . . . ,Ykm } of Wm = V . Then

Pm =‖
km
i=1 proc(Yi,G(Yi)) and is duration of execution is estimated to dG−ES T (Pm) =

maxkm
i=1 {dG−ES T (Yi)}.

Proposition 4. (Duration of Execution of Greedy Suboptimal Processes) Let dG−ES T (G)
be the duration of execution of the suboptimal process that was computed with the
Greedy algorithm using heuristic ES T ∈ {HD,CP}. Then this process satisfies order-
ing graph G and dHD(G) ≥ dG−ES T (G) ≥ dMIN(G) ≥ dCP(G).

5 Experimental Evaluation

We implemented our algorithm in Standard C using the 64-bit GCC compiler, ver-
sion 5.1.0 and tested it on a x64-based PC with Intel(R) Core(TM) i7-5500U CPU at
2.40GHz running Windows 10. In this section we present the experimental results that
we obtained with this implementation. The experiment was organized as follows:

– We randomly generated a number of directed acyclic graphs of increasing sizes
representing ordering constraints, as well as random durations of execution for each
activity of the graph. The parameters of a data set are: number n of graph nodes,
number ng of generated graphs, minimum and maximum durations dmin and dmax
of each activity, and the density factor f ∈ [0, 1] of the graph. The higher is this
factor the more dense is the graph. Value of f is given as a percentage.

– For each graph G we estimated the basic metrics given by the hierarchical decom-
position heuristic dHD(G) and by the critical path heuristic dCP(G).

– For each graph G we computed the suboptimal scheduling process that satisfies
G using the Greedy heuristic algorithm proposed in Section 4.4, in two variants:
using the hierarchical decomposition heuristic and respectively using the critical
path heuristic, to confirm the result claimed by Proposition 4, and to compare the
results obtained for dG−HD and dG−CP.

The graph data sets were generated for the following values of the parameters: ng =

100, n ∈ {10, 50, 150, 300, 500, 700}, dmin = 1, dmax = 20, and density factor f ∈
{15%, 30%, 45%, 60%, 75%}. For each test we recorded the total execution time and
the values of the metrics of interest. We labelled each data set to reflect its number of
nodes and density. For example if n = 500 and f = 30% then the label is 500-30.

Heuristic Algorithm for Efficient Block-Structured Processes 11

nodes / density 15% 30% 45% 60% 75%
10 0.019 0.009 0.012 0.010 0.012
50 0.191 0.202 0.186 0.208 0.198

150 1.813 1.898 2.057 2.157 2.295
300 7.883 9.358 10.552 10.482 12.435
500 26.200 31.889 36.889 41.378 46.221
700 65.121 75.967 90.575 104.268 116.500

Table 1. Total execution time in seconds for processing each data set

Table 1 presents the total execution time of running the synthesis algorithm for
each data set. We observe that increasing the number of nodes, as well as the density,
determines the increase of the execution time. Note that these times cover the processing
of batches of 100 graphs. This means for example that the average time to process one
graph of the 700-75 data set is approximately 1 second, i.e. our algorithm is quite fast.

Fig. 7. Comparison of costs for the 700-30 data set

Figures 7 and 8 illustrate the values of the cost metrics for each graph of each data
set 700-30 and 700-60. Three observations are drawn from these figures. Firstly, these
experimental results are consistent with the theoretical results stated by Proposition 4.
Secondly, that results of both experiments show that CP heuristic performs better than
HD heuristic for almost all the graphs of the data set (there are few exceptions difficult
to observe on the figures). Thirdly, the heuristics CP and HD tend to give closer results
for higher density ordering graphs, as can be noticed by comparing the “closeness” of
the cost values obtained for G-CP and G-HD for each data set 700-30 and 700-60.

6 Conclusions

We proposed a new Greedy algorithm for the automatic synthesis of block structured
scheduling processes that satisfy given declarative ordering constraints. We presented

12 Amelia Bădică et al.

Fig. 8. Comparison of costs for the 700-60 data set

basic theoretical results that support the correctness of this algorithm. We proposed two
heuristics that can be used with this algorithm: hierarchical decomposition and critical
path. Our initial experimental results support the effectiveness of our proposals and
suggest that the critical path heuristic performs better.

References

1. Demertzis, K., Iliadis, L.: Adaptive Elitist Differential Evolution Extreme Learning Machines
on Big Data: Intelligent Recognition of Invasive Species. In: Angelov, P., Manolopoulos, Y.,
Iliadis, L., Roy, A., Vellasco, M. (eds.): Advances in Big Data. Advances in Intelligent Sys-
tems and Computing 529, 333–345. Springer (2017). doi:10.1007/978-3-319-47898-2 34

2. Kelley, J. E. Jr.: Critical-Path Planning and Scheduling: Mathematical Basis. Operations Re-
search. 9, 3, 296–320. Informs (1961). doi:10.1287/opre.9.3.296

3. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering Block-Structured Process
Models from Event Logs - A Constructive Approach. In: Colom, J.-M., Desel, J. (eds.): Appli-
cation and Theory of Petri Nets and Concurrency. PETRI NETS 2013. LNCS 7927, 311–329.
Springer (2013). doi:10.1007/978-3-642-38697-8 17

4. Mrasek, R., Mülle, J., Böhm, K.: Automatic Generation of Optimized Process Models from
Declarative Specifications. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.): Advanced
Information Systems Engineering. CAiSE 2015. LNCS 9097, 382–397. Springer (2015). doi:
10.1007/978-3-319-19069-3 24

5. Mrasek R., Mülle J., Böhm K.: Process Synthesis with Sequential and Parallel Constraints.
In: Debruyne, C. et al. (eds.): On the Move to Meaningful Internet Systems: OTM 2016 Con-
ferences. OTM 2016. LNCS 10033, 43–60. Springer (2016). 10.1007/978-3-319-48472-3 3

6. Pesic, M., van der Aalst, W.M.P.: A Declarative Approach for Flexible Business Processes
Management. In: Eder, J., Dustdar, S. (eds.): Business Process Management Workshops. BPM
2006. LNCS 4103, 169–180, Springer (2006). doi:10.1007/11837862 18

