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Abstract. We study the problem of optimal bid selection across ads
and time, with the aim to maximize incoming click traffic to the adver-
tiser’s landing page, which is directly translated in maximizing revenue.
A major novelty of our approach lies in using Machine Learning (ML) to
build regression models out of available data for deriving for each ad the
relations, (i) cost-per-click (CPC) charged by the platform versus bid,
(ii) assigned ad position in the ad list versus bid value, and (iii) number
of ad clicks versus its position. These regression models naturally reveal
hidden trends that would have been otherwise unavailable to the adver-
tiser, such as the bidding behavior of competing advertisers and quality
scores of their ads. We then incorporate these relations into a convex op-
timization problem of budget allocation across ads and across time, the
solution of which is the optimal bidding strategy of the advertiser. We
validate our approach with real data provided by an online advertising
company that is active in the banking sector. Our solution leads to sub-
stantial increase in the amount of inbound click traffic to the advertiser’s
landing page compared to other approaches that are either heuristic and
data-agnostic or employ simple statistics on data.

1 Introduction

Online Advertising has evolved into a thriving business, with an average annual
growth rate of 9.4%, and it is predicted to reach a total market size of $142.5
billion by 2021. In web-search advertising, advertisers cast bids in order to have
their ads displayed in prominent positions in an ad list, next to organic results of
a search-engine platform. Each ad contains a number of keywords. Advertisers
set a budget they are willing to spend within a certain period of time, along
with their bid for each keyword. Then, an auction is run by the platform and
determines the ads to project and their ranking in the list, as well as relevant
charges to advertisers, in terms of a cost-per-click (CPC). The form of auction
that takes place is the Generalized Second-Price (GSP) one [12], and the rank
of an ad is determined by the product of its bid and quality score, the latter
being a cumulative estimate of the quality of the ad, including its design, text,
graphics and landing pages.

Contrary to the vast amount of existing literature which considers the point of
view of the advertising platform, we take the pragmatic viewpoint of an advertiser



and study the problem of optimal bid selection across ads and across time,
with the aim to maximize incoming traffic to the advertiser’s page in terms of
number of clicks, while we recognize that having data about other advertisers is
practically infeasible. Maximization of inbound click traffic in the landing page
is directly analogous to advertiser revenue, since a portion of the click traffic
will end up completing a transaction and will produce revenue for the advertiser
through a lead.

Each advertiser may leverage historical data about a number of quantities
that are directly available to her, either through the advertising platform (e.g.
Google AdWords), or through simple measurements at the advertiser side. These
quantities are (i), her bid values, i.e. how much the advertiser is willing to pay,
(ii) the associated CPC values, i.e. what the advertiser actually pays in the
end of the auction, (iii) the number of impressions of an ad, (iv) the average
position of an ad in the auction over a certain time interval, and (v) the number
of clicks received by the ad. The advertiser may then decipher the relationships
between these measurable quantities and her bid. For example, the amount an
advertiser actually pays for a certain ad position, i.e. the CPC value, depends
on her bid, the quality score of the ad, as well as on the bids and quality scores
of her competitors’ ads. Also, the average position of an ad depends on its bid
as well as the bids of competing ads. Finally, the number of clicks that an ad
receives changes as a function of its average positions.

We capture the relations above by deriving regression models which may
provide interesting insights, since they naturally contain in them hidden trends
that would have been otherwise unavailable to the advertiser, such as the indi-
rect impact of bidding behavior and quality scores of competing advertisers on
the advertiser’s ad position, CPC and number of clicks. The derived regression
models provide the aforementioned relations in a simple analytic form that are
then introduced to a convex optimization problem.

1.1 Our Contribution

Advertisers compete with each other for ad slots, over possibly several parallel
auctions. Each advertiser has a set of ads, and each ad contains some keywords.
For simplicity, we assume that each ad contains one keyword, and each keyword
belongs to one ad. We study the problem of bid selection and allocation across
ads and for different time intervals, in order to maximize the total incoming
click traffic to the advertiser’s landing page subject to a budget constraint. The
contributions of our work to the literature are as follows.

– We consider the pragmatic viewpoint of a single advertiser that aims to
best utilize data available to her in order to tune her bids for ads so as to
maximize incoming click traffic to her landing page.

– We follow a data-driven approach, where we build linear regression models
about the relations of position versus bid, and CPC versus bid, and number
of clicks versus position for each ad. These regression models demonstrate
hidden trends about the competitor’s behavior for different ads and different
time intervals.
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Fig. 1. A pictorial view of the sequence of steps in order for an ad to be projected and
possibly clicked by users and produce revenue.

– We incorporate the analytical expressions of the regression models into a
convex optimization problem of bid selection across ads and across time, for
maximizing the total number of ad clicks (and therefore the click traffic in
the landing page), subject to a constraint on a maximum budget to be spent
in a specific time period. The solution of the problem reveals interesting
insights about the relation of the bid and the parameters of the regression
models.

– We validate our approach using real data. Our approach is shown to outper-
form other approaches that are either heuristic and data-agnostic or employ
simple statistics on the data.

To the best of our knowledge, our work is among the first to follow the
sequence of steps needed for an ad to be projected and possibly clicked through
search advertising, and it uses machine-learning-based generated models to find
hidden relations between the core ad attributes that are involved in these steps.
We then incorporate them into a convex optimization problem the solution of
which is the optimal bidding strategy for the advertiser of interest.

2 Model

2.1 Setup

We consider an advertising platform (e.g. Google AdWords) and a set of ad-
vertisers. We take the perspective of a single advertiser with a set A of N ads,
where each ad has a quality score and contains some keywords. Without loss of
generality, we assume that an ad includes exactly one keyword, so when we refer
to an ad, we refer to its keyword. The advertiser has a budget B to be spent over
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Fig. 2. Our methodology in order to find the optimal bidding strategy in terms of
maximizing total click traffic for the advertiser.

a period of time for bidding for her ads. The advertiser decides on bid vector
b = (b1, . . . , bN ), where bi denotes the amount to bid for ad (keyword) i. The
advertiser participates in different auction processes, one for each ad, and she
competes with the same or similar keywords of other advertisers in order to have
her ads displayed in as high a rank as possible in the lists. Each such auction
takes as input the bids and quality scores of competing advertisers for the same
or similar keywords and decides on the ranking of ads and the CPC to be paid by
each ad. Finally, ads are displayed in the list, and they may be clicked by users
who view the ad list next to organic search results. Once an ad is clicked, the user
is taken to the landing page of the corresponding advertiser, from which a lead
(i.e. a product purchase) might occur within some time interval. The advertiser
thus earns a certain amount of revenue by each lead event.

For the advertiser of interest, let bi denote her bid for ad i. We implicitly
assume that the auction for ad i is run once, hence bi is the amount that is bid
for ad i. Let p′i be the position of ad i in the ranked list. Although we know
high positions in the ranked list have small absolute value, e.g. positions 1,2, we
define the position in such a way that higher positions in the list are associated
with high values. The position of each ad i in the list is equal to its negative,
i.e. pi = −p′i. Thus, if ad i is ranked first in the list, then pi = −1, if it is ranked
second, then pi = −2, and so on. Also let ci be the cost-per-click (CPC) that is
paid for ad i. Finally, let ni be the number of user clicks on ad i within some
time interval.

There exist hidden dependencies between these quantities that we seek to
capture in the sequel. First, the CPC value for ad i, ci, depends on bid value bi,
i.e. the amount of money that the advertiser declares she is willing to pay for ad i.
We denote this relation as ci = fi(bi), where fi(·) denotes a continuous, and non-
decreasing function. Along the same lines, position pi depends on the advertiser’s
bid bi, and let pi = gi(bi) denote that relation, where gi(·) is a continuous, non-
decreasing function. Finally, the number of clicks ni of ad i depends on its
position, i.e. ni = hi(pi) where hi(·) denotes again a non-decreasing function.
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2.2 Dataset and linear regression models

The dataset that is readily available at the advertiser’s side for each ad i is of
the form:

Di = {(bdi , cdi , pdi , ndi ) : d = 1, . . .Mi}, (1)

where Mi is number of data points available in the dataset for ad i. For each ad
i, we are interested in using dataset Di so as to build models for approximating
the relations fi(·), gi(·), hi(·). We can use various machine-learning methods to
derive models for the three relations above and then try to fit the models to the
data in a way that reduces the total approximation error. Several methods are
available, e.g. Neural networks, non-linear regression or linear regression models.
In this work, we adhere to linear regression models, because our objective is to
demonstrate the advantages of fitting a data-driven model in an optimization
problem and extract the benefits of optimization, rather than comparing different
ML methods. Further, linear regression models provide a simple means to have
the relations above in an analytic form so as to feed them in the optimization
problem, to be presented in the next section, and derive interesting insights
about the solution. Hence we consider the following three models:

ci = fi(bi) = αibi + βi, αi ≥ 0 (2)

pi = gi(bi) = γibi + δi, γi ≥ 0 (3)

ni = hi(pi) = λipi + µi, λi ≥ 0 (4)

where (αi, βi), (γi, δi) and (λi, µi) are the parameters of the regression models
to be computed from dataset Di for each ad i. The approach can be clearly
extended in case the dataset is of different form.

The functions fi(·), gi(·), hi(·) above contain some hidden trends about the
competing advertisers’ bidding behavior as well. In the next section, we will
include these models in an optimization problem that will give the optimal bid
allocation policy in terms of total number of clicks for the ads of the advertiser.

3 Problem Statement and Formulation

3.1 Bidding for maximizing total number of clicks for ads

We are interested in finding the bid allocation policy b = (b1, b2, ..., bN ) that
maximizes the advertiser’s total click traffic for all ads. This is a key objective
for an advertiser, since a percentage of this traffic will end up completing a
transaction and produce revenue through leads. Presumably the advertiser par-
ticipates in several auctions, one for each ad, and that auctions are independent
from each other. We formulate the optimization problem as follows:

max

N∑
i=1

hi(pi), (5)
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subject to the constraint:

N∑
i=1

hi(pi)fi(bi) ≤ B, (6)

with bi ≥ 0 for i = 1, . . . , N , where B is a fixed amount of budget to be spent
over a specific period of time.

3.2 Solution

Since both the objective function and the function involved in the constraint
are increasing over the vector bid b, the constraint is satisfied with equality
at the optimal solution b∗. Thus, without loss of generality, it makes sense to
consider the problem with an equality constraint. Let ωi = λiγiαi, and ρi =
λi(γiβi + δiαi) + µiαi.

This is a convex optimization problem, since both the objective function and
the constraint are convex. Then we define the Lagrangian function, and after
some algebraic manipulations we get the optimal solution as:

b∗i =
1

2νai
− ρi

2ωi
(7)

Expression (7) shows that bid value bi decreases as ai (the slope of the straight
line ci = fi(bi)) increases. Thus, if the CPC value of an ad increases with a
high rate, then our algorithm will raise the bids of alternative ads whose CPC
value grows at a slower rate. On the other hand, as the parameter ωi = λiγiαi

increases, the bid value bi increases. Parameter ωi is the product of the slopes of
the straight lines ci = fi(bi), pi = gi(bi), and ni = hi(pi). If an ad earns higher
positions and its number of clicks increases at a high rate, then our algorithm
will ”promote” this ad and increase its bid value. A second observation is that
the product λiγi overpowers parameter αi, which is inversely analogous to the
bid value bi. Therefore, the rate at which an ad’s number of clicks increases or
the rate at which it earns higher average positions weighs more in our algorithm
than the rate at which the CPC value increases.

Remark 1: An alternative formulation could take into account the quality
qi for each ad i ∈ A and include that as a factor in the objective function,
which will now become

∑N
i=1 qihi(pi) and expresses the total weighted number

of ads clicks, where the weight is the quality of each ad. By a similar reasoning
as above, the optimal bid value for ad i is given as,

b∗i =
qi

2νai
− ρi

2wi
(8)

which tells us that the bid value of an ad grows proportionally to its quality
score.

Remark 2: The optimization problem above considers budget allocation
only across ads. We can have an enhanced formulation that would allow the
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advertiser to spend different amounts of budget at different time intervals. For
example, it is natural to assume that the auction structure (i.e the number
of competing advertisers and their bids) and its outcome will be different at
different times of the day or at different days of the week (e.g. week-days or week-
ends) hence the bid would need to be adjusted as well. Let t = 1, . . . , T denote
an index for different time intervals, where T is the total number for such time
intervals. We will have another problem definition, where bi(t), pi(t), ci(t), ni(t)
denote the bid, position, CPC and number of clicks of ad i at time interval
t. Then, the budget allocation policy is given by vector (b(t) : t = 1, . . . , T ),
with b(t) = (b1(t), . . . , bN (t)). Hence, the optimization problem becomes one of
deciding on the bid policy that maximizes the total number of clicks across ads
and across time, subject to a budget constraint.

4 Data Experiments

4.1 Dataset and Regression Models

We use a real dataset that was provided to us by an advertiser. The dataset
consists of data from Google AdWords, and among other metrics it contains the
bid values, CPC values, average position, and number of clicks for all keywords
of the company. These metrics are available per day, for a time period of 6
months between August 2016 and February 2017. In our experiments we use 5
popular keywords/ads from the dataset since we are interested in demonstrating
the benefits of the optimal policy. The properties of this policy are expected to
hold for a greater number of keywords as well.

For the optimization problem (5)-(6), we need 3 prediction models for each
keyword and each time interval, i.e 30 regression models in total. The three
regression models that we build for a keyword i and a time interval t = 1, 2
are, one for the estimation of the CPC ci = fi(bi), one for the estimation of the
average position pi = gi(bi), and one for the estimation of the number of clicks
ni = hi(pi).

In order to build the prediction models we used linear regression techniques
from Machine Learning. Let us assume that our training dataset, for the regres-
sion model c = f(b) of a specific ad and a specific time interval is L = {bn, cn}Mj=1,
where each bj(bid) is the data input and cj (CPC) the corresponding output, j
is an index for each data point in the data set, and M is the size of the dataset,
i.e. the number of different entries available to train each model. We will choose
a polynomial of first degree as a model:

f(bj , w0, w1) = w0 + w1bj , (9)

and in order to find the parameters w0, w1 that minimize the approximation
error, we minimize over w the cost function of least squares. We measure the
performance of the model by means of Root-mean-square-error. Finally, we use
cross-validation in order to choose an appropriate value for the reguralization
parameter.
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4.2 Results

We run our experiment and compare the results for 4 different policies. We use
the same set of 5 keywords for each policy, and initialize all bids at the value 0.1.
We run experiments for different values of budget B = {100, 200, 500, 1000, 1500,
2000}. The policies we study and compare are:

– Random bid allocation policy (Policy 1) is a baseline approach which
allocates randomly a portion of the budget across ads, without taking into
consideration any information about the performance of the ad. For this
policy, we choose uniformly at random one of the five ads, and then we raise
this ad’s bid by 5%. We repeat this procedure until the portion of the budget
is exhausted. We run experiments for portions equal to 10%, 20%, and 30%
of the budget. For each portion we run the experiment 10 times, and keep
as result the average number of clicks from these runs.

– Inversely proportional to CPC allocation policy (Policy 2) allocates
at each ad a portion of the budget that is inversely proportional to the
average CPC value of ads, i.e. ads with high CPC get a smaller increase in
their bids than ads with a lower CPC. Specifically, given the portion of the
budget φ, which is the maximum amount of money that can be allocated
across ads and across time without earning more clicks than the advertiser

can pay, each ad’s bid is raised by an amount 1/ci∑
i 1/ci

× φ.

– Proportional to number of clicks allocation policy (Policy 3) allocates
a portion of the budget φ, which is the maximum amount of money that can
be allocated across ads and across time without earning more clicks than the
advertiser can pay, that is proportional to the average number of clicks that
ads get, i.e. ads which get a large amount of clicks have their bids increased
by a bigger amount than ads which get less clicks. The increase of each ad’s
bid is ni∑

i ni
× φ.

– Optimal policy (Policy 4) which is the outcome of the optimization prob-
lem (5), (6).

Comparison of Bid Allocation Policies. Figure 3 shows the total number
of clicks to the advertiser’s landing page under policy 1, for different budget
amounts B = {100, 200, 500, 1000, 1500, 2000}, and different portions of the bud-
get to be allocated across ads and across time equal to 10%, 20%, and 30%. The
total number of clicks seems to be an increasing function over budget B for all
cases except when the portion of budget is equal to 20%. Due to the random-
ness of the allocation, for this case and different budget amounts B = 1000, and
B = 1500, it seems that the advertiser could earn more clicks with the smaller
budget. Also, because of the random fashion in which we allocate a portion of
the budget across ads and across time, it occurs that for a smaller portion of
the budget we could have a better bid allocation, which could result in a larger
amount of clicks to the advertiser’s landing page.

In Figure 4, we depict the total number of clicks to the advertiser’s landing
page under three different policies. As expected, the total number of clicks seems
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Fig. 3. Total number of clicks to the ad-
vertiser’s landing page under random bid
selection policy, for 3 different portions of
the budget to be allocated across ads and
time.

Fig. 4. Total number of clicks to the adver-
tiser’s landing page under 3 different bid-
ding policies.

Fig. 5. Optimal bid selection for different amounts of budget B and different time
intervals t.

to be an increasing function over the budget B for all policies. We see that by
building regression models about the relations and by integrating them into the
optimization problem (5), (6) we get the largest number of clicks, and thus larger
revenue for the advertiser, compared to the other policies in the figure and the
random policy in Figure 3. In Figure 5, we present the optimal bid selection
for different amounts of budget B = {500, 2000}, and different time intervals
t = {1, 2}, i.e. week-day and week-end.

We observe that policy 2 tries to balance bids across all ads, and as a result
it increases the bad performing ads’ bids as well. We also see that under policy
3, there may be some cases of ads that are not currently getting many clicks
but they have the potential to get more with less money than the current top
performing ads. Nevertheless, this policy will ignore them because of the better
performing in terms of clicks, ads. Despite this fact, policy 3 seems to perform
better than policy 2. Also, we notice that policy 1 is performing similarly to the
two other policies.
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Fig. 6. Total number of clicks weighted by the quality score of each ad under 4 different
bidding policies.

Fig. 7. Optimal bid selection for different amounts of budget B and different time
intervals t, for the objective that takes into account the quality score of ads.

Bid Allocation Policies weighted by Quality Score. In Fig. 6 we show the total
number of clicks to the advertiser’s landing page weighted by the quality score of
each ad, under 4 different policies. The ads’ quality scores are 9, 10, 8.8, 8, and 10
respectively. We see that the optimal policy outperforms the other 3 policies. Fur-
ther, due to randomness, the random allocation can be benefited from increasing
the bids of the ads with the biggest quality score values and thus outperform
policy 3. Nevertheless, as the budget gets bigger policy 2 closes the gap in per-
formance and finally outperforms policy 1 for a budget amount larger than 1700.
This shows that for small amounts of budget, it is possible for a quality score-
agnostic policy to increase the bids of the non-top performing ads more than the
bids of the top performing ones. If the budget is big enough though to increase
the bids of all ads, all policies achieve better performance. Finally, policy 2 which
tries to balance bids across all ads is again the worst performing policy.

Optimal bid allocation for maximum total ad quality. Figure 7, depicts the
optimal bid selection for different budget values B = {500, 2000}, and different
time intervals t = {1, 2}, i.e. week-day and week-end, for the objective that wants
to maximize the total ad quality for the advertiser. We observe that for a small
budget value B = 500 all the ads’ bid values are increased compared to their
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values in Figure 5. However, for a bigger budget value B = 2000, the bid values
of the ads with the best quality scores, i.e. the two ads with quality score q = 10,
are significantly increased compared to their bid values in Figure 5, while the
bid values of the rest are decreased. As expected, the optimal bidding policy for
the objective that wants to maximize the total ad quality, decides to increase the
bids of the ads that have the highest quality scores, while bid less for the rest.
Furthermore, we observe that keyword 3 has a bid value b = 0 in both figures
5, 7. The main reason for that is the slope parameter λ of its regression model
n = λp + µ, which show that keyword 3 gets clicks at a slower rate than the
other keywords and thus our algorithm will not decide to increase its bid.

5 Related Work

Real-time bidding (RTB) represents the cutting-edge frontier of the computa-
tional advertising research, and an thriving research area in advertising together
with the display ad network and search-based keyword advertising. In RTB, ad-
vertisers bid for an ad impression when a user visits a webpage. A repository
with a nice taxonomy of recent works can be found at [1].

Budget and bid allocation. In the context of display advertising, the au-
thors in [9], model the state transition via auction competition, and they build
a Markov Decision Process framework for learning the optimal bidding policy
to optimize the ads performance. In [11], the authors define a revenue maxi-
mization problem, on an account level, by incorporating a probabilistic model
to approximate the probability of winning a position given a price, and then
they convert it into an integer optimization programming one. In work [8] they
study the problem of finding a bidding strategy in real time mobile advertising.
First, they model the win rate using a logistic regression model, and then take
the derivative of win rate estimation to generate the distribution of the win-
ning price, and use the expected value of the distribution under the bid price as
the winning price estimate. Then a bidding strategy is actually an optimization
function that takes the input of expected revenue if winning the auction, win
rate and winning price estimate, and generate the final bid price according to
some pre-defined objective functions.

In another relevant work [10], the authors try to find the optimal bidding
function that maximizes key performance indicator (KPI), i.e. the total number
of clicks or revenue in Real Time Bidding (RTB) display advertising. They find
a function that returns the probability of winning given a bid value, based on
historic data, and then based on the form of the winning rate function they derive
empirically a simple function that returns the bid value. Then, they feed these
functions into an optimization problem that returns the optimal bid allocation
for the advertiser. In a recent work [6], the authors try to use simple heuristic
bidding policies to increase the number of clicks, and they set the bid for each
ad impression proportionally to the increase of user’s conversion rates.
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6 Conclusion

We study the problem of bid selection for a single advertiser across ads, each of
which is represented by linear regression models that are derived from real data.
Our method showcases the benefit of feeding data-driven models into optimiza-
tion problems, and to the best of our knowledge constitutes the major novelty
of this paper.

Possible future steps in this work include studying the problem of maximiz-
ing advertiser’s revenue across the whole path up to conversion, and pursuing
sensitivity analysis to model and take into consideration the inaccuracy of the
models.
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