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Abstract. 5G networks will incorporate virtualized network infrastruc-
tures and new technologies such as Software Defined Networking and
Network Function Virtualization. The developments have predominantly
been made in the core and back-haul network segments. However, the
ambitious Key Performance Indicators (KPIs) set for 5G networks will
necessitate a renewed focus on the network edge in view of the virtual-
ized infrastructure and SDN/NFV adoption. Several challenges are antic-
ipated to be addressed for cloud at the edge, prime among which is the
heterogeneity that spans, among others, hardware, software, radio, net-
working and virtualization domains. In this paper, we investigate cloud at
the edge architecture, its unique challenges and the technology enablers.
We present a prototype heterogeneous edge cloud implementation with
focus on joint physical and virtual resource management and orchestra-
tion while supporting multi-tenancy for edge services. A scheduling &
orchestration module is presented that interfaces with Kubernetes cloud
management system to support service deployment per two scheduling
polices of load balancing and energy saving. We present details of the
considered edge cloud platform, the scheduling & orchestration module
and its functions inside the edge cloud. Finally, we present some prelim-
inary results and comparisons of the implemented orchestration policies
in the context of heterogeneous edge services.
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1 Introduction

Wireless communication is an integral part of modern day lives across the world.
In the past decade, requirements on wireless networks to support increasing num-
ber of new services beyond the simple voice calls and connecting larger number of
end-users have been consistently intensifying. Until recently, mobile communica-
tion networks have been addressing these requirements and challenges with con-
tinuous evolution of the radio access technologies and by incrementally increasing
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the overall network capacity. However, with the recent focus on and prolifera-
tion of social media, networking, augmented and virtual reality and Internet of
Things applications, the requirements and challenges have intensified such that
mere evolution of 4G networks will not fully address them. These requirements
and challenges are more stringent and diverse ranging from ultra low latency, to
massive machine type communications to enhanced multimedia and broadband
applications. Moreover, the pace at which the new network services and appli-
cations are developing, it is difficult for network operators to keep pace with
by upgrading the core infrastructure, back-haul and radio access capacities. It
is anticipated that in the next few years, the annual global IP traffic volume
will reach an unprecedented 3.3 ZettaBytes (1 ZB = 1000 Exabytes) [1]. These
numbers and the associated network requirements have made 5G, the next big
step in the mobile wireless communication networks, one of the most important
areas of research and development.

Several key technologies are anticipated to play a major role in defining the
5G networks’ characteristics including Cloud based virtualized network infras-
tructure, Software Defined Networking (SDN) and Network Function Virtualiza-
tion (NFV). These technologies and their practical realization has been an area of
immense interest among researchers from both academia and industry. A large
number of initiatives have been taken under the 5G networks R&D umbrella
developing virtualization, SDN/NFV, Management and Network Orchestration
(MANO) solutions [5–7]. Most of these initiatives have targeted the core and
back-haul network segments with centralized cloud infrastructures. The network
edge, that is, the radio, networking and communication infrastructure closest to
the end-users (Access Points, Base Stations) has not received the attention it
warrants. Some of this can be attributed to the issues such as complexity, lack
of standardized platforms, node heterogeneity, distributed nature of the edge
infrastructure and the large number of Points of Presence (PoPs). These factors
make it challenging to develop and manage cloud infrastructure for the edge and
orchestrate the resources for multiple tenants as anticipated for 5G networks.
Providing cloud architectural blueprints for resource constrained edge devices,
technology components for virtualization and resource orchestration (both phys-
ical and virtual) will help bring the benefits of virtualization and SDN/NFV
closer to the network edge. In this paper, we focus on lightweight virtualization
and resource management at the network edge. We characterize the unique fea-
tures of network edge, the limitations of state of the art solutions and present
a prototype heterogeneous edge cloud with a joint physical and virtual resource
orchestrator module. The orchestrator can pro-actively scale the physical and
virtual resources available to multi-tenant services per a given policy of load-
balancing or energy saving. Our implementation is based on Kubernetes [2] con-
tainer orchestration system and integrates with its main control elements for
placing VNFs at the edge. The prototype edge cloud consists of nodes having
different hardware architectures and computing resources integrated into a uni-
fied cloud fabric supporting service deployment, multi-tenancy, resource isolation
and scaling. We present details of the hardware platform, the cloud virtualization
stack and the orchestrator module and evaluate its performance. The rest of the



On Edge Cloud Architecture 29

paper is organized as follows. Section 2 discusses state of the art on cloud virtu-
alization and SDN/NFV related technologies in view of their limitations for the
network edge. Section 3 details the main contribution of this paper and presents
an edge cloud architecture and virtualization stack addressing key constraints
and function requirements. Preliminary results from the evaluation platform are
presented in Sect. 4. The paper concludes with a summary and an outlook for
future work in Sect. 5.

2 State of the Art

Recently, the network edge has attracted significant interest from researchers as
evident from the abundant literature available under synonymous concepts but
different terminologies. Mobile Edge Computing, FoG Computing, Multi-Access
Edge Computing, Cloudlets etc., are a few well-known umbrella terms which in
essence, aim to realize computing and network services closer to the end-users.
In spite of these parallel developments in nomenclature and predominantly theo-
retic research works, there is a general dearth of clarity on the platform for edge
computing such as hardware, software and architecture. A common consensus
from the SDN/NFV community is that the benefits of cloud and virtualization
must be realized at the network edge to support 5G use-cases and features such as
multi-tenancy, resource slicing and orchestration etc. However, the available vir-
tualization and resource orchestration technologies tailored towards data-center
oriented centralized clouds and Virtual Machine (VM) based VNF abstraction do
not suit the constraints of the network edge. For creating the cloud abstraction,
the existing commercial and open source hypervisor technologies for SDN/NFV
such as VMware ESX and ESXi, Microsoft Hyper-V, Xen, KVM etc., have a
large hardware resource requirements footprint [8]. Usually in order of multiple
high power processing cores and Gigabytes of memory, these hypervisors are vir-
tually impossible to deploy on dispersed and resource constrained nodes. From
the 5G networks and SDN/NFV perspective, the additional management and
control elements required in the ETSI MANO architecture [4] such as Virtual
Infrastructure Managers (VIM), VNF Manager (VNFM) and NFV Orchestra-
tors need to be deployed. Many realizations of these components such as Open-
Daylight, OSM, OpenO, OpenBaton etc., are tied to the centralized data-center
oriented cloud model. The hardware resources (storage, compute, networking)
required for realizing the same cloud architecture at the network edge are liter-
ally unavailable as edge nodes are resource constrained devices and are spread
out over larger geographical areas. The level of hardware abstraction realized
for centralized clouds where VNFs are completely devoid of information about
the underlying hardware features may also prove limiting for the edge. For cer-
tain services, it may make more sense to expose the features available at the
nodes such as hardware architecture, computing resources, dedicated hardware
etc., to tailor their scheduling towards those nodes. Another limiting factor for
cloud at the edge using existing virtualization solutions is the VM based VNF
realization. A VM adds many layers of software abstraction (e.g., guest OS,
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unnecessary libraries) between the physical processor and the actual software
that carries out a virtual network function. This makes VM based VNF realiza-
tion unsuited to the limited resources available at the edge cloud. Moreover, with
large sizes of VM based VNFs and the limited memory and storage resources
of individual edge nodes, the scheduling and VNF placement problem becomes
extremely complicated. Another constraint that proves a hindrance is the dis-
persed nature of edge nodes and the variance of networking links among them
(throughput, firewalls etc.). This necessitates a more distributed realization of
edge cloud rather than the centralized solutions available for core SDN/NFV
implementations. A federation umbrella could tie together dispersed edge clouds
and provide an interface to service providers through which network services
could be deployed across distributed edge cloud. Finally, a number of advances
have been made in the cloud resource management and cloud-native software
design domains which have not been considered in the cloud for SDN/NFV
context. These developments include the micro-services based software design,
DevOps, Serverless Functions etc., which place a higher emphasis on resource
utilization efficiency, robust cloud-native designs and rapid deployment. These
developments are more suited to the edge cloud context and call for a design
where VNFs are composed of small services interfaced together to create the
end-to-end network service.

3 Edge Cloud Architecture and Resource Orchestration

Considering the challenging KPIs for 5G networks addressed in Sect. 1 and the
limitations of tailoring the existing virtualization solutions to the network edge
addressed in Sect. 2, it can be argued that cloud at the edge must be based on
lightweight virtualization technologies and must integrate heterogeneous hard-
ware while supporting the 5G service requirements. Furthermore, the ETSI
MANO stack where specific control elements such as VIM, VNFM and NFVO are
responsible specific SDN/NFV management tasks should be realized, potentially
in a converged form and with small resource requirements footprints. Consider-
ing these and the recent developments in the cloud and virtualization domains
such as Micro-Services Architectures, DevOps and Function as a Service (FaaS)
etc., where resources are utilized to their fullest, we condense the requirements
of edge clouds into following list.

– Heterogeneity: Cloud at the edge must integrate hardware nodes of different
architecture and resources (compute, storage, memory, networking) into a
unified abstraction providing similar interfaces to the service providers as in
centralized cloud infrastructures. Moreover, cloud at the edge should hide
the complexity of these underlying hardware differences from the deployed
services i.e., a service provider should not be forced to design the service
template according to the hardware architecture of the host infrastructure.
Any mapping between the requirements of a VNF and the capabilities of the
underlying hardware should be done by the cloud control and management
functions.
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– Resource Awareness: Cloud at the edge should be several order of magnitude
lighter in terms of hardware requirements compared with centralized cloud
technologies. This implies that the edge cloud and MANO features should be
realized using virtualization technologies that can run efficiently on hardware
resource constrained devices deployed in end-user premises.

– MANO Features: MANO is an essential requirement from the SDN/NFV
management and control point of view. Service providers must have a simple
interface through which they can deploy an edge resident network service and
manage it in isolation from other services. Therefore, the essential features of
VIM, VNFM, and NFVO must be realized albeit considering the discussed
resource constraints and heterogeneity of the network edge. Moreover, man-
agement polices for cloud resources (physical and virtual) and tenant-specific
service orchestration must be supported.

– Services: Cloud at the edge must support the distinctive features of central-
ized SDN/NFV clouds such as resource slicing, multi-tenancy, service isola-
tion, auto-scaling etc. Moreover, support for new cloud-native software design
principles such as micro-services architecture should be supported to utilize
the dispersed computing resources more effectively.

Considering these requirements and constraints, we focus on container based
virtualization where VNFs can be realized in container images instead of VMs.
Containers have a significantly low overhead not only in terms of storage, mem-
ory and processing requirements compared with VMs but they also eliminate the
need for the hypervisor layer. This resource efficiency usually comes at the cost
of security and service isolation but several measures can be taken to address
these concerns including container specific Linux kernels and more sophisticated
access policies. Beyond the container based VNF abstraction, we use Kubernetes
to emulate the role of VIM and NFVM by extending it to support (a) hetero-
geneous hardware nodes, (b) custom scheduling and orchestration module and
(c) allowing for mixed service deployment in architecture agnostic manner. The
remainder of this section details the considered virtualization stack and MANO
feature realization.

3.1 Physical Architecture and Virtualization Stack

Figure 1 depicts a subset of the physical architecture of edge cloud infrastruc-
ture and the virtualization stack used in this work. The hardware platform com-
prises five ARM architecture based Raspberry Pi 3 nodes and two Intel x64
based Laptops assembled in a cluster and local network. All nodes run plat-
form specific Linux distribution and a container runtime daemon (Docker in
our case). The selection of Docker in general and container based virtualiza-
tion in particular was made considering the resource limitations and hardware
heterogeneity of the nodes. To integrate the nodes into a cluster where services
can be deployed at cloud abstraction level, we use Kubernetes [2]. Kubernetes
is an open source container management and orchestration platform that can
run on several types of physical nodes and has a considerably small resource
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Fig. 1. Physical architecture and virtualization stack of the edge cloud

requirements footprint compared with hypervisor and VM based virtualization
platforms. The core Kubernetes control elements such as Etcd, Controller Man-
ager, API Server, DNS and default Scheduler run in Docker containers on a
single Raspberry Pi node. The weave element is deployed alongside Kubernetes
core control elements to provide overlay connectivity among service VNFs. The
details of these control elements is beyond the scope of this work and can be
found in [2]. Kubernetes uses a Master-Worker based architecture where the
master node hosts all the main control plane elements while the worker nodes
host a subset which enable communication with the master node. We host the
master node functions on a Raspberry Pi and integrate the rest of ARM and
x64 nodes as workers. However, by default, Kubernetes does not integrate nodes
of different hardware architecture into a single cloud abstraction i.e., the worker
nodes must be of the same architecture as the master node. This limitation
arises during the Kubernetes installation where the master node downloads con-
trol plane elements container images on the worker nodes according to its own
architecture. Therefore, if the master node elements are instantiated on an ARM
node as in our case, Kubernetes will download ARM based images for the rest
of cluster members including on the x64 nodes. To overcome this problem, we
modified the configuration for master node allowing it to download architecture
specific images on worker nodes. To this end, we modified the control daemon
configuration for kube-proxy by duplicating it for x64 architecture and speci-
fying the correct architecture images. This problem is expected to be natively
addressed in future Kubernetes versions where control plane images are expected
to be architecture specific using the Docker image manifests.

Most of the ETSI MANO control functions can be realized inside the Kuber-
netes cluster including VIM, VNFM and NFVO by either using the default
Kubernetes control elements or by extending the cluster with new control ele-
ments. We utilize both approaches in our prototype edge cloud setup. For the
VIM and NFVO functions, we have developed a dedicated scheduling and orches-
tration module (detailed in the next subsection). This module, depicted in yel-
low color in Fig. 1, takes the role of VIM by elastically scaling the infrastructure
resources to the requirements of the deployed services following a scheduling pol-
icy. To this end, the available physical resources of the nodes and requirements
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of the deployed services are actively monitored. The same module is responsi-
ble for network service orchestration including deployment, scheduling VNFs,
chaining and scaling. The VNFM role is shared between the Kubernetes control
elements that actively probe the state of deployed VNFs and restart a service
VNF if detected to be dysfunctional. Finally, to ensure service isolation and that
tenants are allocated a specific set of resources, both physical and virtual, we
use the Kubernetes namespaces feature together with labeling of the nodes. A
Kubernetes namespace is a virtual container for deployed services in the edge
cloud which can enforce resource restrictions on the services falling in a par-
ticular namespace. With namespaces and node labels, a service can not only
be confined to specific nodes e.g., deploy on ARM or x64 nodes but also be
restricted to a subset of the resources on those nodes.

3.2 Scheduler and Orchestrator Architecture

Figure 2 shows the internal architecture and functions of the scheduler and phys-
ical & virtual resource orchestrator component integrated with the kubernetes
control plane elements. The orchestrator receives a policy parameter as input
at start-up time and spins up two concurrent processes namely the Policy func-
tion and the Resource Monitor function. The policy parameter determines the
scheduling behavior and the placement of service VNFs on the worker nodes.
Currently, two options are available for policy parameter targeting energy sav-
ing and load balancing. In the energy saving mode, the orchestrator targets
running the least number of worker nodes in running state in order to con-
serve energy expended by the cluster. Practically, this implies a single worker
node is kept running for as long as the deployed service VNFs are providing the
required quality of service. A new worker node is boot up only when the running
services are scaled beyond the resources of the running worker nodes or when
new deployments are requested that either require more physical resources or
are targeting a particular node/set of nodes in the cluster with specialized hard-
ware. A service deployment may target a specific set of nodes for several reasons
such as due to assigned quota, resource constraints or performance reasons. For
example, a service might request a VNF to be deployment on a node that has
SSD storage or a GPU for graphic processing. The master node keeps a record
of the hardware attributes of the worker nodes in the cluster. The orchestrator
can map these attributes to the requirements of a service deployment. The other
option for policy parameter is load balancing which keeps all the worker nodes
in running state and priorities minimal delay in service deployment and scaling
latency. This is achieved by compromising on the overall energy consumption of
the cluster. The whole service deployment and scheduling process is executed as
follows:

– Service deployment is requested by providing a service template file to the
Kubernetes API Server component. To do this, a service provider needs to
authenticate its access with the API Server. The service template is provided
as Yaml [3] file describing the service at a high abstraction level such as
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Fig. 2. Software architecture and functional diagram

the required VNFs (Docker containers to run), hardware resources required,
service and target node attributes.

– The API server receives the deployment requests and pushes a scheduling
request trigger to the orchestrator component. At this point, the scheduling
and orchestration component has to determine the criteria of VNF placement
resource scaling. These include (a) find the worker nodes in the cluster that
have the required resources available to host the VNFs requested by the
deployment (b) determine, for each VNF, a single node out of the possibly
multiple qualified nodes as host (c) determine the state of the node which
can be either ready or switched off (d) bind the VNF to the selected node if
the node is in ready state (in load balancing policy) or first boot the node (in
energy saving policy) and then bind the VNF to the selected node once it is
in ready state.

– For task (a), a Resource Mapper function takes the requested resources of a
given service deployment request and compares them to the active resource
map maintained by the Resource Monitor process instantiated by the sched-
uler. It should be noted that the Resource Monitor keeps a real-time load of
running nodes only and an indication of the physical capacity of the nodes
that are offline but part of the cluster. This way, the resource mapping process
considers all nodes in the cluster instead of the online ones if the scheduling
policy is load balancing or the VNFs image is for a particular hardware archi-
tecture. The resource mapper will return the list of all qualified nodes that
can host the service VNFs.

– For task (b), the policy function is responsible for reducing the possible list
of several qualified worker nodes to a single node based on the policy used
by the scheduler. It is worth pointing out here that this process is sequential
i.e., a deployment may contain several VNFs (containers) and the deployment
of those are carried out sequentially in order to fulfill the load balancing or
energy saving policy requirements.
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– For task (c), the node activator module takes care of booting up a node based
on the node ID in case it is offline. It uses the Wake On Lan feature of NICs
on the worker nodes.

– Finally for task (d), the binder function does the actual scheduling of the
VNF on the selected node. For this, the binder interacts with the kubernetes
control plane elements to download the VNF container image (if not present
locally), and then boot it up with the required resources provisioned. Lastly
the Binder function logs the success and failure events of the binding process.

4 Evaluation

We have carried out preliminary evaluation of the resource consumption (Stor-
age, Memory, CPU) of the control elements in our prototype edge cloud environ-
ment and its performance in terms of service deployment and deletion latencies.
Figure 3 shows the image sizes of Kubernetes core control elements and our add-
on purpose-built scheduler and orchestrator (labeled as Sch+Orch). The add-on
component has been implemented in Golang and compiled into a static binary.
As evident from Fig. 3, the container image sizes of the core Kubernetes elements
are small enough to be deployed on tiny storage resource constrained devices.
Second, it is very easy to create add-on elements for specific functionality such
as Sch+Orch that has our statically linked binary embedded inside a tiny sized
Docker image (5.3 MB only).
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Fig. 5. Prototype edge services for web hosting and video streaming

Figure 4 shows the CPU and Memory utilization on the Master node (Rasp-
berry Pi 3) of the three main control elements that are used during deployment of
a service containing two VNFs. In general, all elements have a very small resource
utilization footprint during an actual service deployment. However, since our cus-
tom Sch+Orch element takes away the scheduling and orchestration duties from
the Kubernetes default scheduler, there is no observable variance in its CPU
and Memory consumption during the deployment. In fact, the only significant
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Fig. 6. Service deployment and deletion latencies

variance is in the memory footprint of the API server and the CPU utilization
of our scheduler VNF. This is expected since a service deployment is an active
interaction process between the Kubernetes API Server and the scheduler VNF.
To evaluate the scheduling and service deployment capabilities of our platform
and to analyze the effects of scheduling policies on the deployment latencies, we
deployed a couple of prototype web and video streaming edge services in our
evaluation platform. Figure 5 shows the two prototype services and their VNF
composition. On the left side, a service that combines web services and access ser-
vices is depicted presented. This service targets the ARM nodes in the cluster as
the Docker images for Nginx VNF and WiFi access point VNFs have been devel-
oped for that platform. The association between VNF architecture and the nodes
having that physical architecture is done by label matching between the service
template (yaml file) and the labeled nodes. On the right side in Fig. 5, a mixed
architecture streaming service is depicted. This service template exemplifies a
video streaming scenario where users of different privileges are provisioned video
streaming service of different quality. The VNFs in this service includes an access
VNF (WiFi access) and two streaming VNFs that stream video files in different
quality. The video files are provided to both streaming services by a back-end
video store VNF. To eliminate some of the latency factors of service deployment,
all the Docker images for required service VNFs were downloaded prior to the
actual deployment. Figure 6 shows the service deployment and deletion time for
the two services per the load-balancing and energy saving scheduling policies.
The web-service is entirely hosted on ARM nodes and uses the load-balancing
scheduling policy. As evident, the service takes approximately 26 s to be active in
the edge cloud including providing the WiFi Access and the Nginx web-server.
The video streaming service is deployed on different architecture nodes where
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most of the streaming VNFs are deployed on x64 machines while the WiFi access
VNF is hosted on ARM node. This service uses the energy efficient scheduling
policy where the x64 machine is first booted up from an OFF state before the
streaming VNFs can be deployed. The x64 node takes around 50 s to boot up
and associate with the Master node. The load balancing and energy saving poli-
cies can be mixed depending on the service requirements. Figure 6 also shows
the respective deletion times for the two example edge services.

5 Conclusion

In this paper, we characterized the core attributes of network edge and its impli-
cations for brining cloud abstraction and SDN/NFV benefits to the end-users.
We also presented a candidate architecture for heterogeneous edge clouds sup-
porting multi-tenant edge services. Moreover, a prototype VNF scheduler and
joint physical virtual resource orchestrator was presented and evaluated for pro-
totype edge service deployment. In future we intend to extend the orchestration
umbrella across multiple distributed edge-clouds by tying together a federated
cloud environment. We also intend to investigate the interplay between self-
organizing edge services and resource orchestration in host infrastructure using
Artificial Intelligence algorithms.
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