
ar
X

iv
:1

80
3.

02
15

6v
1

 [
cs

.M
S]

 6
 M

ar
 2

01
8

Chebyshev Filter Diagonalization on Modern Manycore

Processors and GPGPUs

Moritz Kreutzer1, Georg Hager1, Dominik Ernst1, Holger Fehske2,

Alan R. Bishop3, and Gerhard Wellein1

1 Erlangen Regional Computing Center (RRZE), Friedrich-Alexander University of

Erlangen-Nuremberg
2 Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald

3 Theory, Simulation and Computation Directorate, Los Alamos National Laboratory

Abstract. Chebyshev filter diagonalization is well established in quantum chem-

istry and quantum physics to compute bulks of eigenvalues of large sparse ma-

trices. Choosing a block vector implementation, we investigate optimization op-

portunities on the new class of high-performance compute devices featuring both

high-bandwidth and low-bandwidth memory. We focus on the transparent access

to the full address space supported by both architectures under consideration:

Intel Xeon Phi “Knights Landing” and Nvidia “Pascal.”

We propose two optimizations: (1) Subspace blocking is applied for improved

performance and data access efficiency. We also show that it allows transpar-

ently handling problems much larger than the high-bandwidth memory without

significant performance penalties. (2) Pipelining of communication and computa-

tion phases of successive subspaces is implemented to hide communication costs

without extra memory traffic.

As an application scenario we use filter diagonalization studies on topological

insulator materials. Performance numbers on up to 512 nodes of the Oakforest-

PACS and Piz Daint supercomputers are presented, achieving beyond 100 Tflop/s

for computing 102 inner eigenvalues of sparse matrices of dimension 109.

1 Introduction and related work

Stacked memory technologies such as HBM2 and MCDRAM have boosted the attain-

able main memory bandwidth by a factor of five to six compared to conventional mul-

ticore systems. Soon after the commercial availability of these technologies, three out

of the ten most powerful supercomputers were equipped with the new fast memories

(see the TOP500 [2] list as of June 2017). Typically holding 16 GiB of data, the size

of stacked memories is still very limited and hierarchical concepts have been imple-

mented, offering additional large DDR4 memory spaces. The two major players as of

today, Intel with its “self-hosted” Xeon Phi “Knights Landing” (KNL) series and Nvidia

with its “Pascal” (P100) GPGPUs, implement these hierarchical concepts in different

ways. While the KNL is directly connected to the DDR4 partition, the P100 accesses

the large host node memory through the PCIe interface. However, both architectures are

capable of transparently addressing the complete (slow and large) memory on a node,

thereby offering easy access to large data sets.

http://arxiv.org/abs/1803.02156v1

The computation of bulks of eigenvalues of large sparse matrices is very data inten-

sive, both in terms of bandwidth demands (i.e., low computational intensity) and data

set sizes. Subspace projection using polynomial filters based on the Chebyshev itera-

tion is an efficient approach for the computation of extremal and interior eigenvalues

in quantum physics and quantum chemistry. Application areas include inner eigenvalue

problems in the context of modeling graphene or topological insulator materials [21,22]

or the solution of an eigenvalue problem in density functional theory [28]. Beyond

eigenvalue computations, Chebyshev polynomials can be used as acceleration tech-

niques for linear solvers (see, e.g., [20,5]) in various application areas (e.g., power flow

modeling [10,16,15]). Moreover, the closely related kernel polynomial method (KPM)

(see [26] for a review on KPM and its relation to Chebyshev polynomials) also relies on

evaluating those polynomials to calculate spectral properties of sparse matrices, such as

the density of states [6,8].

From a computational perspective, the evaluation of Chebyshev polynomials is a

simple series of vector operations and sparse matrix-vector multiplications (SpMV). It

allows for kernel fusion to increase the computational intensity [12]. Global communi-

cation can be avoided or limited to a single invocation for the full-degree polynomial. In

the above application scenarios the polynomial is usually evaluated for multiple vectors

and the algorithm can be reformulated to use blocks of vectors. This further increases

the computational intensity and pushes the corresponding sparse matrix-multiple-vector

multiplication (SpMMV) towards regular data access [12]. We emphasize that the ben-

efits of SpMMV have been known for a long time [9] but have only recently gained

renewed interest (see, e.g., [17,3,4]).

Performance modeling, code optimization strategies, and parallel scalability studies

have been presented for KPM [12] and Chebyshev filter diagonalization [19]. These

investigations were performed on two Pflop/s-class supercomputers: the SuperMUC-

Phase2 system4, which is based on the Intel Xeon Haswell, and the first phase of the

Piz Daint supercomputer5 (Cray XC30), using Intel Xeon Sandy Bridge processors and

Nvidia K20 GPGPUs.

1.1 Contribution

This paper extends existing work towards the new class of supercomputers using com-

pute nodes that feature both high- and low-bandwidth memory and transparent access

to the full memory address space of a node. The systems under consideration are phase

two of Piz Daint and the Oakforest-PACS6 system, representing the Nvidia P100-based

accelerator and the standalone Intel Xeon Phi approach, respectively. As of June 2017

these supercomputers were ranked on position 3 and 7 of the TOP500 list.

We first investigate the attainable bandwidth within the compute nodes, focusing

on the usage modes for accessing the low-bandwidth partitions. Concerning the trans-

parent use of the low-bandwidth memory, the tighter hardware integration allows much

4 https://www.lrz.de/services/compute/supermuc/systemdescription/
5 http://www.cscs.ch/computers/piz_daint
6 http://www.cc.u-tokyo.ac.jp/system/ofp/index-e.html

https://www.lrz.de/services/compute/supermuc/systemdescription/
http://www.cscs.ch/computers/piz_daint
http://www.cc.u-tokyo.ac.jp/system/ofp/index-e.html

P100 KNL

Vendor Nvidia Intel

Model Tesla P100 Xeon Phi 7250

Codename Pascal Knights Landing

Cores 1792 (FP64 CUDA cores) 68 (64 used)

Clock frequency [MHz] 1328–1480 1400

Peak performance [Tflop/s] 4.7–5.3 3

L2 cache capacity [MiB] 4 34

Fast memory technology HBM2 MCDRAM

Fast memory capacity [GiB] 16 16

Slow memory capacity [GiB] 64 96

Table 1: Key architectural features of the two compute devices. The slow memory par-

tition uses DDR4 memory technology on both systems.

faster access to large data sets on the KNL. Then we report on efforts porting and op-

timizing the code for the new compute device architectures and analyze the attainable

performance levels and hardware bottlenecks if the working set data fits into the high-

bandwidth memory. Our block vector implementation (i.e., storing all ns vectors in a

consecutive array) and the simplicity of the algorithm allow for a straightforward im-

plementation of subspace blocking strategies. We perform these in three directions: (1)

We block for optimal compute performance, i.e., the computation of the Chebyshev

filter polynomial is restricted to a subset of nb vectors at a time. (2) We show that the

subspace blocking is adequate to enable the efficient use of transparent DRAM data ac-

cess for large problems. (3) We interchange the original order of polynomial evaluation

in combination with a pipeline strategy and demonstrate that overlapping of communi-

cation and computation between successive subblocks of size nb can be realized, avoid-

ing the redundant memory transfers of standard communication hiding mechanisms in

SpMMV. We investigate these approaches using scalable test cases (sparse matrices)

from eigenvalue computations for topological insulator simulations together with real-

istic parameter settings for the filter diagonalization algorithm. We also show that these

kinds of computations fit very well to this new class of supercomputers.

As our library is available as open-source software, our implementations and ap-

proaches can be easily adapted by the large community using numerical methods that

involve the evaluation of Chebyshev polynomials of large sparse matrices.

1.2 Hardware Testbed

The two supercomputers considered in the present work harness non-standard compute

devices to bring forth their massive computational power. The Piz Daint system consists

of 5,320 nodes, each equipped with an Intel Xeon E5-2690v3 compute node hosting one

Nvidia Tesla “Pascal” (P100) GPGPU. Oakforest-PACS features 8,208 compute nodes,

each with a self-hosted Intel Xeon Phi 7250 “Knights Landing” manycore CPU. In

Table 1 we summarize the key features of the P100 and the KNL. From a high level

point of view, both architectures have similar memory organization and key perfor-

mance figures. However, technical implementations (e.g., SIMD vs SIMT execution;

slow memory organization) and programming approaches (e.g., access to slow mem-

ory) are substantially different. As we focus in this work on large data sets and ways to

use the slow memory, a more extensive evaluation of the different memory modes and

the respective attainable data access rates is provided in the next section. Finally, the

network structure of both supercomputers is briefly discussed in Section 4.

Memory subsystems and operating modes A crucial difference between both archi-

tectures is their basic operating mode. KNL is self-hosted, i.e., everything, including

the operating system and management processes, runs on the compute device. The pro-

cessor features a large partition of slow DDR4 memory and a small partition of fast

MCDRAM memory. It can be configured such that each of them is visible to the pro-

grammer as a separate ccNUMA domain (“flat mode”). If both domains should be used,

the programmer explicitly needs to specify the data location and, if required, copy data

between the domains. Another operating mode uses MCDRAM as a transparent cache

for the DDR4 memory (“cache mode”). In this case all memory requests go to the MC-

DRAM; if data is not available there it will be loaded from DDR4 memory transparently

to the MCDRAM and delivered to the processing units. No explicit data management

is required by the programmer.

The P100 GPGPU is installed as an accelerator via PCI-Express. The device itself

only contains the fast HBM2 memory. In case the data sets exceed its capacity, the

host memory has to be used. This can be done via explicit CUDA calls that copy data

between host and GPGPU. The Pascal architecture is the first to support a transparent

view to device memory and full host memory. Similar to the cache mode on KNL, this

“Unified Memory” feature enables transparent data transfers between the host and the

device (“managed mode”). Programmers need to allocate data with a special function

(cudaMallocManaged()). Data transfers between host and GPGPU is then managed

automatically by the Page Migration Engine (PME).

The memory subsystems and operating modes are illustrated in Figure 1. For data

sets fitting into the fast memory partitions, the operating modes on the left are preferred

and data should be transferred via path (1) or (4). If the data set exceeds 16 GiB, KNL

offers the cache mode which corresponds to path (6). Explicit transfers via path (1)+(2)

can be used on P100, but require explicit coding of the data transfers by the programmer.

This can be avoided using the managed mode, i.e., data path (3), which provides a

transparent view of the complete address space of the host and the GPGPU.

In order to get estimates for achievable performance we investigate attainable band-

width numbers for accessing large consecutive data sets, which is the typical mem-

ory access scenario for the application considered in this work. We use the STREAM

benchmark [18] and adapt it to the different memory access modes. Appropriate data

set sizes are chosen to measure the different bandwidth paths shown in Figure 1, i.e.,

for transparent access to the slow memory we use data sets larger than the fast mem-

ories. The measurements for all relevant data path combinations are shown in Table 2.

On both architectures the highest bandwidth is naturally attained when using the fast

memory only. Access speed to the slow memory component is substantially higher on

the KNL owing to its on-chip DDR4 memory controllers, while host memory access

on P100 is limited by the capabilities of the PCIe 3.0×16 interfaces. For explicit slow

DDR4MCDRAM

Cores and caches

DDR4
MCDRAM

KNL flat KNL cache

Cores and caches

GPU cores

and caches

Host cores

and caches

DDR4HBM2

GPU cores

and caches

Host cores

and caches

DDR4
HBM2

P100 (explicit) P100 managed

(1)

(2)

(3)

(4) (5) (6)

Fig. 1: Memory access modes on P100 (top) and KNL (bottom): Explicit management

(left) of the full memory vs. transparent access (right) to the full memory.

memory access approximately 75% of the maximum uni-directional PCIe bandwidth

can be attained on the P100. However, the bandwidth for transparent access (“managed

mode”; path (3) in Figure 1) breaks down to 2–3 Gbyte/s in our benchmarks, which may

severely restrict the use of this mode in real world applications. These low transfer rates

are caused by the PME, which handles all remote page faults generated by the GPGPU

and tries to consolidate them into consecutive PCIe data transfers. An analysis of the

“Host to Device Transfers” using the Nvidia profiler shows that the average transfer size

granularity even for simple kernels like STREAM is in the order of 40 KiB, at which

the PCIe 3.0×16 interface can deliver only 2–3 Gbyte/s. The minimum message size

is 4 KiB (page size of host node), and the maximum size is close to 1 MiB (all threads

executing concurrently access consecutive data).

In summary, the transparent access to large consecutive data sets in the slow mem-

ory on the P100 is twenty to thirty times slower, while the access to the fast memory is

25% faster than on the KNL.

Mode Copy Scale Add Triad

P
1
0
0

HBM2 (1) 542 542 556 557

DDR4-HBM2 explicit (1)+(2) 13 13 12 12

DDR4-HBM2 managed (3) 3 2 3 3

K
N

L

MCDRAM (4) 466 468 481 489

DDR4 (5) 81 81 85 85

DDR4-MCDRAM cache (6) 60 60 60 59

Table 2: Memory bandwidth in Gbyte/s for different operating modes as illustrated in

Figure 1 using the STREAM benchmark. On the P100 pinned memory was used for the

explicit data access (“DDR4-HBM2 explicit”).

Algorithm 1 Application of the ChebFD polynomial filter to block vectors.

1: U := u1, . . . ,uns
⊲ define block vector

2: W := w1, . . . ,wns
⊲ define block vector

3: X := x1, . . . ,xns
⊲ define block vector

4: U ← (αH +β1)X ⊲ spmmv()
5: W ← 2(αH +β1)U −X ⊲ spmmv()
6: X ← g0c0X +g1c1U +g2c2W ⊲ baxpy()+bscal()
7: for p = 3 to np do

8: swap(W ,U)
9: W ← 2(αH +β1)U −W

10: η p← 〈W ,U〉
11: µ p← 〈U ,U〉























⊲CHEBFD OP(H,U ,W ,X)

12: X ← X +gpcpW

13: end for

1.3 Software Testbed

All computations were carried out using (real or complex) double precision data. In-

dex values are 4-byte integers. For the P100, the CUDA toolkit in version 8.0.44 was

used for compilation and the respective cuBLAS version was employed as a baseline

implementation. The Intel C Compiler (ICC) version 17.0.1 was used for KNL with the

corresponding MKL and MPI versions. On Piz Daint we used Cray MPICH 7.5.0.

The performance numbers we present for the Chebyshev Filter Diagonalization ker-

nel are median values from ten consecutive runs applying the full filter polynomial.

Before the actual measurements, one additional warmup run was performed on the as-

signed set of nodes. No error bars are given for the performance results because the

variations were small (≤ 5%).

2 Chebyshev Filter Diagonalization

We investigate Chebyshev Filter Diagonalization (ChebFD) as a representative algo-

rithm for large-scale and efficient eigenvalue computations. Filter diagonalization is

frequently used to find a set of inner eigenstates of a sparse matrix H in a given search

interval of eigenvalues. It uses a window function approximated by a polynomial filter

of degree np to project a subspace of ns search vectors to a given search interval of

eigenvalues. A comprehensive description of this method is given in [19]. The com-

putational core of ChebFD is the application of the polynomial filter together with the

computation of the Chebyshev moments. This is shown in Algorithm 1 for a formu-

lation with block vectors. Basic numerical operations involved in the filter application

kernel (lines 7-13) are a SpMV involving a large sparse matrix H and a series of scaled

vector addition kernels (i.e., BLAS1 kernels). These kernels can be formulated as a sin-

gle SpMMV operation involving special scaling factors and offset computations (line

9). In lines 10/11 the Chebyshev moments are computed; they are used to monitor the

number of eigenstates in the search interval, which is not known a priori. Finally, in

line 12 the “filtered vector” is updated. As the polynomial filter of degree np is applied

independently to ns search vectors, a block formulation as indicated in Algorithm 1 can

be used. In particular, the block variant of SpMV, i.e., the SpMMV kernel, is favorable

in terms of computational intensity since the matrix data (H) has to be loaded only np

times instead of np× ns times if the full filter polynomial is applied separately to each

vector in the SpMV. Note that the block formulation of the vector kernels does not im-

pact their computational efficiency as ns BLAS1 type operations are still involved, e.g.,

in line 10 ns independent dot products are computed.

The full filter diagonalization algorithm requires orthogonalization of the ns “fil-

tered vectors” in the block vector X after applying the filter above and before restarting

the procedure. A rank-revealing technique such as SVQB [24] or TSQR [7] is used

in the orthogonalization step, but as its contribution to the overall runtime is typically

small for reasonably large filter polynomial degrees np we do not include it in the per-

formance analysis.

At this point we must emphasize that performance numbers presented in [19] use

the ChebFD formulation presented here, while in [12] only the Chebyshev moments

have been computed, i.e., Algorithm 1 without line 12.

2.1 Physical Application and Problem Setting

We have chosen the computation of a bulk of central eigenstates of a topological insula-

tor as a test case for our performance study. Such applications are of current interest in

quantum physics research. The model Hamiltonian [23] describing the topological insu-

lator acts on a discrete 3D lattice of size Nx×Ny×Nz carrying four degrees of freedom

per site. The matrix formulation leads to a sparse matrix of size n = 4×Nx×Ny×Nz

with an average of nnzr = 13 complex double precision non-zero elements per matrix

row (denoted by “Topi-Nx-Ny-Nz”). The matrices have several subdiagonals leading to a

structure similar to 3D stencil. Please see [12,19] for more details on the model Hamil-

tonian and its mapping to a sparse matrix. Relevant problem parameter settings in topo-

logical insulator research are matrix dimensions of n = 106, . . . ,108 and search spaces

of n = 102, . . . ,103. In terms of algorithmic efficiency it has been shown in [19] that

high polynomial degrees (np ≈ 103) deliver best results.

3 Node-level implementation and performance analysis

The compute kernels and implementation alternatives discussed in the following are

available for download at (https://bitbucket.org/essex/ghost). As paralleliza-

tion approaches we use OpenMP for KNL (and CPU architectures) and CUDA for

Nvidia GPGPUs. Best performance on the KNL for our application is typically achieved

with four OpenMP threads per core.

3.1 Implementation

The structure of the ChebFD algorithm presented in Algorithm 1 can easily be mapped

to a series of vector operations (of BLAS1 type) and a SpMMV. All vendors provide

highly optimized library routines for these. However, calling those routines results in

https://bitbucket.org/essex/ghost

redundant data transfers for the involved block vectors. As discussed in [12,19] it is pos-

sible to fuse all operations in the p-loop of Algorithm 1 to a single algorithm-specific

kernel (CHEBFD OP(H,U ,W ,X)) and perform all computations on the three block vec-

tors (U ,W ,X) once they are in the cache or register. While this strategy allows for min-

imum data transfer, the tailored kernels become very bulky and complex. In particular,

for GPU architectures the resulting CUDA kernel requires manual architecture-specific

tuning as demonstrated in [12] for the Nvidia K20.

Another important issue to consider is the storage format of the block vectors.

Here, a row-major approach is beneficial which drives the irregular access pattern of

the SpMV towards streaming access as ns consecutive block vector elements are loaded

for a single matrix element. Moreover row-major storage also enables SIMD/SIMT vec-

torization along the block vector elements and a simple compressed row storage (CRS)

format can be used to store the matrix on all architectures.

On KNL, the implementation is done via AVX512 compiler intrinsics. The rather

bulky nature of the kernel, together with the use of complex arithmetic, prevents ef-

ficient vectorization of high-level code from the compiler and necessitates the use of

compiler intrinsics.

On the P100 we started with the KPM implementation for the K20m presented

in [12]. Extending this kernel by the update of the “filtered” block vector (line 12 in

Algorithm 1) is straightforward but does not change the computational bottlenecks,

which were the reductions required in the dot products. Here a new feature of the Pascal

architecture is employed: atomic additions using double precision numbers can increase

the performance of the reduction operation for Chebyshev moments (ηp,µp).

3.2 Performance measurement

In Figure 2 we present the performance levels which can be achieved on the KNL and

P100 architectures and demonstrate the need for optimized algorithm-specific kernels.

We find that a tuned implementation of the CHEBFD OP() kernel (labeled “GHOST”)

outperforms implementations based on a minimum set of standard library calls (Sp-

MMV and BLAS1) typically by 50%. It is interesting to note that our manual imple-

mentation of those standard calls (“GHOST-nofuse”) can even outperform the latest

vendor-tuned implementations (MKL and cuBLAS/cuSPARSE). Achieving approxi-

mately 10% of their peak performance, the two compute devices outperform a standard

CPU-based compute node by a factor of up to four.

3.3 ChebFD polynomial filter application subspace blocking

In agreement with published results for CPUs and previous-generation Nvidia GPG-

PUs [12,19] we find that performance saturates (P100) or even decreases (KNL) at

intermediate block vector size of ns = 16,32. To enable optimal performance levels for

the large values of ns required by the above application scenario, subspace blocking

for the block vectors needs to be employed. Introducing a factor nb (≤ ns), the ap-

plication of the filter can be restricted to a sufficiently small vector block (holding nb

vectors) to achieve optimal performance. The corresponding implementation is shown

in Algorithm 2. Though simple, this code transformation has strong implications on

16 32 64 1284 8
Search space dimension n

s

0

100

200

300

400

500

Pe
rf

or
m

an
ce

 [
G

FL
O

P/
s]

MKL
GHOST-nofuse
GHOST

(a) KNL

4 8 16 32 64 128
Search space dimension n

s

0

100

200

300

400

500

Pe
rf

or
m

an
ce

 [
G

FL
O

P/
s]

2×
 H

SW

cuBLAS/cuSPARSE
GHOST-nofuse
GHOST

(b) P100

Fig. 2: ChebFD performance for the Topi-128-64-64 matrix with np = 500 using differ-

ent implementations. Maximum performance of a compute node with two Intel Xeon

E5-2697v3 processors (Haswell) is shown for reference (data taken from [19]).

Algorithm 2 ChebFD polynomial filter application blocking. Here, ns is assumed to be

a multiple of nb for simplicity.

1: for b = 0 to ns/nb−1 do

2: Ub := ubnb
, . . . ,u(b+1)nb

3: W b := wbnb
, . . . ,w(b+1)nb

4: Xb := xbnb
, . . . ,x(b+1)nb

5: for n = 3 to np do

6: swap(W b,Ub)
7: CHEBFD OP(H,Ub,W b,Xb)
8: end for

9: end for

the row-major data layout of the block vectors. Row-major ordering now must also be

restricted to blocks containing nb vectors while the blocks are stored column-wise (see

Figure 3). We are now free to choose the vector block size independently of our baseline

application, thus we will restrict the following performance analysis to vector blocks of

size nb.

3.4 Performance analysis

We choose the Roofline performance model [27] to investigate the quality of our imple-

mentations and to detect the current hardware bottlenecks:

P∗ = min(Pmax; I(nb)× b) . (1)

This model assumes that the attainable performance is either limited by in-core execu-

tion (Pmax) or by data transfer (I(nb)×b), where b is the main memory bandwidth (see

Table 2 for typical values) if data comes from main memory. The arithmetic intensity

Fig. 3: Block vector layout for ns = 16,

choosing nb = 2 for filter application

(subspace) blocking. Pairs of blocks of

width nb will later be used for subspace

pipelining (see Sect. 4.2). The zigzag ar-

rows indicate the storage order of the

vector elements in memory.

n

ns

nbnd

of the ChebFD scheme for the Topi test case as a function of nb is given by [19]:

I(nb) =
146

260/nb+ 80

Flops

Byte

nb→∞
≈ 1.83

Flops

Byte
. (2)

This intensity value is calculated as the average numerical workload and minimum data

traffic for applying one matrix row. The first term in the denominator (260/nb Byte) rep-

resents the matrix data traffic: As we have double complex entries, 20 Byte per matrix

entry (using 4 Byte indices) are required. In average one row has 13 entries and we ex-

pect to reuse the row entries for each of the nb block vector entries. The minimum data

traffic for the three vectors involved in CHEBFD OP(H,U ,W ,X) accounts for 80 Byte

of data traffic, as U is read only (see lines 9-12 in Algorithm 1).

Combining Eqs. 1 and 2 it becomes obvious that our performance measurements

are far off the main memory bandwidth limit of the Roofline model for the full range of

nb in Figure 2 on both architectures. Assuming an attainable main memory bandwidth

of b = 540 GB/s for the P100 (b = 470 GB/s for the KNL) the maximum performance

should increase from P∗ = 540 GF/s (P∗ = 470 GF/s) at nb = 4 to P∗ = 960 GF/s (P∗=
836 GF/s) at nb = 128 for the P100 (KNL). This is a first indication that the code is

limited on both architectures not by the available main-memory bandwidth.

Choosing an intermediate value of nb = 32, we investigate the actual data transfer

volumes and attained data transfer rates in more detail, see Table 3. Here, the data

volumes have been measured with the Nvidia profiler [1] and likwid-perfctr [25] for the

P100 and the KNL7, respectively.

In line with our analysis we find that the actual memory memory bandwidth rates

using MCDRAM and HBM2 are far off the maximum attainable numbers presented in

Table 2. We also find that the write data volume matches our assumption underlying (2)

very well (two vector blocks each of size n× ns× 16 Byte need to be written to main

7 Due to the absence of suitable tools, measurements were not conducted on the Oakforest-PACS

system but on an Intel Xeon Phi 7210 with 64 cores and the same amount of L2 cache.

Read (GB) Write(GB) Bandwidth (GB/s)

Minimum 3.77 2.15 -

KNL2 MCDRAM 8.09 2.26 205.81

P100 HBM2 7.02 2.28 412.17

P100 L2 14.82 2.42 764.18

P100 TEX 38.23 -
}

3129.36
P100 L1 29.96 2.42

Table 3: Transferred data volume for memory subsystem components and a single

ChebFD iteration with the Topi-128-64-64 matrix (n = 2.1× 106) and nb = 32. The

second row shows minimum data transfers as assumed in the calculation of I(nb).

1 4 8 16 24 32 40 48 56 64
Number of cores

0

500

1000

1500

2000

L
2

ca
ch

e
ba

nd
w

id
th

 [
G

B
/s

]

Ideal scaling from 2 cores
Ideal scaling from 1 core

(a) L2 cache bandwidth

1 4 8 16 24 32 40 48 56 64
Number of cores

0

100

200

300

400

500

M
C

D
R

A
M

 b
an

dw
id

th
 [

G
B

/s
] Ideal scaling from 2 cores

Ideal scaling from 1 core

(b) MCDRAM bandwidth

Fig. 4: Bandwidth scaling of L2 cache and MCDRAM on KNL using vector update

benchmark explained in the text. L2 measurements were run in throughput mode using

data sets fitting into the thread-local L2 cache.

memory). On the other hand the measured read data volume is substantially higher than

our model assumption indicating that the the right hand vector block involved in the

spMMV is reloaded on the P100 (KNL) approximately four (five) times (see [13] for

modeling right hand vector access). As always consecutive chunks of the block vectors

are loaded latency effects are not expected to be the reason for low memory bandwidth

utilization.

P100 The Nvidia profiler identifies the high L1/TEX cache utilization as primary hard-

ware bottleneck which operates at more than 3 TB/s bandwidth. Caching right hand side

vector elements and warp broadcasts for reusing the matrix elements across ns threads

may cause this pressure. This is different from previous results for the K20 presented

in [19], where the TEX cache utilization was also high, but performance was limited

by the reduction operations required in lines 10 and 11 of Algorithm 1. This bottleneck

has been removed using the new atomic additions (see above).

KNL Reliable in-cache data traffic volume measurements were not available for the

KNL architecture at the time of writing. Therefore we substantiate our expectation that

Fig. 5: OpenMP scaling of

ChebFD performance for

Topi-128-64-64 matrix with

np = 10/100/500 for 1-4/8-

24/32-64 cores and nb = 16

on one KNL. 1 4 8 16 24 32 40 48 56 64
Number of cores

0

50

100

150

200

250

300

Pe
rf

or
m

an
ce

 [
G

FL
O

P/
s]

4 threads/core
1 thread/core

the performance bottleneck is in-core by a brief scalability analysis of the device archi-

tecture and of our code on one KNL.

In Figure 4 we show attainable bandwidth values and scalability of MCDRAM and

L2 when running a simple DAXPY kernel. As the L2 cache segments are shared by two

cores and we only perform local L2 cache accesses we find perfect scalability across the

segments. On contrary, the MCDRAM bandwidth shows the typical saturation behavior

even if only one thread per core is run. However, our ChebFD implementation scales

well across the device and also benefits substantially from using all SMT threads (see

Figure 5), indicating that neither MCDRAM nor L2 access are the limiting factor. Thus,

we identify the in-core execution of the code to be the bottleneck.8.

In summary, we find that both architectures can achieve approximately 10% of their

theoretical peak performance but are not able to fully utilize the new memory technol-

ogy due to in-cache and in-core bottlenecks despite manually optimized kernels. Hence,

future architectural developments on both systems should focus on improving cache and

core architectures to leverage the additional costs of the new high bandwidth memory

technologies for a broad range of applications.

3.5 Subspace blocking and large problems

Often in real world filter diagonalization applications the available main memory is the

limiting factor as one typically aims at large physical problem sizes (n) and a large

number of inner eigenstates (ns) at the same time. Thus, the size of the high bandwidth

memory can easily restrict the accessible problem space and may require (massive) par-

allelization to provide the required main memory space. As described in Section 1.2, the

two architectures under consideration in this work address this problem and allow for a

transparent access to large but slow memory regions located in the host node (P100) or

in a separate DDR4 domain (KNL). We now investigate the transparent memory access

mechanisms provided on both architectures, i.e., the “managed mode” on P100 and the

“cache mode” on KNL, to use those large memory spaces implicitly.

8 The identification of the respective bottleneck is ongoing but probably pointless as this archi-

tecture line will not be continued by Intel.

1 10 100 1000 10000
Polynomial degree n

p

0

100

200

300

400

500

Pe
rf

or
m

an
ce

 [
G

FL
O

P/
s]

P100
KNL

Fig. 6: ChebFD performance

versus polynomial degree np

for the Topi-128-64-64 ma-

trix with ns = 512 and nb =
64 (128) on KNL (P100).

As we have demonstrated in Table 2, the transfer rates of transparent data accesses

to the slow memories are very low. In our case, the time (i.e., the work to be done on

the device) between two accesses to the slow memory is determined by the polynomial

filter degree np: As shown in Algorithm 2, a local working set of nb vectors is loaded

to the high-bandwidth memory and then reused np− 3 times. Thus the data access to

slow memory may be amortized if np is large enough. Indeed we observe no significant

impact of the low-bandwidth memory access for an overall working set of ≈60 GiB

beyond np & 500 on P100 and np & 100 on KNL (see Figure 6). The different behav-

ior is expected due to the much lower transparent access bandwidth on the P100 (see

Table 2).

As discussed in Section 2.1, algorithmic efficiency requires high polynomial de-

grees np≫ 100, which matches the demands of both architectures to achieve high single

device performance for large data sets on the two architectures under consideration.

4 Large-scale performance

In this section we present scaling results on both supercomputers using data sets fit-

ting into the fast memory of both devices. The Oakforest-PACS nodes are operated in

“flat” mode. Distributed-memory parallelization is done using the GHOST library [14],

which supports heterogeneous parallel execution using an MPI+X approach (currently,

X ∈ {OpenMP,CUDA}). On Piz Daint we run one MPI process per host node and on

Oakforest-PACS we use one MPI process and 256 OpenMP threads per KNL node (64

cores). We employ the standard data-level parallelization approach for ChebFD: Ma-

trix elements and vector data are distributed across the MPI processes, each process

working with a contiguous set of matrix rows and the corresponding part of the block

vectors. The communication pattern is determined by the sparsity pattern of the matrix,

and communication of remote block vector elements to local buffers must be performed

before the process-local CHEBFD OP is applied As the matrix structure is reminiscent

of a 3D stencil, nearest-neighbor communication dominates and leads to easy load bal-

ancing and a well-controlled communication volume.

Algorithm 3 Blocked application of the ChebFD polynomial filter with explicit and

non-overlapping data exchange (“vector mode”).

1: for b = 0 to ns/nb−1 do

2: for p = 3 to np do

3: swap(W b,Ub)
4: INIT COMMUNICATION(Ub)

5: FINALIZE COMMUNICATION(Ub)

6: CHEBFD OP(H,Ub,W b,Xb)
7: end for

8: end for

The Cray-proprietary interconnect of Piz Daint uses a dragonfly network topology.

Oakforest-PACS is based on Intel Omni-Path with a full fat-tree network built on 48-

port leaf switches and 768-port spine switches. As these networks should provide suf-

ficient bandwidth for nearest-neighbor communication, no optimized mapping of MPI

ranks to the topology was done.

4.1 Weak scaling

The weak scaling experiments are based on the problem scaling used in [19]. A sub-

domain of 128× 64× 64 is assigned to each process, corresponding to the Topi-128-

64-64 problem considered so far. For scaling out we run 2× n2
scal processes (nscal =

1,2,4,8,16) on a lattice with fixed z dimension that is quadratic in x and y, i.e., Topi-

(128× nscal)-(64× 2× nscal)-64 for a given nscal. As long as the communication time is

small compared to the actual computation, which is the case for our choice of param-

eters, a simple communication scheme (“vector mode,” see Algorithm 3), can be used:

Data exchange using non-blocking MPI (lines 4 and 5) is separated from the process-

local computation (CHEBFD OP(H,Ub,W b,Xb)). The weak scaling performance results

for both systems are shown in Figure 7 for up to 512 nodes. The communication over-

head introduced by the vector mode is visible for two and eight nodes because commu-

nication sets in first in the y direction at nscal = 1 and then additionally in the x direction

at nscal = 2. From eight nodes onward we see perfect scaling since per-node communi-

cation and computation times stay constant. Based on the single-node performance the

systems achieve a parallel efficiency of 81% (Oakforest-PACS) and 62% (Piz Daint),

which compares to 73% obtained on the SuperMUC-Phase2 system [19]. The lower

efficiency of Piz Daint can be attributed to the transfer of vector data over the PCIe

bus (even though our implementation uses GPUdirect communication avoiding an in-

termediate copy of communication data in the host memory) and the high single-node

performance. Still Piz Daint provides best absolute performance, achieving 132.7 TF/s

at 512 nodes, thereby outperforming the CPU-only SuperMUC-Phase2 results in [19]

by a factor of three at the same node count. The underlying numerical problem consid-

ered here is the computation of approximately 100 inner eigenvalues (≤ ns) of a matrix

of dimension n = 109.

1 2 8 32 128 512
Number of nodes

10
2

10
3

10
4

10
5

Pe
rf

or
m

an
ce

 [
G

FL
O

P/
s]

ideal sc
alin

g

81%

(a) Oakforest-PACS (KNL) with nb = 16.

1 2 8 32 128 512
Number of nodes

10
2

10
3

10
4

10
5

Pe
rf

or
m

an
ce

 [
G

FL
O

P/
s]

62%

(b) Piz Daint (P100) with nb = 64.

Fig. 7: Weak scaling of ChebFD in “vector mode” with matrices ranging from Topi-

128-128-64 (two nodes) to Topi-2048-2048-64 (512 nodes). See the text for details on

problem scaling. (ns = 128, np = 500)

Algorithm 4 Blocked application of the ChebFD polynomial filter with pipelined com-

munication and computation (“pipelined mode”).

1: for p = 3 to np do

2: swap(W ,U)
3: INIT COMMUNICATION(U0)

4: FINALIZE COMMUNICATION(U0)

5: for b = 0 to ns/nb−2 do

6: INIT COMMUNICATION(Ub+1)

7: CHEBFD OP(H,Ub,W b,Xb)
8: FINALIZE COMMUNICATION(Ub+1)

9: end for

10: CHEBFD OP(H,Uns/nb−1,W ns/nb−1,Xns/nb−1)
11: end for

4.2 Strong scaling and subspace pipelining

Sparse linear algebra problems often show limited strong scalability because the com-

putation time per process decreases faster than the corresponding communication time.

Our vector mode implementation, which was acceptable with weak scaling and rather

large per-node problem sizes, must thus be improved by explicitly overlapping com-

munication with computation. A typical approach to this problem is to do local com-

putations (i.e., handle matrix elements which only access local vector elements) while

communicating the non-local vector elements and then doing the remaining work with

the just-received data, updating the partial results [11]. This implementation needs to

update the local result vector twice and thus increases the main memory data traffic.

Modifying the subspace blocking scheme introduced in Section 3.3 towards pipelining

of computation and communication steps of successive filter applications as presented

in Algorithm 4 offers an interesting alternative.

Instead of calculating the full polynomial for a given block of ns vectors, the polyno-

mial degree for the full block vector is increased step by step. The inner loop runs over

Fig. 8: Strong scaling

ChebFD performance for

the Topi-128-128-64 matrix

with ns = 128, np = 500

and nb = 16 on Oakforest-

PACS, comparing pipelined

and vector communication

modes. 2 4 8 16 32 64 128
Number of nodes

0

1000

2000

3000

4000

Pe
rf

or
m

an
ce

 [
G

FL
O

P/
s]

1.5×

Pipelined mode
Vector mode

the full block vector and the computation on the current subblock can be overlapped

with the communication required for the next subblock. This strategy avoids the over-

head of writing the result vector twice, maintaining the same computational intensity as

the non-MPI code. As long as nb/ns is sufficiently large and asynchronous communica-

tion is supported by the MPI implementation, the communication should be effectively

hidden. A comparison of vector mode and subspace pipelining for strong scaling on

Oakforest-PACS is given in Figure 8 for the Topi-128-128-64 problem (n = 4× 106).

As expected, the benefit of subspace pipelining increases as the number of processes

goes up because the communication becomes more relevant. A maximum speed-up

with respect to vector mode of 50% could be observed in this test. Note that the speed-

up of communication-hiding approaches in SpMV is limited to a factor of two. Further

increasing the processor count will diminish the benefit of subspace pipelining as we

reach the completely communication-bound regime.

On Piz Daint subspace pipelining did not show any benefits. With low-level exper-

iments we have checked that non-blocking MPI communication using GPUdirect does

not overlap with GPU computation (Cray is currently investigating this problem).

Summary

This work has investigated performance properties and subspace blocking optimization

techniques for a Chebyshev filter diagonalization (ChebFD) algorithm on the Intel Xeon

Phi (“Knights Landing”) and Nvidia P100 (“Pascal”) architectures. Our block vector

implementation achieves approximately 10% of the theoretical peak performance and

is no longer memory bound on both architectures. We have demonstrated that subspace

blocking with a sufficiently large polynomial filter degree enables efficient use of the

complete node-level address space (i.e., high-bandwidth and low-bandwidth memory)

transparently without impacting the node performance even if the working set exceeds

the high-bandwidth memory size by far. Subspace blocking can be further extended

towards a pipelining of the communication and computation phase in the filter appli-

cation, which allows for simple communication hiding. Though this study has focused

on using ChebFD in the context of inner eigenvalue computations for topological in-

sulators, the basic strategies presented can be applied to many applications evaluating

Chebyshev polynomials of large sparse matrices and should be of interest for block

formulations of iterative solvers in sparse linear algebra.

Acknowledgments

This work was funded by DFG SPP1648 through the ESSEX-II project and by a grant

from the Swiss National Supercomputing Centre (CSCS) under project ID d35. We

gratefully acknowledge the access to the Oakforest-PACS supercomputers at JCAHPC,

Univ. of Tokyo. HF and GW gratefully acknowledge the hospitality of Los Alamos

National Laboratory.

References

1. NVIDIA Profiler, http://docs.nvidia.com/cuda/profiler-users-guide
2. TOP500 Supercomputer Sites (June 2017), http://www.top500.org
3. Aktulga, H.M., Buluç, A., Williams, S., Yang, C.: Optimizing sparse matrix-multiple vec-

tors multiplication for nuclear configuration interaction calculations. In: Proceedings of the

2014 IEEE International Parallel and Distributed Processing Symposium, May 2012. IEEE

Computer Society (2014)

4. Anzt, H., Tomov, S., Dongarra, J.: Accelerating the LOBPCG method on GPUs using a

blocked sparse matrix vector product. In: Proceedings of the Symposium on High Perfor-

mance Computing. pp. 75–82. HPC ’15, Society for Computer Simulation International, San

Diego, CA, USA (2015), http://dl.acm.org/citation.cfm?id=2872599.2872609
5. Basermann, A., Reichel, B., Schelthoff, C.: Preconditioned CG methods for sparse

matrices on massively parallel machines. Parallel Computing 23(3), 381–398 (1997),

http://www.sciencedirect.com/science/article/pii/S0167819197000057
6. Bhardwaj, O., Ineichen, Y., Bekas, C., Curioni, A.: Highly scalable linear time estimation of

spectrograms — a tool for very large scale data analysis (2013), poster at 2013 ACM/IEEE

International Conference on High Performance Computing Networking, Storage and Analy-

sis

7. Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal parallel and

sequential QR and LU factorizations. SIAM J. Sci. Comp. 34, 206–239 (Feb 2012)

8. Di Napoli, E., Polizzi, E., Saad, Y.: Efficient estimation of eigenvalue counts in an interval.

Numerical Linear Algebra with Applications 23(4), 674–692 (Jul 2016)

9. Gropp, W.D., Kaushik, D.K., Keyes, D.E., Smith, B.F.: Towards realistic performance

bounds for implicit CFD codes. In: Proceedings of Parallel CFD99. pp. 233–240. Elsevier

(1999)

10. Kamiabad, A.A., Tate, J.E.: Polynomial Preconditioning of Power System Matrices with

Graphics Processing Units, pp. 229–246. Springer Berlin Heidelberg, Berlin, Heidelberg

(2013), https://doi.org/10.1007/978-3-642-32683-7_8
11. Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Basermann, A., Bishop, A.R.: Sparse

matrix-vector multiplication on GPGPU clusters: A new storage format and a scalable imple-

mentation. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium

Workshops PhD Forum. pp. 1696–1702 (May 2012)

12. Kreutzer, M., Pieper, A., Hager, G., Wellein, G., Alvermann, A., Fehske, H.: Performance

engineering of the Kernel Polynomal Method on large-scale CPU-GPU systems. In: Paral-

lel and Distributed Processing Symposium (IPDPS), 2015 IEEE International. pp. 417–426

(May 2015)

http://docs.nvidia.com/cuda/profiler-users-guide
http://www.top500.org
http://dl.acm.org/citation.cfm?id=2872599.2872609
http://www.sciencedirect.com/science/article/pii/S0167819197000057
https://doi.org/10.1007/978-3-642-32683-7_8

13. Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A unified sparse matrix

data format for efficient general sparse matrix-vector multiplication on modern processors

with wide SIMD units. SIAM Journal on Scientific Computing 36(5), C401–C423 (2014),

https://doi.org/10.1137/130930352

14. Kreutzer, M., Thies, J., Röhrig-Zöllner, M., Pieper, A., Shahzad, F., Galgon, M., Basermann,

A., Fehske, H., Hager, G., Wellein, G.: GHOST: Building blocks for high performance sparse

linear algebra on heterogeneous systems. International Journal of Parallel Programming pp.

1–27 (2016)

15. Li, X., Li, F.: Estimation of the largest eigenvalue in Chebyshev preconditioner for parallel

conjugate gradient method-based power flow computation. IET Generation, Transmission

Distribution 10(1), 123–130 (2016)

16. Li, X., Li, F.: GPU-based power flow analysis with Chebyshev preconditioner and conju-

gate gradient method. Electric Power Systems Research 116(Supplement C), 87–93 (2014),

http://www.sciencedirect.com/science/article/pii/S0378779614001850

17. Liu, X., Chow, E., Vaidyanathan, K., Smelyanskiy, M.: Improving the performance of dy-

namical simulations via multiple right-hand sides. In: Proceedings of the 2012 IEEE In-

ternational Parallel and Distributed Processing Symposium, May 2012. pp. 36–47. IEEE

Computer Society (2012)

18. McCalpin, J.D.: Memory bandwidth and machine balance in current high performance com-

puters. IEEE Computer Society Technical Committee on Computer Architecture (TCCA)

Newsletter pp. 19–25 (Dec 1995)

19. Pieper, A., Kreutzer, M., Alvermann, A., Galgon, M., Fehske, H., Hager, G., Lang, B.,

Wellein, G.: High-performance implementation of Chebyshev filter diagonalization for in-

terior eigenvalue computations. Journal of Computational Physics 325, 226–243 (2016),

http://www.sciencedirect.com/science/article/pii/S0021999116303837

20. Saad, Y.: Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems.

Math. Comput. 42, 567–588 (1984)

21. Schubert, G., Fehske, H.: Metal-to-insulator transition and electron-hole puddle formation in

disordered graphene nanoribbons. Phys. Rev. Lett. 108, 066402 (2012)

22. Schubert, G., Fehske, H., Fritz, L., Vojta, M.: Fate of topological-insulator surface states

under strong disorder. Phys. Rev. B 85, 201105 (2012)

23. Sitte, M., Rosch, A., Altman, E., Fritz, L.: Topological insulators in magnetic fields: Quan-

tum Hall effect and edge channels with a nonquantized θ term. Phys. Rev. Lett. 108, 126807

(Mar 2012)

24. Stathopoulos, A., Wu, K.: A block orthogonalization procedure with constant synchroniza-

tion requirements. SIAM J. Sci. Comput. 23, 2165–2182 (2002)

25. Treibig, J., Hager, G., Wellein, G.: LIKWID: A lightweight performance-oriented tool suite

for x86 multicore environments. In: Proceedings of PSTI2010, the First International Work-

shop on Parallel Software Tools and Tool Infrastructures. San Diego CA (2010)

26. Weiße, A., Wellein, G., Alvermann, A., Fehske, H.: The ker-

nel polynomial method. Rev. Mod. Phys. 78, 275–306 (Mar 2006),

https://link.aps.org/doi/10.1103/RevModPhys.78.275

27. Williams, S., Waterman, A., Patterson, D.: Roofline: An insightful visual perfor-

mance model for multicore architectures. Commun. ACM 52(4), 65–76 (Apr 2009),

http://doi.acm.org/10.1145/1498765.1498785

28. Zhou, Y., Saad, Y., Tiago, M.L., Chelikowsky, J.R.: Self-

consistent-field calculations using Chebyshev-filtered subspace iter-

ation. Journal of Computational Physics 219(1), 172–184 (2006),

http://www.sciencedirect.com/science/article/pii/S002199910600146X

https://doi.org/10.1137/130930352
http://www.sciencedirect.com/science/article/pii/S0378779614001850
http://www.sciencedirect.com/science/article/pii/S0021999116303837
https://link.aps.org/doi/10.1103/RevModPhys.78.275
http://doi.acm.org/10.1145/1498765.1498785
http://www.sciencedirect.com/science/article/pii/S002199910600146X

	Chebyshev Filter Diagonalization on Modern Manycore Processors and GPGPUs

