Skip to main content

EP-Based Infinite Inverted Dirichlet Mixture Learning: Application to Image Spam Detection

  • Conference paper
  • First Online:
Recent Trends and Future Technology in Applied Intelligence (IEA/AIE 2018)

Abstract

We propose in this paper a new fully unsupervised model based on a Dirichlet process prior and the inverted Dirichlet distribution that allows the automatic inferring of clusters from data. The main idea is to let the number of mixture components increases as new vectors arrive. This allows answering the model selection problem in a elegant way since the resulting model can be viewed as an infinite inverted Dirichlet mixture. An expectation propagation (EP) inference methodology is developed to learn this model by obtaining a full posterior distribution on its parameters. We validate the model on a challenging application namely image spam filtering to show the merits of the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.cs.jhu.edu/~mdredze/datasets/image_spam.

References

  1. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000)

    Book  Google Scholar 

  2. Bdiri, T., Bouguila, N.: Positive vectors clustering using inverted dirichlet finite mixture models. Expert Syst. Appl. 39(2), 1869–1882 (2012)

    Article  Google Scholar 

  3. Bouguila, N., Ziou, D.: High-dimensional unsupervised selection and estimation of a finite generalized dirichlet mixture model based on minimum message length. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1716–1731 (2007)

    Article  Google Scholar 

  4. Rasmussen, C.E.: The infinite Gaussian mixture model. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 554–560. MIT Press (2000)

    Google Scholar 

  5. Blackwell, D., MacQueen, J.: Ferguson distributions via pólya urn schemes. Ann. Stat. 1(2), 353–355 (1973)

    Article  Google Scholar 

  6. Korwar, R.M., Hollander, M.: Contributions to the theory of Dirichlet processes. Ann. Prob. 1, 705–711 (1973)

    Article  MathSciNet  Google Scholar 

  7. Blei, D.M., Jordan, M.I.: Variational inference for Dirichlet process mixtures. Bayesian Anal. 1, 121–144 (2005)

    Article  MathSciNet  Google Scholar 

  8. Bouguila, N., Ziou, D.: A Dirichlet process mixture of Dirichlet distributions for classification and prediction. In: Proceedings of the IEEE Workshop on Machine Learning for Signal Processing (MLSP), pp. 297–302 (2008)

    Google Scholar 

  9. Zhang, X., Chen, B., Liu, H., Zuo, L., Feng, B.: Infinite max-margin factor analysis via data augmentation. Pattern Recogn. 52(Suppl. C), 17–32 (2016)

    Article  Google Scholar 

  10. Bertrand, A., Al-Osaimi, F.R., Bouguila, N.: View-based 3D objects recognition with expectation propagation learning. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Porikli, F., Skaff, S., Entezari, A., Min, J., Iwai, D., Sadagic, A., Scheidegger, C., Isenberg, T. (eds.) ISVC 2016. LNCS, vol. 10073, pp. 359–369. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50832-0_35

    Chapter  Google Scholar 

  11. Minka, T., Ghahramani, Z.: Expectation propagation for infinite mixtures. In: NIPS 2003 Workshop on Nonparametric Bayesian Methods and Infinite Models (2003)

    Google Scholar 

  12. Bouguila, N.: Infinite Liouville mixture models with application to text and texture categorization. Pattern Recogn. Lett. 33(2), 103–110 (2012)

    Article  Google Scholar 

  13. Bouguila, N., Ziou, D.: A Dirichlet process mixture of generalized Dirichlet distributions for proportional data modeling. IEEE Trans. Neural Netw. 21(1), 107–122 (2010)

    Article  Google Scholar 

  14. Minka, T.: Expectation propagation for approximate Bayesian inference. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI), pp. 362–369 (2001)

    Google Scholar 

  15. Minka, T., Lafferty, J.: Expectation-propagation for the generative aspect model. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI), pp. 352–359 (2002)

    Google Scholar 

  16. Chang, S., Dasgupta, N., Carin, L.: A Bayesian approach to unsupervised feature selection and density estimation using expectation propagation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1043–1050 (2005)

    Google Scholar 

  17. Maybeck, P.S.: Stochastic Models, Estimation and Control. Academic Press, New York (1982)

    MATH  Google Scholar 

  18. Ishwaran, H., James, L.F.: Gibbs sampling methods for stick-breaking priors. J. Am. Stat. Assoc. 96, 161–173 (2001)

    Article  MathSciNet  Google Scholar 

  19. Ma, Z., Leijon, A.: Expectation propagation for estimating the parameters of the beta distribution. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 2082–2085 (2010)

    Google Scholar 

  20. Zhang, Y., Wang, S., Phillips, P., Ji, G.: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection. Knowl. Based Syst. 64, 22–31 (2014)

    Article  Google Scholar 

  21. Amayri, O., Bouguila, N.: Improved online support vector machines spam filtering using string kernels. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 621–628. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10268-4_73

    Chapter  Google Scholar 

  22. Amayri, O., Bouguila, N.: Online spam filtering using support vector machines. In: Proceedings of the 14th IEEE Symposium on Computers and Communications (ISCC 2009), 5–8 July Sousse, Tunisia, pp. 337–340. IEEE Computer Society (2009)

    Google Scholar 

  23. Biggio, B., Fumera, G., Pillai, I., Roli, F.: A survey and experimental evaluation of image spam filtering techniques. Pattern Recogn. Lett. 32, 1436–1446 (2011)

    Article  Google Scholar 

  24. Fumera, G., Pillai, I., Roli, F.: Spam filtering based on the analysis of text information embedded into images. J. Mach. Learn. Res. 7, 2699–2720 (2006)

    Google Scholar 

  25. Biggio, B., Fumera, G., Pillai, I., Roli, F.: Image spam filtering using visual information. In: Proceedings of the 14th International Conference on Image Analysis and Processing (ICIAP), pp. 105–110 (2007)

    Google Scholar 

  26. Mehta, B., Nangia, S., Gupta, M., Nejdl, W.: Detecting image spam using visual features and near duplicate detection. In: Proceedings of the 17th International Conference on World Wide Web, pp. 497–506 (2008)

    Google Scholar 

  27. Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. 42(1/2), 177–196 (2001)

    Article  Google Scholar 

  28. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, 8th European Conference on Computer Vision (ECCV), pp. 1–22 (2004)

    Google Scholar 

  29. Dredze, M., Gevaryahu, R., Elias-Bachrach, A.: Learning fast classifiers for image spam. In: Proceedings of the Conference on Email and Anti-Spam (CEAS), pp. 487–493 (2007)

    Google Scholar 

  30. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  31. Bdiri, T., Bouguila, N.: An infinite mixture of inverted Dirichlet distributions. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7063, pp. 71–78. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24958-7_9

    Chapter  Google Scholar 

  32. Fan, W., Bouguila, N.: Topic novelty detection using infinite variational inverted Dirichlet mixture models. In: 14th IEEE International Conference on Machine Learning and Applications, ICMLA 2015, Miami, FL, USA, 9–11 December 2015, pp. 70–75 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at umm Al-Qura University for the continuous support. This work was supported financially by the Deanship of Scientific Research at Umm Al-Qura University under the grant number 15-COM-3-1-0006. The first author was supported by the National Natural Science Foundation of China (61502183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizar Bouguila .

Editor information

Editors and Affiliations

A The calculation of \(Z_i\) in Eq. (21)

A The calculation of \(Z_i\) in Eq. (21)

The normalized constant \(Z_i\) in Eq. (21) can be calculated as

$$\begin{aligned} Z_i = \int f_i(\varTheta )q^{\setminus i}(\varTheta )d\varTheta =\sum _{j=1}^J \bar{\lambda }_j\prod _{s=1}^{j-1}(1-\bar{\lambda }_s) \int \mathcal {ID}(\varvec{X}_i|\varvec{\alpha }_j) N(\varvec{\alpha }_j|\varvec{\mu }_j^{\setminus i},A_j^{\setminus i})\mathrm {d}\varvec{\alpha }_j \end{aligned}$$
(30)

where \(\bar{\lambda }_j\) is the expected value of \(\lambda _j\). Since the integration involved in Eq. (30) is analytically intractable, we tackle this problem by adopting the Laplace approximation to approximate the integrand with a Gaussian distribution [19]. First, we define \(h(\varvec{\alpha }_j)\) as the integrand in Eq. (30):

$$\begin{aligned} h(\varvec{\alpha }_j) =\mathcal {ID}(\varvec{X}_i|\varvec{\alpha }_j)\mathcal {N}(\varvec{\alpha }_j|\varvec{\mu }_j^{\setminus i},A^{\setminus i}_{j}) \end{aligned}$$
(31)

Then, the normalized distribution for this integrand which is indeed a product of a Dirichlet distribution and a Gaussian distribution is given by

$$\begin{aligned} \mathcal {H}(\varvec{\alpha }_j) =\frac{h(\varvec{\alpha }_j)}{\int h(\varvec{\alpha }_j)d\varvec{\alpha }_j} \end{aligned}$$
(32)

Our goal for the Laplace method is to find a Gaussian approximation which is centered on the mode of the distribution \(\mathcal {H}(\varvec{\alpha }_j)\). We may obtain the mode \(\varvec{\alpha }_j^*\) numerically by setting the first derivative of \(\ln h(\varvec{\alpha }_j)\) to 0, where

$$\begin{aligned}&\ln h(\varvec{\alpha }_j) = \ln \frac{\varGamma (\sum _{l=1}^{D+1}\alpha _{jl})}{\prod _{l=1}^{D+1}\varGamma (\alpha _{jl})} + \sum _{l=1}^D(\alpha _{jl}-1)\ln X_{il} - \sum _{l=1}^{D+1}\alpha _{jl} \nonumber \\&\ln (1+\sum _{l=1}^DX_{il}) - \frac{1}{2}(\varvec{\alpha }_j - \varvec{\mu }^{\setminus i}_{j})^T A^{\setminus i}_j (\varvec{\alpha }_j - \varvec{\mu }^{\setminus i}_{j})+\text{ const. } \end{aligned}$$
(33)

We can calculate the first and second derivatives with respect to \(\varvec{\alpha }_j\) as

$$\begin{aligned} \frac{\partial \ln h(\varvec{\alpha }_j)}{\partial \varvec{\alpha }_j} =\begin{bmatrix} \varPsi (\mathop {\sum }\nolimits _{l=1}^{D+1}\alpha _{jl}) - \varPsi (\alpha _{j1}) + \ln X_{i1}-\ln (1+\mathop {\sum }\nolimits _{l=1}^DX_{il})\\ \vdots \\ \varPsi (\sum _{l=1}^{D+1}\alpha _{jl}) - \varPsi (\alpha _{jD}) + \ln X_{iD}-\ln (1+\mathop {\sum }\nolimits _{l=1}^DX_{il}) \end{bmatrix}-A_j^{\setminus i}(\varvec{\alpha }_j- \varvec{\mu }^{\setminus i}_j) \end{aligned}$$
(34)
$$\begin{aligned} \frac{\partial ^2\ln h(\varvec{\alpha }_j)}{\partial \varvec{\alpha }_j^2} = \begin{bmatrix} \varPsi '(\mathop {\sum }\nolimits _{l=1}^D\alpha _{jl}) - \varPsi '(\alpha _{j1})&\cdots&\varPsi '(\mathop {\sum }\nolimits _{l=1}^D\alpha _{jl})\\ \vdots&\ddots&\vdots \\ \varPsi '(\mathop {\sum }\nolimits _{l=1}^D\alpha _{jl})&\cdots&\varPsi '(\mathop {\sum }\nolimits _{l=1}^D\alpha _{jl}) - \varPsi '(\alpha _{jD}) \end{bmatrix}-A^{\setminus i}_{j} \end{aligned}$$
(35)

where \(\varPsi (\cdot )\) is the digamma function. Then, we can approximate \(h(\varvec{\alpha }_j)\)

$$\begin{aligned} h(\varvec{\alpha }_j)\simeq h(\varvec{\alpha }_j^*)\exp \bigg (-\frac{1}{2}(\varvec{\alpha }_j-\varvec{\alpha }_j^*)\widehat{A}_{j}(\varvec{\alpha }_j-\varvec{\alpha }_j^*)\bigg ) \end{aligned}$$
(36)

where the precision matrix \(\widehat{A}_{j}\) is given by

$$\begin{aligned} \widehat{A}_{j} = - \left. \frac{\partial ^2\ln h(\varvec{\alpha }_j)}{\partial \varvec{\alpha }_j^2} \right| _{\varvec{\alpha }_j =\varvec{\alpha }_j^*} \end{aligned}$$
(37)

Therefore, the integration of \(h(\varvec{\alpha }_j)\) can be approximated by using Eq. (36) as

$$\begin{aligned} \int h(\varvec{\alpha }_j)d\varvec{\alpha }_j \simeq h(\varvec{\alpha }_j^*)\int \exp (-\frac{1}{2}(\varvec{\alpha }_j-\varvec{\alpha }_j^*)\widehat{A}_{j}(\varvec{\alpha }_j-\varvec{\alpha }_j^*))d\varvec{\alpha }_j= h(\varvec{\alpha }_j^*) \frac{(2\pi )^{(D+1)/2}}{|\widehat{A}_j|^{1/2}} \end{aligned}$$
(38)

Finally, we can rewrite Eq. (30) as following:

$$\begin{aligned} Z_i=\sum _{j=1}^J \bar{\lambda }_j\prod _{s=1}^{j-1}(1-\bar{\lambda }_s)h(\varvec{\alpha }_j^*)\frac{(2\pi )^{{(D+1)}/2}}{|\widehat{A}_j|^{1/2}} \end{aligned}$$
(39)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, W., Bourouis, S., Bouguila, N., Aldosari, F., Sallay, H., Khayyat, K.M.J. (2018). EP-Based Infinite Inverted Dirichlet Mixture Learning: Application to Image Spam Detection. In: Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M. (eds) Recent Trends and Future Technology in Applied Intelligence. IEA/AIE 2018. Lecture Notes in Computer Science(), vol 10868. Springer, Cham. https://doi.org/10.1007/978-3-319-92058-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92058-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92057-3

  • Online ISBN: 978-3-319-92058-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics