Skip to main content

Knowledge Discovery Process for Detection of Spatial Outliers

  • Conference paper
  • First Online:
Recent Trends and Future Technology in Applied Intelligence (IEA/AIE 2018)

Abstract

Detection of spatial outliers is a spatial data mining task aimed at discovering data observations that differ from other data observations within its spatial neighborhood. Some considerations that depend on the problem domain and data characteristics have to be taken into account for the selection of the data mining algorithms to be used in each data mining project. This massive amount of possible algorithm combinations makes it necessary to design a knowledge discovery process for detection of local spatial outliers in order to perform this activity in a standardized way. This work provides a proposal for this knowledge discovery process based on the Knowledge Discovery in Database process (KDD) and a proof of concept of this design using real world data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Araki, S., et al.: Effect of spatial outliers on the regression modelling of air pollutant concentrations: a case study in Japan. Atmos. Environ. 153, 83–93 (2017)

    Article  Google Scholar 

  2. Bakon, M., et al.: A data mining approach for multivariate outlier detection in postprocessing of multitemporal InSAR results. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 10, 2791–2798 (2017)

    Article  Google Scholar 

  3. Michel, B., et al.: Spatial outlier detection in the air quality monitoring network of Normandy (France). In: GRASPA Working Papers (2014)

    Google Scholar 

  4. Deepak, P.: Anomaly detection for data with spatial attributes. In: Celebi, M.E., Aydin, K. (eds.) Unsupervised Learning Algorithms, pp. 1–32. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24211-8_1

    Chapter  Google Scholar 

  5. Shekhar, S., Chang-Tien, L., Zhang, P.: A unified approach to detecting spatial outliers. GeoInformatica 7(2), 139–166 (2003)

    Article  Google Scholar 

  6. Breunig, M.M., et al.: LOF: identifying density-based local outliers. ACM SIGMOD Rec. 29(2), 93–104 (2000)

    Article  Google Scholar 

  7. Chawla, S., Sun, P.: SLOM: a new measure for local spatial outliers. Knowl. Inf. Syst. 9(4), 412–429 (2006)

    Article  Google Scholar 

  8. Schubert, E., Weiler, M., Zimek, A.: Outlier detection and trend detection: two sides of the same coin. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW). IEEE (2015)

    Google Scholar 

  9. Kamble, B., Doke, K.: Outlier detection approaches in data mining. Int. Res. J. Eng. Technol. (IRJET) 4(3), 634–638 (2017)

    Google Scholar 

  10. Ernst, M., Haesbroeck, G.: Comparison of local outlier detection techniques in spatial multivariate data. Data Min. Knowl. Discov. 31(2), 371–399 (2017)

    Article  MathSciNet  Google Scholar 

  11. Tang, B., He, H.: A local density-based approach for outlier detection. Neurocomputing 241, 171–180 (2017)

    Article  Google Scholar 

  12. Du, H., et al.: Novel clustering-based approach for local outlier detection. In: 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE (2016)

    Google Scholar 

  13. Liu, X., Lu, C.-T., Chen, F.: Spatial outlier detection: Random walk based approaches. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM (2010)

    Google Scholar 

  14. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  15. Liu, Q., et al.: Unsupervised detection of contextual anomaly in remotely sensed data. Remote Sens. Environ. 202, 75–87 (2017)

    Article  Google Scholar 

  16. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Commun. ACM 39(11), 27–34 (1996)

    Article  Google Scholar 

  17. Kursa, M.B., Jankowski, A., Rudnicki, W.R.: Borutaa system for feature selection. Fundam. Inf. 101(4), 271–285 (2010)

    Google Scholar 

  18. Guo, D.: Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP). Int. J. Geogr. Inf. Sci. 22(7), 801–823 (2008)

    Article  Google Scholar 

  19. Mennis, J., Guo, D.: Spatial data mining and geographic knowledge discovery: an introduction. Comput. Environ. Urban Syst. 33(6), 403–408 (2009)

    Article  Google Scholar 

  20. Rottoli, G.D., Merlino, H., García-Martínez, R.: Knowledge discovery process for description of spatially referenced clusters. In: International Conference on Software Engineering & Knowledge Engineering. Ed. USA KSI Research Inc. and Knowledge Systems Institute, 410415 (2017). https://doi.org/10.18293/SEKE2017-013

  21. De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The Mahalanobis distance. Chemom. Intell. Lab. Syst. 50(1), 1–18 (2000)

    Article  Google Scholar 

  22. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)

    Article  Google Scholar 

  23. Kuna, H., García-Martínez, R., Villatoro, F.: Automatic outliers fields detection in databases. J. Model. Simul. Syst. 3(1), 14–20 (2012)

    Google Scholar 

  24. Quinlan, J.R.: Improved use of continuous attributes in C4. 5. J. Artif. Intell. Res. 4, 77–90 (1996)

    Article  Google Scholar 

  25. Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier, New York (2014)

    Google Scholar 

  26. Breiman, L., et al.: Classification and Regression Trees. CRC Press, Boca Raton (1984)

    MATH  Google Scholar 

  27. Bel, L., et al.: CART algorithm for spatial data: application to environmental and ecological data. Comput. Stat. Data Anal. 53(8), 3082–3093 (2009)

    Article  MathSciNet  Google Scholar 

  28. Luis, U., Pérez, O.: Table 1: Productivity and rotation lengths for main forest plantation trees in selected tropical countries. Mean Annual Volume Increment of Selected Industrial Forest Plantation Species. Forest Plantations Thematic Papers. Forestry Department of Food and Agriculture Organization of the United Nations (2001)

    Google Scholar 

  29. United States Census Bureau: Population, population change and estimated components of population change, 1 April, 2010 to 1 July, 2016. (CO-EST2016-alldata), County Population Totals Datasets: 2010–2016. On-Line: https://www.census.gov/data/datasets/2016/demo/popest/-counties-total.html. Accessed 17 Oct 2017

  30. Wirth, R., Hipp, J.: CRISP-DM: towards a standard process model for data mining. In: Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining (2000)

    Google Scholar 

  31. Martins, S., Pesado, P., García-Martínez, R.: Intelligent systems in modeling phase of information mining development process. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds.) IEA/AIE 2016. LNCS (LNAI), vol. 9799, pp. 3–15. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42007-3_1

    Chapter  Google Scholar 

Download references

Acknowledgments

The research presented in this paper was partially funded by the PhD Scholarship Program to reinforce R&D&I areas (2016-2020) of the Universidad Tecnológica Nacional, Research Project 80020160400001LA of National University of Lanús, and PIO CONICET-UNLa 22420160100032CO of National Research Council of Science and Technology (CONICET), Argentina. The authors also want to extend their gratitude to Kevin-Mark Bozell Poudereux, for proofreading the translation, and the anonymous reviewers of this work for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Daián Rottoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rottoli, G.D., Merlino, H., García-Martínez, R. (2018). Knowledge Discovery Process for Detection of Spatial Outliers. In: Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M. (eds) Recent Trends and Future Technology in Applied Intelligence. IEA/AIE 2018. Lecture Notes in Computer Science(), vol 10868. Springer, Cham. https://doi.org/10.1007/978-3-319-92058-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92058-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92057-3

  • Online ISBN: 978-3-319-92058-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics