Skip to main content

A Fast Algorithm for Robot Localization Using Multiple Sensing Units

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10880))

Included in the following conference series:

Abstract

This paper presents a fast algorithm for camera selection in a robotic multi-camera localization system. The scenario we study is that where a robot is navigating in an indoor environment using a four-camera vision system to localize itself inside the world. In this context, when something occludes the current camera used for localization, the system has to switch to one of the other three available cameras to remain localized. In this context, the question that arises is that of “what camera should be selected?”. We address this by proposing an approach that aims at selecting the next best view to carry on the localization. For that, the number of static features at each direction is estimated using the optical flow. In order to validate our approach, experiments in a real scenario with a mobile robot system are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bapat, A., Dunn, E., Frahm, J.-M.: Towards kilo-hertz 6-DoF visual tracking using an egocentric cluster of rolling shutter cameras. IEEE Trans. Vis. Comput. Graph. 22(11), 2358–2367 (2016)

    Article  Google Scholar 

  2. Barbosa, M., Bernardino, A., Figueira, D., Gaspar, J., Gonçalves, N., Lima, P.U., Moreno, P., Pahliani, A., Santos-Victor, J., Spaan, M.T.J., Sequeira, J.: ISRobotNet: a testbed for sensor and robot network systems. In: IROS, pp. 2827–2833 (2009)

    Google Scholar 

  3. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_56

    Chapter  Google Scholar 

  4. Costante, G., Forster, C., Delmerico, J.A., Valigi, P., Scaramuzza, D.: Perception-aware path planning. IEEE Trans. Robot. (2016). arXiv preprint arXiv:1605.04151

  5. Das, A., Waslander, S.L.: Entropy based keyframe selection for multi-camera visual slam. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3676–3681. IEEE (2015)

    Google Scholar 

  6. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  7. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 15–22, May 2014

    Google Scholar 

  8. Guyue, Z., Lu, F., Ketan, T., Honghui, Z., Kai, W., Kang, Y.: Guidance: a visual sensing platform for robotic applications. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 9–14, June 2015

    Google Scholar 

  9. Harmat, A., Trentini, M., Sharf, I.: Multi-camera tracking and mapping for unmanned aerial vehicles in unstructured environments. J. Intell. Robot. Syst. 78(2), 291–317 (2015)

    Article  Google Scholar 

  10. Houben, S., Quenzel, J., Krombach, N., Behnke, S.: Efficient multi-camera visual-inertial slam for micro aerial vehicles. In: IROS 2016, pp. 1616–1622. IEEE (2016)

    Google Scholar 

  11. Kaess, M., Dellaert, F.: Probabilistic structure matching for visual SLAM with a multi-camera rig. Comput. Vis. Image Underst. 114(2), 286–296 (2010). Special issue on Omnidirectional Vision, Camera Networks and Non-conventional Cameras

    Article  Google Scholar 

  12. Kazik, T., Kneip, L., Nikolic, J., Pollefeys, M., Siegwart, R.: Real-time 6D stereo visual odometry with non-overlapping fields of view. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1529–1536. IEEE (2012)

    Google Scholar 

  13. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Mixed and Augmented Reality, ISMAR 2007, pp. 225–234. IEEE (2007)

    Google Scholar 

  14. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source slam system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  15. Netramai, C., Roth, H., Sachenko, A.: High accuracy visual odometry using multi-camera systems. In: 2011 IEEE 6th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), vol. 1, pp. 263–268. IEEE (2011)

    Google Scholar 

  16. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_34

    Chapter  Google Scholar 

  17. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)

    Google Scholar 

  18. Tardif, J.-P., Pavlidis, Y., Daniilidis, K.: Monocular visual odometry in urban environments using an omnidirectional camera. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 2531–2538. IEEE (2008)

    Google Scholar 

  19. Zhou, G., Fang, L., Tang, K., Zhang, H., Wang, K., Yang, K.: Guidance: a visual sensing platform for robotic applications. In: CVPR, pp. 9–14 (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by FONCICYT (CONACYT and European Union) Project SmartSDK - No. 272727. Reinier Oves García is supported by a CONACYT Scholarship No.789638. Dr. J. Martinez-Carranza is thankful for the support received through the Newton Advanced Fellowship with reference NA140454.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinier Oves García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oves García, R., Valentin, L., Martínez-Carranza, J., Sucar, L.E. (2018). A Fast Algorithm for Robot Localization Using Multiple Sensing Units. In: Martínez-Trinidad, J., Carrasco-Ochoa, J., Olvera-López, J., Sarkar, S. (eds) Pattern Recognition. MCPR 2018. Lecture Notes in Computer Science(), vol 10880. Springer, Cham. https://doi.org/10.1007/978-3-319-92198-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92198-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92197-6

  • Online ISBN: 978-3-319-92198-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics