Skip to main content

Wireless Transfer of Energy Alongside Information in Wireless Sensor Networks

  • Chapter
  • First Online:
  • 807 Accesses

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 164))

Abstract

Despite steady improvements over the last few decades, wireless communication networks are still severely constrained by the availability of an energy source. The problem manifests itself in many applications, in particular, wireless sensor networks enabling a plethora of Internet of Things devices, where communications are infrequent and the nodes are often idle; and also small-scale communication networks, whose nodes need to be minuscule limiting the possibilities to incorporate long-term energy peripherals such as batteries. Such applications can achieve optimal energy efficiency using passive (battery-less) receivers that wirelessly receive energy and information at the same time. In this chapter, we describe a set of techniques, introduced in our past work (Javaheri H Wireless Transfer of Energy Alongside Information: From Wireless Sensor Networks to Bio-Enabled Wireless Networks 2012 [37]), (Javaheri, Noubir, ipoint: A platform-independent passive information kiosk for cell phones 2010 [42]), to simultaneously deliver energy alongside information during wireless communications. We present mechanisms to consolidate energy and information transfer in wireless sensor networks. We introduce iPoint, a communication system including a passively powered wireless receiver capable of establishing two-way communication with a commodity smartphone without any hardware modifications. In contrast to traditional RFID tags, iPoint provides high computation and sensing capabilities and most importantly, it does not require specialized reader device to communicate. We prototype and experimentally evaluate our design that includes optimization techniques to ensure efficient delivery of energy and information and novel communication protocols.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adair, R.K.: Constraints on biological effects of weak extremely-low-frequency electromagnetic fields. Phys. Rev. A 43(2), 1039–1048 (1991)

    Article  Google Scholar 

  2. Adair, R.K.: Vibrational resonances in biological systems at microwave frequencies. Biophys J 82(3), 1147–52 (2002)

    Article  Google Scholar 

  3. Alphandéry, E., Faure, S., Raison, L., Duguet, E., Howse, P.A., Bazylinski, D.A.: Heat production by bacterial magnetosomes exposed to an oscillating magnetic field. J. Phys. Chem. C 115(1), 18–22 (2011)

    Article  Google Scholar 

  4. WiTricity Corp. http://www.witricity.com/pages/technology.html

  5. Del Barco, E., Asenjo, J., Zhang, X., Pieczynski, R., Julia, A., Tejada, J., Ziolo, R.F., Fiorani, D., Testa, A.M.: Free rotation of magnetic nanoparticles in a solid matrix. Chem. Mater. 13(5), 1487–1490 (2001)

    Article  Google Scholar 

  6. Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–536 (1973)

    Article  MathSciNet  Google Scholar 

  7. Berridge, M.:The AM and FM of calcium signalling. Nature (1997)

    Google Scholar 

  8. Blakemore, R.: Magnetotactic bacteria. Science 190(4212), 377–379 (1975)

    Article  Google Scholar 

  9. Buettner, M., Prasad, R., Sample, A., Yeager, D., Greenstein, B., Smith, J.R., Wetherall, D.: Rfid Sensor Networks with the Intel Wisp. pp. 393–394 (2008)

    Google Scholar 

  10. Blatt, J.M., Weisskopf, V.F.: Theoretical Nuclear Physics, p. 864 (1954)

    Google Scholar 

  11. Chen, C.: Remote control of living cells. Nature Nanotechnology (2008)

    Google Scholar 

  12. Cifra, M.: Electrodynamic eigenmodes in cellular morphology. BioSystems 109(3), 356–66 (2012)

    Article  Google Scholar 

  13. Cohen, R., Kapchits, B.: An optimal wake-up scheduling algorithm for minimizing energy consumption while limiting maximum delay in a mesh sensor network. IEEE/ACM Trans. Netw. 17(2), 570–581 (2009)

    Article  Google Scholar 

  14. Chaubey, A., Malhotra, B.D.: Mediated biosensors. Biosens. Bioelectron. 17(6–7), 441–456 (2002)

    Article  Google Scholar 

  15. Choi, J.H., Nguyen, F.T., Barone, P.W., Heller, D.A., Moll, A.E., Patel, D., Boppart, S.A., Strano, M.S.: Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett. 7(4), 861–867 (2007). Apr

    Article  Google Scholar 

  16. Cockcroft, J.D., Walton, E.T.S.: Experiments with high velocity positive ions. (i) further developments in the method of obtaining high velocity positive ions. Proc. R Soc. Lond. Ser. A 136(830), 619–630 (1932)

    Article  Google Scholar 

  17. Correia, L.M., Zeller, D., Blume, O., Ferling, D., Jading, Y., Góanddor, I., Auer, G., Van Der Perre, L.: Challenges and enabling technologies for energy aware mobile radio networks. IEEE Commun. Mag. 48(11):66–72 (2010)

    Article  Google Scholar 

  18. Dykman, M.I., Khasin, M., Portman, J., Shaw, S.W.: Spectrum of an oscillator with jumping frequency and the interference of partial susceptibilities. Phys. Rev. Lett. 105(23), 230601 (2010)

    Article  Google Scholar 

  19. Dobson, J.: Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. (2008)

    Google Scholar 

  20. Degen, C.L., Poggio, M., Mamin, H.J., Rettner, C.T., Rugar, D.: Nanoscale magnetic resonance imaging. Proc. Natl. Acad Sci. USA 106(5), 1313–1317 (2009)

    Article  Google Scholar 

  21. Drubach, D.: The Brain Explained, p. 168, Jan 2000

    Google Scholar 

  22. Ermolov, V., Heino, M., Karkkainen, A., Lehtiniemi, R., Nefedov, N., Pasanen, P., Radivojevic, Z., Rouvala, M., Ryhanen, T., Seppala, E., Uusitalo, M.: Significance of nanotechnology for future wireless devices and communications. In: 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2007, pp. 1–5 (2007)

    Google Scholar 

  23. EPCglobal Standards and Technology. http://www.epcglobalinc.org/standards (2008)

  24. Falas, T., Kashani, H.: Two-dimensional Bar-code Decoding With Camera-equipped Mobile Phones, pp. 597–600, Mar 2007

    Google Scholar 

  25. Glogauer, M., Ferrier, J., McCulloch, C.A.: Magnetic fields applied to collagen-coated ferric oxide beads induce stretch-activated ca2+ flux in fibroblasts. Am. J. Physiol. 269(5 Pt 1), C1093–104 (1995)

    Article  Google Scholar 

  26. Havelka, D., Cifra, M., Kučera, O., Pokorný, J., Vrba, J.: High-frequency electric field and radiation characteristics of cellular microtubule network. J. Theor. Biol. 286(1), 31–40 (2011)

    Article  Google Scholar 

  27. Hu, X., Cebe, P., Weiss, A.S., Omenetto, F., Kaplan, D.L.: Protein-based composite materials. Mat. Today 15(5), 208–215 (2012)

    Article  Google Scholar 

  28. Hergt, R., Dutz, S., Müller, R., Zeisberger, M.: Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter 18, S2919 (2006)

    Article  Google Scholar 

  29. Huang, H., Delikanli, S., Zeng, H., Ferkey, D.M., Pralle, A.: Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechno. 5(8), 602–606 (2010)

    Article  Google Scholar 

  30. Howard, J., Hudspeth, A.J.: Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1(3), 189–99 (1988)

    Article  Google Scholar 

  31. Hughes, S., El Haj, A.J., Dobson, J.: Magnetic micro- and nanoparticle mediated activation of mechanosensitive ion channels. Med. Eng. Phys. 27(9), 754–62 (2005)

    Article  Google Scholar 

  32. Hamam, R.E., Karalis, A., Joannopoulos, J.D., Soljačić, M.: Coupled-mode theory for general free-space resonant scattering of waves. Phys. Rev. A 75(5), 53801 (2007)

    Article  Google Scholar 

  33. Hughes, S., McBain, S., Dobson, J., El Haj, A.J.: Selective activation of mechanosensitive ion channels using magnetic particles. J. R. Soc. Interface 5(25), 855–63 (2008)

    Article  Google Scholar 

  34. Iyer, V., Talla, V., Kellogg, B., Gollakota, S., Smith, J.: Inter-technology backscatter: towards internet connectivity for implanted devices. In: Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16), pp. 356–369. ACM, New York, NY, USA

    Google Scholar 

  35. HTC dream (T-mobile g1). http://www.htc.com/www/product/dream/overview.html

  36. Jackson, J.D.: Classical Electrodynamics (1967)

    Google Scholar 

  37. Javaheri, H.: Wireless Transfer of Energy Alongside Information: From Wireless Sensor Networks to Bio-Enabled Wireless Networks. Ph.D. Dissertation. Northeastern Univ., Boston, MA, USA, Dec 2012

    Google Scholar 

  38. Javaheri, H., Barbiellini, B., Noubir, G.: Efficient magnetic torque transduction in biological environments using tunable nanomechanical resonators. In: 2011 Proceedings of the IEEE EMBC (2011)

    Google Scholar 

  39. Javaheri, H., Barbiellini, B., Noubir, G.: Efficient magnetic torque transduction in biological environments using tunable nanomechanical resonators. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 1863–6 (2011)

    Google Scholar 

  40. Javaheri, H., Barbiellini, B., Noubir, G.: On the energy transfer performance of mechanical nanoresonators coupled with electromagnetic fields. cond-mat.mes-hall, Aug 2011

    Google Scholar 

  41. Javaheri, H., Barbiellini, B., Noubir, G.: On the energy transfer performance of mechanical nanoresonators coupled with electromagnetic fields. Nanoscale Res. Lett. 7(1), 572 (2012)

    Article  Google Scholar 

  42. Javaheri, H., Noubir, G.: ipoint: A platform-independent passive information kiosk for cell phones. In: 2010 7th Annual IEEE Communications Society Conference onSensor Mesh and Ad Hoc Communications and Networks (SECON), pp. 1–9 (2010)

    Google Scholar 

  43. Javaheri, H., Noubir, G., Noubir, S.: Rf control of biological systems: Applications to wireless sensor networks. Nano-Net (2009)

    Google Scholar 

  44. Janssen, X.J.A., Schellekens, A.J., van Ommering, K., van IJzendoorn, L.J., Prins, M.W.J.: Controlled torque on superparamagnetic beads for functional biosensors. Biosens. Bioelectron. 24(7), 1937–1941 (2009)

    Article  Google Scholar 

  45. Jensen, K., Weldon, J., Garcia, H., Zettl, A.: Nanotube radio. Nano letters 7(11), 3508–3511 (2007)

    Article  Google Scholar 

  46. Kirschvink, J.L.: Comment on constraints on biological effects of weak extremely-low-frequency electromagnetic fields. Phys. Rev. A (1992)

    Google Scholar 

  47. Karalis, A., Joannopoulos, J.D., Soljacic, M.: Efficient wireless non-radiative mid-range energy transfer. Ann. Phys. 323(1), 34–48 (2008)

    Article  Google Scholar 

  48. Kobayashi, A., Kirschvink, J.L.: Magnetoreception and electromagnetic field effects: sensory perception of the geomagnetic field in animals and humans. ACS Adv. Chem. Ser. 250, 367–394 (1995)

    Article  Google Scholar 

  49. Kirschvink, J.L., Kobayashi-Kirschvink, A., Diaz-Ricci, J.C., Kirschvink, S.J.: Magnetite in human tissues: a mechanism for the biological effects of weak elf magnetic fields. Bioelectromagn. Suppl 1, 101–13 (1992)

    Article  Google Scholar 

  50. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljacic, M.: Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834), 83 (2007)

    Article  MathSciNet  Google Scholar 

  51. Kim, D.H., Rozhkova, E.A., Ulasov, I.V., Bader, S.D., Rajh, T., Lesniak, M.S., Novosad, V.: Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. (2009)

    Google Scholar 

  52. Kirschvink, J.L., Winklhofer, M., Walker, M.M.: Biophysics of magnetic orientation: strengthening the interface between theory and experimental design. J. R. Soc. Interface 7, S179–S191 (2010). Jan

    Article  Google Scholar 

  53. Le, T., Mayaram, K., Fiez, T.: Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE J. Solid-State Circuits 43(5), 1287–1302 (2008)

    Article  Google Scholar 

  54. Lahiri, I., Oh, S., Hwang, J.Y., Cho, S., Sun, Y., Banerjee, R., Choi, W.: High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper. ACS Nano 4(6), 3440–3446 (2010)

    Article  Google Scholar 

  55. Malcolm, R.: A mechanism by which the hair cells of the inner ear transduce mechanical energy into a modulated train of action potentials. J. Gen. Physiol. 63(6), 757 (1974)

    Article  Google Scholar 

  56. Meyer, C.J., Alenghat, F.J., Rim, P., Fong, J.H., Fabry, B., Ingber, D.E.: Mechanical control of cyclic amp signalling and gene transcription through integrins. Nat. Cell Biol. 2(9), 666–8 (2000)

    Article  Google Scholar 

  57. Meirovitch, L.: Fundamentals of Vibrations (2001)

    Google Scholar 

  58. McSpadden, J.O., Mankins, J.C.: Space solar power programs and microwave wireless power transmission technology. IEEE Microw. Mag. 3(4), 46–57 (2002)

    Article  Google Scholar 

  59. Muxworthy, A.R., Williams, W.: Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: implications for magnetosome crystals. J. R. Soc. Interface 6(41), 1207–12 (2009)

    Article  Google Scholar 

  60. Mohan, A., Woo, G., Hiura, S., Smithwick, Q., Raskar, R.: Bokode: imperceptible visual tags for camera based interaction from a distance. ACM Trans. Graph. 28(3):98:1–98:8 (2009)

    Article  Google Scholar 

  61. Mishra, D., De, S., Jana, S., Basagni, S., Chowdhury, K., Heinzelman, W.: Smart RF energy harvesting communications: challenges and opportunities. IEEE Commun. Mag. 53(4), 70–78 (2015)

    Article  Google Scholar 

  62. The Near Field Communication Forum. http://www.nfc-forum.org/

  63. Nelson, P.C., Radosavljević, M., Bromberg, S.: Biological Physics: Energy, Information, Life, p. 630, Jan 2008

    Google Scholar 

  64. Nakano, T., Suda, T., Koujin, T., Haraguchi, T., Hiraoka, Y.: Molecular communication through gap junction channels. Trans. Comput. Syst. Biol. X (2008)

    Google Scholar 

  65. Nakano, T., Suda, T., Moore, M., Egashira, R., Enomoto, A., Arima, K.: Molecular communication for nanomachines using intercellular calcium signaling. In: 2005 5th IEEE Conference on Nanotechnology, pp. 478– 481, vol. 2 (2005)

    Google Scholar 

  66. Phizicky, E.M., Fields, S.: Protein-protein interactions: methods for detection and analysis. Microbiol. Rev. 59(1), 94–123 (1995)

    Google Scholar 

  67. Poon, A., O’Driscoll, S., Meng, T.: Optimal frequency for wireless power transmission into dispersive tissue. IEEE Trans. Antennas Propag. 58(5), 1739–1750 (2010)

    Article  Google Scholar 

  68. Poon, A.S.Y.: Miniaturization of implantable wireless power receiver. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 3217–20 (2009)

    Google Scholar 

  69. PowerCast Corporation. http://www.powercastco.com/technology/powerharvester-receivers

  70. Proakis, J.G., Salehi, M.: Digital Communications (2008)

    Google Scholar 

  71. Rabaey, J.: Wireless beyond the third generation-facing the energy challenge. In: Low Power Electronics and Design, Jan 2002

    Google Scholar 

  72. Rice, S.O.: Mathematical Analysis of Random Noise

    Google Scholar 

  73. RamRakhyani, A.K., Lazzi, G.: On the design of efficient multi-coil telemetry system for biomedical implants. IEEE Trans. Biomed. Circuits Syst. PP(99), 1 (2012)

    Google Scholar 

  74. Raghunathan, V., Schurgers, C., Park, S., Srivastava, M.B.: Energy-aware wireless microsensor networks. IEEE Signal Process. Mag. 19(2), 40–50 (2002)

    Article  Google Scholar 

  75. Sazonova, V.A.: A Tunable Carbon Nanotube Resonator (2006)

    Google Scholar 

  76. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Nat. Comput. Int. J. 7(4) (2008)

    Article  MathSciNet  Google Scholar 

  77. Shetty, R.P., Endy, D., Knight, T.F.: Engineering biobrick vectors from biobrick parts. J. Biol. Eng. 2, 5 (2008)

    Article  Google Scholar 

  78. Sidles, J.A.: Spin microscopy’s heritage, achievements, and prospects. Proc. Nat. Acad. Sci. USA 106(8), 2477–8 (2009)

    Article  Google Scholar 

  79. Stipe, B., Mamin, H., Stowe, T., Kenny, T., Rugar, D.: Magnetic dissipation and fluctuations in individual nanomagnets measured by ultrasensitive cantilever magnetometry. Phys. Rev. Lett. 86(13), 2874–2877 (2001)

    Article  Google Scholar 

  80. Shah, R.C., Rabaey, J.M.: Energy Aware Routing for Low Energy Ad Hoc Sensor Networks, vol. 1, pp. 350–355, Mar 2002

    Google Scholar 

  81. Schurgers, C., Raghunathan, V., Srivastava, M.B.: Power management for energy-aware communication systems. ACM Trans. Embed. Comput. Syst. 2(3), 431–447 (2003)

    Article  Google Scholar 

  82. Samanta, B., Yan, H., Fischer, N.O., Shi, J., Jerry, D.J., Rotello, V.M.: Protein-passivated fe3o4 nanoparticles: low toxicity and rapid heating for thermal therapy. J. Mater. Chem. 18(11), 1204 (2008)

    Article  Google Scholar 

  83. Sample, A.P., Yeager, D.J., Powledge, P.S., Mamishev, A.V., Smith, J.R.: Design of an rfid-based battery-free programmable sensing platform. IEEE Trans. Instrum. Measur. 57(11), 2608–2615 (2008)

    Article  Google Scholar 

  84. Takata, H., Kogure, O., Murase, K.: Matrix-addressed Liquid Crystal Displays, vol. 18, pp. 72 (1972)

    Google Scholar 

  85. Tanaka, K., Kenichiro, M., Takahashi, M., Ishii, T., Sasaki, S.: Development of bread board model for microwave power transmission experiment from space to ground using small scientific satellite. pp. 191–194, May 2012

    Google Scholar 

  86. Visser, H.J., Reniers, A.C.F., Theeuwes, J.A.C.: Ambient rf Energy Scavenging: Gsm and Wlan Power Density Measurements, pp. 721–724, Oct 2008

    Google Scholar 

  87. Wang, J.: Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis (2005)

    Google Scholar 

  88. Weinstein, R.: RFID: a technical overview and its application to the enterprise. IT Prof. 7(3), 27–33 (2005)

    Article  Google Scholar 

  89. Winklhofer, M., Kirschvink, J.L.: A quantitative assessment of torque-transducer models for magnetoreception. J. R. Soc. Interface 7, S273–S289 (2010)

    Google Scholar 

  90. Weiss, B.P., Kim, S.S., Kirschvink, J.L., Kopp, R.E., Sankaran, M., Kobayashi, A., Komeili, A.: Magnetic tests for magnetosome chains in martian meteorite alh84001. Proc. Nat. Acad. Sci. USA 101(22), 8281–8284 (2004)

    Article  Google Scholar 

  91. Wendt, T.M., Reindl, L.M.: Wake-Up Methods to Extend Battery Life Time of Wireless Sensor Nodes, pp. 1407–1412, May 2008

    Google Scholar 

  92. Yaghjian, A.: An overview of near-field antenna measurements. IEEE Trans. Antennas Propag. (1986)

    Google Scholar 

  93. Yoo, T.-W., Chang, K.: Theoretical and experimental development of 10 and 35 ghz rectennas. IEEE Trans. Microw. Theory Tech. 40(6), 1259–1266 (1992)

    Article  Google Scholar 

  94. Zahradka, K., Slade, D., Bailone, A., Sommer, S., Averbeck, D., Petranovic, M., Lindner, A.B., Radman, M.: Reassembly of shattered chromosomes in deinococcus radiodurans. Nature 443(7111), 569–573 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hooman Javaheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Javaheri, H., Noubir, G. (2019). Wireless Transfer of Energy Alongside Information in Wireless Sensor Networks. In: Ammari, H. (eds) Mission-Oriented Sensor Networks and Systems: Art and Science. Studies in Systems, Decision and Control, vol 164. Springer, Cham. https://doi.org/10.1007/978-3-319-92384-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92384-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92383-3

  • Online ISBN: 978-3-319-92384-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics