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Abstract—Many forms of programmable matter have been
proposed for various tasks. We use an abstract model of self-
organizing particle systems for programmable matter which
could be used for a variety of applications, including smart
paint and coating materials for engineering or programmable
cells for medical uses. Previous research using this model has
focused on shape formation and other spatial configuration
problems (e.g., coating and compression). In this work we study
foundational computational tasks that exceed the capabilities of
the individual constant size memory of a particle, such as im-
plementing a counter and matrix-vector multiplication. These
tasks represent new ways to use these self-organizing systems,
which, in conjunction with previous shape and configuration
work, make the systems useful for a wider variety of tasks. They
can also leverage the distributed and dynamic nature of the
self-organizing system to be more efficient and adaptable than
on traditional linear computing hardware. Finally, we demon-
strate applications of similar types of computations with self-
organizing systems to image processing, with implementations
of image color transformation and edge detection algorithms.

Keywords-self-organizing systems; programmable matter;
distributed algorithms; binary counter; matrix multiplication

I. INTRODUCTION

The concept of programmable matter was first defined by
Toffoli and Margolus as a computing medium which can
be used dynamically and in arbitrary amounts, controlled
by both internal and external events [1]. Examples of pro-
grammable matter exist in nature, such as proteins closing
wounds, bacteria building colonies, and the construction of
coral reefs. These examples indicate potential applications
of programmable matter, such as smart paint or coating
materials for engineering, programmable cells for medical
purposes, or adaptable and recyclable building blocks for
everyday objects. These applications require tasks for which
programmable matter is uniquely capable, such as shape
formation and coating. However, they also require compu-
tations resembling those done by traditional computers to
process information and make decisions. Work so far using
the geometric amoebot model for self-organizing particle
systems has focused on spatial configuration, including
demonstrating efficient programmable matter algorithms for
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shape formation, coating, and compression (e.g., [2], [3],
[4], [5]).

We introduce solutions using the amoebot model for basic
computational tasks exceeding the capabilities of a single
particle, including counting or number storage, and matrix-
vector multiplication. Basic constructions for computational
tasks can then be combined to solve more complex prob-
lems. However, many problems are structured in a way that
makes a more specialized approach much more efficient.
We describe and analyze a binary counter algorithm and
a matrix-vector multiplication algorithm using the amoebot
model. We also discuss applications of the matrix-vector
multiplication to image processing tasks, including color
transformations and edge detection.

A. Amoebot Model

In the amoebot model, we represent the particle system as
a subset of an infinite, undirected graph G = (V,E), where
V is the set of all possible positions a particle can occupy,
and E is the set of all possible transitions between positions
in V [4]. In the geometric amoebot model we impose an
underlying geometric structure for G in the form of the
equilateral triangular grid, as shown in Figure 1a. Each
particle occupies either a single node (i.e., it is contracted)
or a pair of two adjacent nodes (i.e., it is expanded) on
the graph, and each node can be occupied by at most one
particle at any point in time, as shown in Figure 1b. Two
distinct particles occupying adjacent nodes are connected
by a bond and we refer to such particles as neighbors. The
bonds ensure the particle system forms a connected structure
and are used for exchanging information.

A particle at position v ∈ V is anonymous, meaning it
has no globally unique identifier. A particle uses a labeling
function ` : E(v)→ N to identify its neighbors and differen-
tiate its possible bonds. Possible labelings for two nodes are
shown in Figure 1c. Particles may communicate with their
neighbors by reading and writing to their shared constant
sized memory, which can equivalently be considered as the
ability to pass a limited number of bounded-size tokens to
adjacent particles.

Particles move by asynchronously executing a series of
expansions and contractions. If a particle occupies only one
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Figure 1. (a) shows a section of G, where nodes of G are shown as
black circles. (b) shows five particles on G; the underlying graph G is
depicted as a gray mesh; a contracted particle is depicted as a single black
circle and an expanded particle is depicted as two black circles connected
by an edge. (c) depicts labeling of bonds for an expanded particle and a
contracted particle.

node, it is contracted and can expand to an unoccupied adja-
cent node. An expanded particle can then contract to occupy
only one of the two nodes it occupied while expanded.

We assume a compass-free model, meaning there is no
global sense of orientation shared by the particles, and we
assume that the particles do not share any underlying coor-
dinate system in G. In the case of the triangular grid, each
particle p fixes an arbitrary head direction, which specifies
an adjacent edge ehead to p. As shown in Figure 1, we
assume particles have shared chirality (sense of clockwise
direction) and so they can label their ports in a consistent
direction (note that in the presence of gravity, chirality
follows naturally). We assume they label their head and tail
ports from 0 to 5, starting in an arbitrary direction.

We assume an asynchronous, concurrent system of parti-
cles, where conflicts of movement (e.g., two particles trying
to expand into the same empty node location) or shared
memory (e.g., two adjacent particles trying to write con-
currently onto their shared memory) are resolved arbitrarily
so that at most one of the particles involved in the conflict
“wins”. Thus we can rely on the seminal results for the
classical asynchronous model in distributed computing (see,
e.g., [6]) that state that any asynchronous execution of the
system, where conflicts are resolved arbitrarily, produces an
equivalent outcome as a sequence of atomic particle acti-
vations. Hence, we can assume, without loss of generality,
that at most one particle is active at any point in time. Under
this model, we define:

Definition I.1. An asynchronous round is given by the
elapsed time until each particle has been activated at least
once.

In our context, when a particle is activated it can perform
an arbitrary bounded amount of computation using its local
memory and the shared memory of its neighbors, and at
most one movement.

B. Related Work

There are a number of existing solutions for pro-
grammable matter, which can be categorized as active and
passive systems. In passive systems, the computational units
have no ability to control their motion, so they move
and bond only based on their structure and environmental

conditions. Passive systems include DNA computing and
tile assembly models, in which computation occurs as a
result of tiles bonding together in ways controlled by the
tile attributes [7], [8], [9], [10]. Work on tile assembly
considers computational problems similar to those we study,
including demonstration of a binary counter [11]. However,
the specifications of those systems (passive motion, unlim-
ited supply of tiles of any type, etc.) differ considerably
from ours. Active systems consist of computational units
that control their actions, motions, and communications to
accomplish specific tasks. Applications of active systems,
including shape formation, coating, and compression, have
been explored using robotic implementations [12], [13],
[14], [15]. These applications have also been explored using
the amoebot model, which is an active system [2], [3], [4],
[5], [16].

Classical algorithms for distributed matrix multiplication
include Fox’s [17] and Cannon’s [18]. These divide matrices
into consecutive blocks to perform multiplication. More
recent algorithms, including the Scalable Universal Matrix
Multiplication Algorithm (SUMMA) [19] and Distribution-
Independent Matrix Multiplication Algorithm (DIMMA)
[20], further reduce the number of necessary operations. In
SUMMA, the matrix is divided into rows and columns of
blocks, and values are then broadcast down columns and
across rows. DIMMA improves on this by adding pipelining
to communication and taking advantage of a Least-Common
Multiple strategy to reduce computation requirements. Our
simpler algorithm for matrix-vector multiplication broad-
casts values down columns of the matrix in a way similar
to how values are broadcast in SUMMA and DIMMA.

In the field of computer vision and image processing,
matrix multiplication is used to apply operators for fun-
damental tasks including determining gradient (i.e. [21])
and measuring color invariants such as luminance [22].
Basic color transformations operators, such as adjustments to
brightness, saturation, and hue are also often used in image
editing [23].

An application of these image operators is edge detection,
which is an important problem due to its applications in
feature extraction and recognition. The edge detection algo-
rithm introduced by Canny uses a series of steps including
smoothing, filtering, and thresholding to extract edges from
an image [24]. Research has been done into how to im-
plement this method efficiently, including a distributed GPU
implementation [25] and other real-time methods using field-
programmable gate arrays [26] and adaptive thresholding for
improved accuracy [27].

Color transformations have also been combined with gra-
dient operators (including those used in edge detection) for
assessing feature similarity [28] and quality of images [29].
Other applications of color transformations include feature
detection and analysis, particularly for human faces [30].



C. Our Contributions

We address the very basic and general problems of
counting and matrix-vector multiplication. We describe the
image processing applications of edge detection and color
transformations, as examples of applications that can use
and benefit from our matrix-vector and matrix-matrix multi-
plication setup and algorithms. We assume each instance of
these problems is fed into our particle system as a sequence
of values passed through a seed particle. Results are stored
distributed across the system, and can be output by each
particle individually or passed to the seed to output the result
as a data stream.

We present an algorithm for a basic binary counter using
the amoebot model, and show that it counts to a value v
in O(v) asynchronous rounds. We also present a two-part
algorithm for matrix-vector multiplication using the amoebot
model. The first part of the algorithm is to self-organize
particles to set up the input matrix and vector and the
resulting vector entries. The second part of the algorithm
distributedly performs the actual multiplication (note that
these two algorithmic components run concurrently and
there is no need for synchronization). Let h and w denote the
number of rows and columns of the matrix (unknown to the
set of particles). We show that the number of asynchronous
rounds it takes to set up the matrix and vector entries
is O(hw) and the number of rounds required for matrix-
vector multiplication is O(h+ w). Extending this result by
executing a sequence of matrix-vector multiplications, the
number of rounds required for matrix-matrix multiplication
is O(y(h + w)) with a second matrix of height w and
width y. We describe and analyze a simple implementa-
tion of Canny edge detection in image processing, which
utilizes the setup algorithm introduced for matrix-vector
multiplication. We show this implementation requires O(1)
rounds to complete edge detection after the O(hw) setup
is completed (again no synchronization between these two
algorithmic phases is needed). Finally, we describe the
image processing application of color transformation, which
is setup in the same way with O(hw) rounds and then
requires O(y(h+w)) rounds for multiplication. We provide
also experimental results on actual implementations of the
Canny edge detection algorithm and the color transformation
algorithm we consider.

II. PRELIMINARIES

In each of the problems considered here, we categorized
particles as being either in the structure built for the opera-
tion or as free particles.

Definition II.1. At any point during the execution of the
algorithm the structure refers to the set of particles recruited
for use in some operations and assigned a specific role and
position for that operation. They are in one of the states
{seed, matrix, vector, counter, prestop, result}.

Definition II.2. At any point during the execution of the
algorithm, the set of free particles consists of those particles
that are not yet assigned a specific purpose. They are in one
of the states {leader, follower, inactive}.

Free particles may eventually become part of the structure
or remain available for other uses. As free particles they
actively move to make themselves available to extend the
structure if needed, but may continue moving indefinitely
if they are not recruited. Particle states are defined as the
corresponding algorithms are presented in Sections III, IV,
and V.

Tokens are small structures (of constant size) of data
which are held by exactly one particle at a time during their
existence. Respecting the particles’ memory constraints,
each particle holds at most a constant number of tokens at
any time. Configurations and schedules are defined for a set
of particles and will be used to analyze the progress of the
entire system toward the final goal.

Definition II.3. A configuration of the particle system at
a point in time consists of the set of state variables Pj for
each particle j, including position, current state, and tokens
held.

We use pC(t) to describe the position of token t at
configuration C: If particle j holds t in configuration C,
then pC(t) = j (ownership of t is indicated in Pj). Tokens
travel through a predefined sequence of nodes, regardless of
which particles occupy those nodes during the execution of
the algorithm.

Definition II.4. A token path of length m is a set of particles
Pk1

, Pk2
, ..., Pkm

such that Pkl
is adjacent to Pkl+1

and one
or more tokens travel from Pkx to Pky passing through only
particles in the path for some x, y with 1 ≤ x < y ≤ m.

We consider a configuration C to be valid if the system
is connected (including both the structure and free particle
set) and each particle is either contracted or expanded into
adjacent positions with no single position occupied by two
particles. When clear from context, we will refer to the
particle j and Pj indistinctly.

In an asynchronous execution, the system progresses
through a sequence of asynchronous rounds (Definition I.1).
When a particle Pj is activated during an asynchronous
round, if it holds a token t it can pass t to any neighbor
which has available token capacity at the time of the current
activation of Pj .

III. BINARY PARTICLE COUNTER ALGORITHM

The first computational application of the amoebot model
we analyze is a binary counter. The binary counter we
describe here will also be used as a primitive for the matrix-
vector multiplication algorithm presented in Section IV.
In this implementation, the system contains only the seed



particle and a set of initially inactive particles, already
forming a line with the seed at the end at round 0.1 We
denote the non-seed particles P0, ..., Pn−1 such that P0 is
a neighbor of the seed and labeling follows the line of
particles moving away from the seed. Each non-seed particle
represents a digit of the counter, with the particle in line
closest to the seed representing the least significant bit
of the counter. The value of the system as a whole can
then be calculated using the state of each digit particle
to determine the value it represents. In this analysis we
consider both the number of tokens held by a particle
Pj , denoted Pj .count, and a display property the particle
computes based on state, denoted Pj .display. Each Pj with
j < n− 1 receives tokens only from Pj−1 (or S if j = 0).
The method Pj .tokenAvailable() returns true if there is
a token in the shared memory for Pj and Pj−1. If such
a token exists, the method Pj .takeToken() allows Pj to
pick it up. The method Pj .canSendToken() determines if
Pj’s shared memory with Pj+1 has space available. If so,
Pj .sendToken() allows Pj to put a token in shared memory
with Pj+1. Finally, Pj .discardToken() removes the token
from memory completely. As described in Algorithm 1,
when Pj reaches its token capacity, here defined as two,
it discards one token (Pj .discardToken()) and attempts
to send the other, representing a carryover, to Pj+1, using
Pj .sendToken() (conditional on Pj .canSendToken()).

Algorithm 1 Binary Counter Particle P
1: procedure BINARYCOUNTER
2: if P.count < 2 and P.tokenAvailable() then
3: P.takeToken()
4: P.display = 1− P.display
5: P.count = P.count+ 1

6: if P.count = 2 and P.canSendToken() = true
then

7: P.sendToken()
8: P.discardToken()
9: P.count = 0

The seed behaves as an interface to the counter, as
described in Algorithm 2. It receives activations from an
external source to increment the counter, upon which it con-
structs new tokens and sends those to P0 if there is space in
the shared memory with P0, i.e. when S.canSendToken()
returns true.

1If a line of particles is not readily available, one can easily build
one following the algorithm presented in [4] concurrently with the binary
counting procedure – i.e., there is no need for synchronization of the phases,
as it happens in the matrix-vector multiplication algorithm presented below.

Algorithm 2 Binary Counter Seed Particle S
1: procedure BINARYCOUNTERSEEDACTIVATED
2: if P.canSendToken() = true then
3: Create new token t
4: S.sendToken()

A. Parallel Schedules

All of our algorithms, presented in Sections III, IV, and V,
follow an asynchronous execution. However, for the analyses
of these algorithms, we considered executions according
to parallel schedules, since those are easier to handle and
will provide a worst-case scenario in terms of number of
rounds for asynchronous schedules. In a parallel execution,
the system progresses through a sequence of parallel rounds.

Definition III.1. During one parallel round starting with
configuration C and resulting in configuration C∗, one of
the following is true for each particle p:

1) p occupies the same node(s) in C and C∗,
2) p occupies one node in C and expands to an additional

adjacent node during the round,
3) p occupies two adjacent nodes in C and contracts to a

single node during the round, leaving the other node
empty in C∗, or

4) p occupies two adjacent nodes in C and contracts in
a handover such that in C∗ a different particle has
expanded into one of the nodes p occupied in C.

Additionally, for each token t, let Pk be such that k = pC(t).
Then at the end of the parallel round one of the following
is true:

1) pC∗(t) = pC(t),
2) if a particle Pk′ adjacent to Pk is below capacity in

C, pC∗(t) = k′, or
3) if there is a token path length d (labeled as particles

Pk1 , ..., Pkd
), for each 1 ≤ l ≤ d− 1 the particle Pkl

in the path has a token tl (such that t = tl for some l)
which needs to move to Pkl+1

, and Pkl
has available

token capacity, then pC∗(tl) = pC(tl) + 1 for each
1 ≤ l ≤ d− 1.

Definition III.2. A movement schedule (C0, C1, ...Cf ) is a
parallel schedule if each Ci is a valid configuration and for
each i ≥ 0, Ci+1 is reached from Ci in exactly one parallel
round.

In asynchronous execution, the system progresses through
a sequence of particle activations, meaning only one particle
is active at a time. When activated, a particle can perform an
arbitrary bounded amount of computation (including passing
tokens) and make at most one movement. An asynchronous
round is the elapsed time until each particle has been
activated at least once. When a particle P is activated, if
it holds a token t it can pass t to any neighbor which has



available token capacity at the time of the current activation
of P .

Definition III.3. A movement schedule (C0, C1, ...Cf ) is
an asynchronous schedule if each Ci is a valid configuration
and for each i ≥ 0, Ci+1 is reached from Ci by execution
of one asynchronous round.

B. Runtime Analysis

In this section we provide a brief, high-level sketch of
the proof that shows that a counter with n particles can
count to v (where v ≤ 2n − 1) in Θ(v) asynchronous
rounds (the proofs and more details can be found in the
Appendix). Our proof relies on a dominance argument of
parallel schedules by asynchronous executions, in terms of
the number of rounds needed to complete the algorithm.

Lemma III.1. For any asynchronous particle activation
sequence A, there exists a parallel schedule P such that
the number of asynchronous rounds needed by the binary
counter algorithm according to A is at most equal to
the number of parallel rounds required by the algorithm
following P .

We can then count the total number of bit flips that occur
in the counter to get the result:

Lemma III.2. The parallel binary counter algorithm counts
to the value v in O(v) parallel rounds.

Combining these two results, we get:

Theorem III.3. The asynchronous binary counter counts to
the value v in Θ(v) asynchronous rounds.

IV. PARTICLE MATRIX MULTIPLICATION ALGORITHM

The next computational problem we solve using the
amoebot model is matrix-vector multiplication. As before,
the seed acts as a source of external input into the system.
We suppose the system is initially unaware of the dimensions
or values of the matrix and vector to be multiplied, so
they will enter the system through the seed particle. The
stream of information entering the system from the seed
can contain values of matrix or vector entries (we assume
each fits on a single particle), end of column markers,
and end of vector markers. The seed particle at no point
computes the dimensions of the problem since it receives
values online in sequence from an external source. The seed
then passes values, encapsulated in tokens, into the system
as the algorithm proceeds.

Let A be a h×w matrix and ~x be a w×1 vector for some
nonzero integers h and w. The result of the matrix vector
multiplication A~x is then ~b, which is stored using a set of
counters described in Section IV-A. The problem is streamed
into the system in the order: values for each matrix column
from top to bottom, left to right, followed by the values of
~x ordered from top to bottom. As vector values reach their

final positions, vector particles also generate result counter
tokens, which are passed along to determine how many
particles should position themselves to store the results of the
multiplication. As shown in Figure 2a., particles assigned to
represent values of ~x are positioned across the top of those
representing matrix A, such that the line of matrix particles
directly below a vector particle is the corresponding matrix
column. The vector value is then passed down the column
and used by each matrix particle it reaches to produce an
individual product. Products are then passed across the row
of matrix columns to where the set of result particles are
positioned to store the product totals.

This algorithm can also be extended to complete matrix-
matrix multiplication. To multiply matrices A and C, the
setup is the same as before but with the first column of C,
~c0 replacing the vector ~x. If C has a width of y, after each
column ~ci is multiplied by A, for i < y, we add a new set of
results particles to store the vector ~bi. Thus the entire result
matrix B can be stored as series of vectors ~b0,~b1, ...,~by−1,
as shown in Figure 2b.

Figure 2. a.) General matrix-vector multiplication A~x setup for h × w
matrix A and w×1 vector ~x. b.) General matrix-matrix multiplication AC
for h×w matrix A and w×y matrix C. Shown during final matrix-vector
multiplication A~cy−1.

The matrix, vector, and result particles do not know
their indices relative to the whole system but can orient
themselves such that they know which direction is across
the matrix row and which direction is down the matrix
column. To multiply a matrix by multiple vectors in a
stream, this setup only needs to be executed once. If a
finished notification is sent to the seed after each matrix-
vector multiplication completes, an additional vector can be
used without any changes to the matrix.

A. Description and Correctness

We refine the notation of a configuration from Section II
to specify the particles’ functions in the final system. Let
Ci = (M0,0,M0,1...M0,w−1,M1,0...Mh−1,w−1,
R0,0, R0,1, ..., R0,w′ , ...R1,0...Rh,w′ , V0, V1...Vw−1)
be the configuration at round i where Mu,v is the config-
uration of the particle which will eventually be the matrix
particle at position (u, v), Ru,q will be a result particle at
position (u, q) in the results matrix, and Vv is the vector
particle at index v in vector ~x. Let c be the token capacity
of matrix, vector and result particles, and let m be the
maximum value of a matrix or vector entry. We then use



w′ to denote the number of columns of results particles
constructed, so 0 ≤ u < h, 0 ≤ v < w, and 0 ≤ q < w′.
Enough result columns are constructed to hold the maximum
possible number of tokens generated, so w′ = dlogc(m

2w)e.
Finally, we denote the minimum number of particles neces-
sary to complete setup as n′, so n′ = hw+w+ hw′. Since
particles are given tasks on a first-come, first-serve basis,
particles that remain free particles throughout execution
do not have any effect on the correctness of the system.
Particles are categorized in configurations based on their
final location, but are all initially free particles and begin
by executing the spanning forest algorithm in [4], making
their initial states leaders and followers (for completeness,
we present the spanning forest algorithm in Appendix A).

Tokens travel in a predetermined direction in the set of
matrix, vector, and result particles. For clarity, we extend
the range of the position function p(t) for token t to be
ordered pairs representing position in a two-dimensional
arrangement of system particles.

Particles are recruited to the system from a set of
unassigned particles, the free particles, whose motion is
determined by a spanning forest algorithm. The only particle
not initially a free particle is the seed which is described
in Appendix B. Recruited particles then hold the streamed
values and become fixed in a position for the matrix and
vector, and later for the results. This is done by setting
flags from the seed, vector, and matrix particles which
point to where a new particle is needed, so a free particle
will become part of the structure when one of these flags
points to it. Result particles are similarly recruited by setting
flags to point to where a particle may be needed based
on the maximum possible values of the matrix and vector,
but result particles have the option to leave the structure
after multiplication has completed if they are not needed to
represent the result.

Figure 3a. conceptually shows a system in the
process of executing the setup algorithm. At the
depicted point in time, each of the matrix values
m0,0,m1,0...mh,0,m0,1, ....mu−1,v has been streamed into
the system through the seed, and assigned to a corresponding
particle by passing matrix tokens (squares labeled t) into
the structure. For example, the value m0,0 is assigned to
particle M0,0 at the upper left corner of the matrix. Note
that any notions of “up/down” and “left/right” are relative
to the orientation passed to the system from the seed particle,
and do not assume any absolute orientation of the system.
The next value to be added to the matrix, mu,v is shown at
the head of the stream of values entering the seed particle.
It will then be passed across the row of vector particles
(V0, ...Vv) to the furthest particle, Vv , that has been recruited
so far. That vector particle, Vv , will then pass mu,v down
the column M0,v, ...Mu−1,v . The particle Mu−1,v is then
responsible for recruiting a new matrix particle from the set
of free particles (not shown) to be Mu,v and hold the value

a.)

b.)

Figure 3. Diagram of system setup and notation used. Shapes labeled
Vv ,Mu,v , or Ru,q are particles and small squares/circles labeled t are
tokens, colored and shaped based on their final destination. Free particles
are not shown.

mu,v . This process will continue until the last column is
completed.

The last part of the value stream, shown in the left half
of the stream entering the seed in Figure 3a., is the set
of vector values. Vector values are assigned to the first
vector particle they reach which does not yet have a value.
As each vector value is assigned, a result counter token is
generated and passed down the vector away from the seed.
In Figure 3b. these are the circular tokens which are passed
from Vw−1 to R0,0 such that R0,0, R1,0, ... acts as a counter.
When the farthest vector particle receives or generates result
counter tokens it begins to recruit particles to start forming
the result segment of the structure. When using multiple
matrix-vector multiplications to perform a matrix-matrix
multiplication, the existing result particles at the end of each
matrix-vector product stop performing operations other than
passing tokens. Then new sets of result particles are recruited



Figure 4. a.) Setup of first matrix particle M0,0 in worst case. b.) Setup
of second matrix particle column. c.) Setup of third matrix particle column,
generalizes to all subsequent columns. d.) Setup of result particle columns.
(Lemma IV.3)

for each matrix-vector multiplication in the sequence. Note
that all phases of the algorithm are running concurrently,
and there is no synchronization between phases. In order to
prove the correctness and runtime of our algorithm, we will
show that the different phases of our algorithm eventually
correctly terminate in order.

Once the first end of vector marker, f0 is received by
the seed, setup will be completed. Figure 4 shows the setup
process, including the initial movement of free particles, on
the actual amoebot model. When setup is finished, the mul-
tiplication can be executed. The matrix-vector multiplication
can be summarized by the following steps:

1) each vector particle Vu passes its value vu in a token
to matrix particle Mu,0, i.e. directly downward,

2) each matrix particle Mu,v with value mu,v computes
the product mu,v · vu,

3) Mu,v passes the vector value vu to Mu,v+1 (if Mu,v+1

exists) so the vector value continues to move down the
column,

4) Mu,v passes a total of mu,v · vu result counter tokens
to Mu,v+1 (or Ru,0 if Mu,v+1 does not exist), i.e. to
the right across the row, and

5) each result particle Ru,v accepts result counter tokens
until at capacity, and then clears its counter and passes
a carry over token to Ru+1,v (executing Algorithm 1
relative to its row of result particles).

Once multiplication has completed, the excess particles
recruited to be result particles can be released back to
being free, so that the final system configuration is minimal.
Detailed pseudocode descriptions of the algorithms can be
found in Appendix B and a proof of the following theorem
appears in Appendix D. Snapshots of an implementation run
of our algorithm appear in Figure 4.

Theorem IV.1. The streaming setup model successfully
completes with the values in the correct locations as long as
the system contains enough particles.

B. Runtime Analysis

Similarly to the binary counter case, to show bounds on
the runtime of the matrix multiplication system, we show
bounds for a parallel schedule (defined in Section III.2)
and that such a parallel schedule is dominated by the
asynchronous schedule. For comparisons of progress in a
system, we look at how close particles and tokens are to
their final position nodes of the graph. We give a high-level
sketch of the proof here; please see Appendix D for the full
proof.

For matrix value tokens, final position is the particle in
the factor matrix corresponding to the value. For vector
value tokens final position is the bottom matrix particle in
the column under the vector particle corresponding to their
value. For product tokens final position is in the counter
representing the value of the result vector corresponding to
the matrix row in which the product token originated. For
the matrix multiplication problem, define the operator �M

between configurations to roughly mean that C �M C ′ if
and only if tokens and particles are further along their paths
towards their final destination in C’ than in C. Using this
comparison operator, we show:

Lemma IV.2. For any asynchronous particle activation
sequence A, there exists a parallel schedule P such that the
number of asynchronous rounds needed by the matrix-vector
multiplication algorithm according to A is at most equal
to the number of parallel rounds required by the algorithm
following P .

In this section we first consider the setup phase of the
matrix-vector multiplication, in which particles move from
initial spanning tree configurations to the structure configu-
ration consisting of matrix, vector, and result particles
as previously described. Setup also includes the passing
of tokens corresponding to matrix and vector values, but



not the passing of tokens corresponding to products of
these values. To show that system setup completes in O(n′)
parallel rounds, we first show that our modified spanning tree
primitive supplies particles to construction as necessary, so
that we have:

Lemma IV.3. Each matrix and result particle column takes
O(h) rounds to fill with particles in the parallel execution.

Then with w + w′ = O(w) columns which need to be
filled, we can show:

Theorem IV.4. The parallel matrix system setup completes
in O(n′) rounds.

Theorem IV.5. The streaming matrix system setup com-
pletes in Θ(n′) rounds.

We next consider the actual matrix-vector multiplication
process. Multiplication is initiated by each vector particle
sending a token representing the value corresponding to its
position down the column of the matrix, such that it is
seen by the matrix particle at each position which directly
multiplies with that vector value. The amount of computation
for the multiplication step is bounded by the time for tokens
to travel down matrix columns and across matrix and result
rows, so we have:

Lemma IV.6. The parallel matrix-vector multiplier com-
pletes in O(h+ w) rounds.

Theorem IV.7. The asynchronous matrix-vector multiplier
completes calculations in Θ(h+ w) rounds.

Theorem IV.8. The asynchronous matrix-matrix multiplier
completes calculations in Θ(y(h+ w)) rounds.

V. IMAGE PROCESSING APPLICATIONS

Both the setup and multiplication steps of the matrix-
vector multiplication algorithm can be used in image pro-
cessing applications. Individual particles can be assigned to
store individual pixels or small grids of pixels of an image,
and their proximity to particles holding the corresponding
adjacent pixels makes a number of localized image pro-
cessing algorithms highly efficient. In this section we first
discuss using the amoebot model to execute the Canny edge
detection algorithm on a single channel image, meaning
with a single scalar value for each pixel. Pixel values are
streamed into the system and a grid is established in the same
way as in matrix-vector multiplication setup (Section IV-A),
but without the requirement of result particles. Image pixel
values are streamed as matrix values, so that the matrix
particles store the image and independently start to execute
the algorithm as soon as they receive a value. We next
discuss how to use the amoebot model to execute image
color transformations that use matrix-matrix multiplications.
In this application, the image is represented as a matrix with
entries corresponding to each color component of each pixel.

A series of matrix-vector multiplications is then executed to
complete color transformation.

A. Canny Edge Detection

Canny edge detection uses the Sobel operator, after ini-
tially applying Gaussian filtering, and then performs non-
maximum suppression and hysteresis thresholding. The So-
bel operator applies the matrix convolution operation to
two 3 × 3 kernels with the original image to approximate
horizontal and vertical derivatives. The resulting values at
each point are then combined and used to calculate the
direction of the gradient, as described in Algorithm 3. This
means each particle Pj compares its own gradient magnitude
Pj .G with those of its two neighbors in the positive and
negative directions determined by the angle of the gradient,
Pj .θ. If Pj is not the local maximum on the gradient it
not considered to potentially be part of an edge. Thresholds
are then used to select particles with gradient values in a
particular range. These particles, plus any local maxima
particles in the neighborhood of those in the range, are
considered to be the edge set.

We setup the image as a matrix using the algorithms
defined in Section IV-A. Each step of edge detection requires
particles to have information from other particles but only
within a constant distance, so we have:

Theorem V.1. Edge detection will complete in constant time
after image setup.

B. Color Transformations

For color transformations, each pixel in the input image
must be described in terms of the three color values. In
this application, the input matrix has a row corresponding
to each pixel of the original image and three columns
corresponding to red, green, and blue. The transformation
matrix is then streamed into the system as a sequence of
vectors, each of which is multiplied by the matrix. The
values in the transformation matrix determine the operation,
such as filtering or saturation changes.

VI. SIMULATION RESULTS

As expected, Figure 5a. shows that the number of rounds
required for the binary counter to reach a value v increases
linearly with v. The results shown are each for a set of
10 particles arranged in a line before the system begins to
execute. Value counted is the number of distinct counter
tokens fed into the system by the seed particle.

For matrix-vector multiplication, the experiments in Fig-
ure 5b. show an approximately linear increase in the number
of rounds for system setup and execution as the number of
particles for the matrix-vector structure, n′, increases.

In Figure 5c. we show two examples of edge detection on
small images. The implementation uses only a 3×3 Gaussian
kernel created with a value of σ = 1 for blurring. It also
discards an outer boundary at each step rather than using an



Algorithm 3 Pixel Particle P
P.pixelV alue = pixel value as read from the image

Label grid values around particle P as

g2 g1 g0
g3 P g7
g4 g5 g6


P.gridvalues[8] = {g0, g1, ...g7} are pixel values of the
8 surrounding particles on a grid
P.G= gradient magnitude
P.θ = gradient direction
P.edgeCertainty ∈ {Sure, SureNeighbor,No}
procedure SOBEL

Gather P.gridvalues directly or by querying neigh-
bors

Gx = Kx ∗ P.gridvalues
Gy = Ky ∗ P.gridvalues
P.G =

√
G2

x +G2
y

P.θ = atan(
Gx

Gy
)

procedure CANNYEDGEDETECT
Gather P.gridvalues directly or by querying neigh-

bors
P.pixelV alue = KG ∗ P.gridvalues
P.noiseF inished = true
Update P.gridvalues after each has

P.noiseF inished = true
Execute procedure SOBEL
Switch on angle, compare to appropriate neighbors

to determine if maximum
if minThreshold < P.G < maxThreshold then

P.certainty = Sure
else if P has neighbor N with N.certainty = Sure

then
P.certainty = SureNeighbor

else
P.certainty = No

inference method to fill in nonexistent values around edge
pixels, so the images are padded with borders of zero-value
pixels before inputted into the system. Figure 5c. shows the
results of edge detection in a simple 10 × 10 shape and a
more complex 16×16 image of a coin. Only the red values
from the RGB information in the coin image were used.

Figure 5d. shows the results of color transformations by
multiplying an image matrix by a 3× 3 operator. The upper
right example shows increased saturation, the bottom left
shows conversion to grayscale, and the lower right shows
color filtering.

VII. DISCUSSION

We have described basic computational algorithms that
can be used in much larger computing applications. Due
to the limitations of the system receiving input through a

Figure 5. a.) Number of asynchronous rounds per value of v counted
in the binary counter; b.) number of asynchronous rounds per vector
dimension in matrix-vector multiplication; c.) edge detection results; d.)
color transformation results

seed particle, the binary counter requires Θ(v) asynchronous
rounds to count to a value of v. The setup of the matrix-
vector multiplication system is similarly limited by the
input and time to assemble the structure of particles, so
it requires Θ(n′) rounds to setup the n′ particles used to
represent the matrix, vector, and the vector of the product.
However, the actual matrix-vector multiplication operations
benefit from the parallelism of the system and each matrix-
vector multiplication requires only Θ(h+w) asynchronous
rounds (recall that h is the matrix height and w is the
matrix width). This is especially beneficial for a matrix-
matrix multiplication which requires only one execution of
the setup algorithm (excluding the setup of additional results
particles) to multiply an input matrix by each column of the
other input matrix.

Possible improvements on the setup time limitation to
the efficiency could include using more particles than will
actually be needed to more quickly approximate the structure
for the system. For instance, it may be useful to apply com-
pression, as defined by [31] to be minimizing the outermost
perimeter of the configuration of particles. If a compression
algorithm produced a particle configuration that contained
the necessary structure for one of our algorithms, it may be
more efficient to execute compression and then select the
useful structure as a subset of the compressed system.



There are many other applications that could use our basic
counting and matrix multiplication algorithms and setup in
a programmable matter context.
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APPENDIX

A. Spanning Forest Primitive

The spanning forest primitive is used at the beginning of
system execution to organize particles into a spanning forest
F, which defines how particles can move while preserving
connectivity. At round 0, particles are idle, except the seed
particle.

Algorithm 4 Spanning Forest Primitive
Define the structure as the set of particles whose state is
in { seed,matrix,vector,prestop,result} (Section II)
A particle P acts depending on its state:
idle: If P is adjacent to the structure, it becomes a leader
particle. If a neighbor P ′ is a leader or a follower, P
sets the flag P.parent to the label of the port to P ′

and becomes a follower. If none of the above applies,
P remains idle.
follower: If P is contracted and adjacent to the structure
then P becomes a leader particle. If P is contracted and
has an expanded parent, then P initiates a handover
motion; otherwise, if P is expanded, it considers the
following two cases: (i) if P has a contracted child
particle q, then P initiates handover motion; (ii) if P
has no children and no idle neighbor, then P contracts.
leader: Particle P will expand when possible to move
around the perimeter of the structure in the counterclock-
wise direction, until reaching a position to become a
member of the structure (Algorithm 5).

B. Matrix-Vector Multiplication Pseudocode

Algorithm 5 Free Particle P
P.neighbors = neighbor set
P.state ∈ {Leader, Prestop, V ector,Matrix,Result},
state of the particle
procedure JOINSTRUCTURE

if P.position will eventually be a structure position
then

p.state = Prestop

if N ∈ P.neighbor with N.vectorF lag pointing to
P then

P.state = V ector
if N ∈ P.neighbor with N.matrixF lag pointing

to P then
P.state = Matrix

if N ∈ P.neighbor with N.resultF lag pointing to
P then

P.state = Result

Algorithm 6 Seed Particle S
S.mode ∈ {matrix, vector, none}, current type of
value being passed from stream
S.right = neighbor to right (across row)
procedure SEEDPARTICLESETUP

S.mode = matrix
switch Type of value v received do

case streamV alue
if S.mode = matrix then

mvToken = new matrixV alueToken
mvToken.value = v
if S.right exists then

send mvToken to S.right
else

set vectorF lag to right
when particle stops at flag such that

S.right exists, pass mvToken to S.right
if S.mode = vector then

vvToken = new vectorV alueToken
vvToken.value = v
Pass vvToken to S.right

case endOfColumn
eocToken = new endOfColumnToken
send eocToken to S.right

case endOfMatrix
mode = vector

case endOfV ector
mode = none
sToken = new startMultiplicationToken
send sToken to S.right

Algorithm 7 Matrix Particle M
M.down = neighbor below (down column)
M.value = value of matrix at location
M.right = neighbor to right (across row)
procedure MATRIXPARTICLESETUP

M.value = null
if receive matrixValueToken t with value m then

if M.value = null then
M.value = m

else
if M.down exists then

pass t to M.down
else

set matrixF lag down
when particle stops at flag such that

M.down exists, pass t to M.down

if receive vectorV alueToken with value v then
create v instances of productToken
while M.right has available space and M has a

productToken do
pass a productToken to M.right



Algorithm 8 Vector Particle V
V.right = neighbor to right (across row)
V.right′ = neighbor to right plus one rotation clockwise
V.down = neighbor below (down column)
V.value = value of vector at location
V.columnFinished = when true, send values across to
other columns instead of down
procedure VECTORPARTICLESETUP

V.value = null
switch Type of token t received do

case vectorV alueToken with value v
if V.value = null then

V.value = v
pass t to V.Down
create resultCounterToken and pass it

to V.right
else

pass t to V.Right
case matrixV alueToken

if V.columnFinished = false then
if V.down exists then

pass t to V.down
else

set matrixF lag downward
when particle stops at flag such that

V.down exists, pass t to V.down
else

if V.right exists then
pass t to V.right

else
set vectorF lag to right
when particle stops at flag such that

V.right exists, pass t to V.right
case resultCounterToken

if V.right exists then
pass t to V.right

else if V.right′ exists then
pass t to V.right′

else
set resultF lag to right+ 1 direction
when particle stops at flag such that

V.right′ exists, pass t to V.right′

case EndOfColumnToken
if V.columnFinished = false then

V.columnFinished = true
else

pass t to V.right

Algorithm 9 Result Particle R
R.value = 0
R.right = neighbor to right (across row)
R.down = neighbor below (down column)
maxV alue = maximum value a particle can hold
before a carryover is needed
resultRowCounterV alue = used for
resultCounterTokens to recruit logw result columns
procedure RESULTPARTICLE

if receive totalToken then
R.value+ +

if R.value = maxV alue then
tToken = new totalToken
if R.right does not exist then

set resultsF lag to right
when particle stops at flag such that R.right

exists, pass tToken to R.right
else if R.right.value < maxV alue then

pass totalToken to R.right
R.value = 0

if Receive resultCounterToken then
resultRowCounterV alue+ +
if resultRowCounterV alue = maxV alue

then
R.resultRowCounterV alue = 0
pass a new resultCounterToken to

R.right



C. Proofs of Section III-B

Proof: [Lemma III.1] We prove by induction on
rounds. Let (C ′0, C

′
1, ...C

′
f ) be an asynchronous movement

schedule (Definition III.3) and let (C0, C1, ...Cf ) be
a parallel movement schedule such that C0 = C ′0
(Definition III.2). For the base case, both schedules start
in the same configuration, i.e. C0 = C ′0, so the parallel
version is dominated. Suppose Ci is the configuration after
round i of the parallel schedule and C ′i is the configuration
after i rounds of the asynchronous schedule, and assume
Ci−1 �B C ′i−1. For Ci � C ′i to happen, there would
have to be a carryover that moves forward in the parallel
schedule but does not move in the asynchronous schedule.
Consider a carryover t with pCi−1

(t) = j.

Case 1: Suppose pC′i−1
(t) 6= j. Since C ′i−1 �B Ci−1,

we have pC′i−1
(t) > j. Since t can move at most one

position forward in the parallel schedule in one round,
pC′i(t) ≥ pCi

(t), and Ci �B C ′i.

Case 2: Otherwise, suppose pC′i−1
(t) = j. Then t

will only move forward if another carryover is handed
to t’s current particle. If Pj does not receive such a new
carryover in C ′i, it must be that Pj−1 was not holding two
carryovers in C ′i−1, so Pj−1 is not currently executing
sendToken(). Then since Ci−1 �B C ′i−1, Pj−1 can not
have two carryovers in Ci−1, because if it had two, one
would be farther forward than in C ′i−1. Thus Pj−1 is also
not currently executing sendToken(). Then there is no
way Pj can receive a new carryover, so the state of Pj

remains the same in Ci and C ′i from the previous round, so
Ci �B C ′i.

Note that it is also possible for the asynchronous schedule
to make greater progress than the parallel version. If particle
PN+1 is not activated until after the particles P0, P1, ...PN

are activated in the same order repeatedly, a carryover can
move up to N distance in a single asynchronous round.

Proof: [Lemma III.2] Since a displayed bit is flipped
(Pj .display is changed for some j) every time a carryover is
moved, if a carryover moves at every round where Ci 6= Cf ,
we can apply amortized analysis in terms of displayed bit
flips only.
Consider a configuration Ci 6= Cf . Then of the carryovers
not in their final position, there is token t held by the particle
with highest index; let pCi

(t) = j. Then consider Pj+1:
since every carryover held by a particle Pk with k > j is in
its final position, there cannot be two carryover tokens held
by Pj+1, so in configuration Ci+1, particle Pj+1 can accept
t; thus a carryover has moved and a bit has flipped from Ci

to Ci+1.
P0 flips its displayed bit once per each parallel round, P1

flips every other parallel round; for j = 0, 1...dlog ve, the

particle Pj flips the displayed bit d v
2j e times when counting

to the value v (i.e. processing v carryovers to their final
positions), and Pj for j > dlog ve does not ever flip. Then
the total number of flips, and thus carryover movements, is:

blog vc∑
j=0

b v
2j
c < v

∞∑
j=0

1

2j
= 2v

so the algorithm runs in O(v) parallel rounds.

Proof: [Theorem III.3] By Lemma III.1, after any
given number of rounds the asynchronous counter will be at
least as close to finished as the parallel counter. By Lemma
III.2 the parallel counter counts to v in O(v) rounds and so
the asynchronous counter does as well.
The counter receives v carryovers originating at the seed
particle, S. To reach the final configuration Cf , each carry-
over must be created and handed off to particle P0. Since S
and P0 can perform at most one token handoff per round,
the O(v) bound cannot be improved and the asynchronous
counter completes in Θ(v) rounds.

D. Proofs of SectionIV-B

Proof: [Theorem IV.1]
It can be shown by induction that each value reaches

the correct position for the system to be executed. For
the base case, consider the first value the seed receives,
m0,0. Following Algorithm 6, the seed particle sets the
vectorF lag in the direction toward where the vector will
be built. Since free particles move along the perimeter of
the structure, a free particle is eventually in the position
pointed to by the seed’s vectorF lag, and thus stops and
becomes a vector particle. Upon receiving the matrix value
m0,0, by Algorithm 8, the first vector particle will set the
matrixF lag pointing in the direction to build the column
(determined relative to the position of the seed), and a free
particle will eventually stop at position M0,0. When the
vector particle passes the value to that matrix particle, m0,0

has reached its correct position, M0,0.
Consider a matrix value mu,v (with (u, v) 6= (0, 0))
somewhere in the stream, so it should be in row u, column
v of the final h × w matrix, counting from the corner at
which that the seed initiates the construction. Then if the
stream is correct, mu,v appears in the stream after exactly
v − 1 end of column markers and is the u + 1th value
after the most recent column marker, ev−1. Suppose all the
values up to mu,v have been placed correctly in particles,
so there are v completed columns of h particles and u
particles in the v + 1th column. There are two cases for
how value mu,v is handled.

Case 1: Suppose i = 0, so mu,v corresponds to the
first particle in a new column. Then v EndOfColumn
tokens have entered the system, so the first v vector



particles have set columnFinished to true and the vth

vector particle has recruited vector particle Vv . Then mu,v

will be passed by each vector particle until it reaches
Vv , and since Vv does not have columnFinished set
to true, it will set the value of Vv.matrixF lag to point
to where the column should be constructed, as stated in
Algorithm 8. As in the base case, a free particle will reach
the position pointed to by Vv.matrixF lag and become a
matrix particle. Vv will then pass mu,v to the new matrix
particle, Mu,v , so mu,v has reached the correct final position.

Case 2: Otherwise suppose u > 0. Since the first
v − 1 vector particles have set columnFinished to true
they will pass mu,v to the next vector particle to the right,
so it will reach the vth vector particle, Vv . Since Vv has
not set columnFinished to true, it will pass mu,v down
the column, as stated in Algorithm 8. Each of the first
u − 2 matrix particles have a neighbor below themselves,
so they will also pass mu,v down the column, so that
Mu−1,v will hold value mu,v . Following Algorithm 7,
Mu−1,v will set Mu−1,v.matrixF lag to point downward
(i.e. away from Mu−2,v). As in the base cases, eventually
there will be a free particle in the position pointed to by
Mu−1,v.matrixF lag, and that free particle will become
matrix particle Mu,v . Then Mu−1,v will pass mu,v to
Mu,v , and so the value will be at row u and column v of
the matrix. Since no matrix value moves after reaching its
correct position, the final configuration is correct.

Proof: [Lemma IV.2]
Let (C ′0, C

′
1, ...C

′
f ) be an asynchronous movement sched-

ule (Definition III.3). We show a parallel movement schedule
(C0, C1, ...Cf ) such that C0 = C ′0 (Definition III.2) can be
selected such that C ′i � C ′i for all i such that 0 ≤ i ≤ f .

First, consider particle positions. Free particles follow
the spanning forest primitive defined in Section A. If we
consider the structure as a tree rooted at the seed, the parallel
schedule (C0, C1, ...Cf ) is a forest schedule. Furthermore,
each particle which will eventually become part of the
structure follows a predefined path and moves whenever
possible, so the parallel schedule (C0, C1, ...Cf ) is a greedy
forest schedule as defined in [3]. Then we can apply
Lemma 3 from [3] which claims that a parallel schedule
(C0, C−1, ...Cf ) with C0 = C ′0 can always be chosen such
that Ci � C ′i for all i in terms of particle positions.

Next, we induct on rounds to show that a parallel schedule
selected based on particle positions is also dominated by the
asynchronous schedule in terms of token positions. For the
base case, both schedules start in the same configuration, so
the asynchronous schedule dominates the parallel version.
Then let Ci be the configuration of the parallel version after
i rounds and C ′i be the configuration of the asynchronous
version after i rounds. Suppose Ci−1 �M C ′i−1. We show
it is not possible that Ci �M C ′i. To proceed, we can
assume Ci−1 = C ′i−1 because if Ci−1 ≺M C ′i−1, some

amount of progress can be removed from the asynchronous
execution to produce Ci−1 = Ci−1. In the parallel schedule
a token will move forward at most by one position, if the
position at pCi

(t) + 1 becomes open during the round i.
This means that if there is a sequence of tokens in adjacent
particles and there is an empty particle on the end in the
direction of token motion, all of the tokens will move
forward by one position, as described in Definition II.4.
In the asynchronous schedule, we preserve this ability
to guarantee forward motion of tokens by allowing the
capacity of each particle to be two tokens. At the beginning
of round i, if Ci−1 = C ′i−1, each particle has at most one
token (since token capacity in the parallel configuration is
one). Then, in any order, every token can move forward
by one position as long as the particle holding it activates,
which is guaranteed in the course of a single asynchronous
round. Additionally, since tokens do not follow paths that
branch and merge, execution order in an asynchronous
round does not affect token paths or ordering (when
holding two tokens a particle preserves order). Thus when
the particle at pCi

(t) is activated, the token t will at least
move forward one spot regardless, and in no case will a
token move in the asynchronous schedule and not in the
parallel schedule to produce Ci � C ′i.

Proof: [Theorem IV.4]
We assume there are exactly n′ particles (other than the

seed) in the system. First suppose particles are present in
every final position of the system from the first round, so
that when a particle sets a flag to create an additional matrix
or vector particle, a free particle is already in position to
become the new matrix or vector particle. Then at each
construction position it takes O(1) rounds to recruit a new
particle because the previous particle (in the structure) sets
a flag and then the new particle, already in position, changes
state. Pipelining the tokens in the parallel version as in
Lemma IV.2 means that after a new particle is recruited it
again takes only O(1) rounds for it to receive its position
value and the position value for the next position, which it is
then responsible for recruiting. Thus the total setup is O(1)
for each of the O(n′) matrix particles.

Then for the set of vector values, the total time for the
values to each reach their corresponding vector particle is
equal to the time for the last vector value to reach the particle
farthest from the seed. Thus it takes O(w) rounds for vector
values to fill into the particles already in place for the vector.

Finally, as each vector particle receives a vector value,
they create and send a result counter token. These tokens are
used to determine an upper bound on how many particles
to recruit to store the results. The particles on the end of
what will be the results block (the top row of blue particles
in Figure 3) act as a counter, using result counter tokens,



to initiate construction of logc (m2w) columns. The result
counter tokens move simultaneously with the vector values,
so when the last vector value gets to the farthest vector
particle, the result counter tokens have already started to
move into the end row of result particles. A new result
counter token will then arrive at R0,0, and thus enter the
counter, at each parallel round, so it will take O(w) rounds
to finish counting as in Theorem III.2. Thus the total number
of rounds to finish setup when no particle motion is needed
is O(n′) +O(w) +O(w) = O(n′).

Then consider a system using the particle stopping algo-
rithm from an initial spanning forest configuration, so that
not all final positions are immediately occupied with free
particles. The initial spanning forest setup requires O(n′)
parallel rounds. Then for column v, suppose column v−1 (if
it exists) becomes completely finished, particles fill column
v (in prestop state), and then column v executes (i.e. begins
passing tokens and changing state to Matrix or Result). In
reality these phases overlap.

Each column takes O(h) rounds to fill with particles
after previous column finishes executing token passes, so
O(hw) = O(n′) for all column filling is added to the total
time for token passing. This additional time is added by
pausing and resuming the token passing to insert periods of
column filling. The total is O(n′).

Proof: [Theorem IV.5]
The parallel setup configuration completes in O(n′). Since

at every round i, the parallel configuration is dominated by
the asynchronous configuration, if f is the final round of
parallel execution, Cf �M C ′f , so the asynchronous exe-
cution is also complete by round f and thus asynchronous
construction is O(n′).
Consider the role of the seed particle in setting up the
system. It must pass each position token (for matrix and
vector particles) into the system via V0 individually. Passing
at most one token per round, it takes at least hw rounds for
all positions to enter the system, and thus setup is Ω(n′).

Lemma A.1. In parallel execution, all trees flatten into a line
of particles to supply construction after V0. This line never
has a gap at the current location of construction (i.e. current
position requiring a particle to stop and join the system).

Proof: [Lemma A.1]
We induct on rounds. For the base case, the system must

be initially connected, and all particles are contracted. Thus
the seed particle has at least one neighbor that will, as a
result, become a leader. An initial neighbor of the seed will
become V0 and expand. Followers then adjacent to V0 will
initially be contracted. Since we are considering a greedy
forest schedule, Lemma 2 from [3] applies and we have that
every expanded parent in every Ci for 1 ≤ i ≤ f has at least
one contracted child. From this point, leader particles will try
to move as far counterclockwise around the existing system
as possible, until reaching the end of the vector line, meaning

they will not circle indefinitely. In the worst case, the first
particle P0, which will become M0,0, is the first follower
particle whose leader became V0 (Figure 4a.). In this case
there must be no particles moving around the structure in
front of P0, or they would be recruited to the position first.
Then since we assume there are sufficiently many particles
to build the system, at least n′−1 particles remain in either
leader or follower state, so they are each part of spanning
trees rooted at P0 or part of trees rooted behind P0.

Consider when any leader particle Pj is expanded and
preparing to contract. If there is another leader immediately
behind Pj , it may perform a handover with Pj . If no such
leader exists, Pj has followers, one of which will perform
a handover and become a leader. Thus in any case there is
a particle filling the position immediately behind Pj . This
will continue to happen at every contraction of Pj and all
other leaders until follower particles are all leaders and the
structure is complete. In any other starting configuration,
particles in trees or on the structure in front of this initial
position are ahead of the worst case.

Proof: [Lemma IV.3]
By using the prestop particle state to stop particles in

the correct position regardless of how much progress the
token passing for recruiting vector and matrix particles has
made, we can consider the motions for column filling as
completely independent of token passing for matrix and
vector values.

Column 0: Initially, all particles are in trees rooted at
the seed. We induct on u where the particles of the first
column are {Mu,0|0 ≤ u < h}. In the worst case described
in Lemma A.1, the particle P0 immediately becomes a
leader and travels 7 units (taking 15 parallel rounds) to
reach the position for M0,0 (Figure 4a.). P1 is also a special
case, taking only 2 additional rounds so that P0 and P1 are
in place after 17 parallel rounds.

Now suppose Pk has finished as Mk,0 and consider
Pk+1. While Pk is moving, in the worst case there is
another follower particle which moves downward behind
Pk, call it Pk+1. Since we assume there are sufficient
particles in the system and in the worst case no trees were
rooted closer to the construction site than P0, Pk+1 must
be a follower of Pk, or have become one in the processing
of the spanning trees before reaching the structure. Then in
parallel execution, Pk+1 remains at most one unit behind
Pk, meaning it must travel two units after Pk finishes. This
requires 5 rounds, so suppose Pk finished in 17 + 5(k − 1)
asynchronous rounds. Since Pk+1 is at most 1 space behind
Pk, Pk+1 will be finished after 17 + 5k parallel rounds.
Thus the Ph−1 finishes within 17 + 5(h− 1) rounds, so the
first column finishes in O(h) parallel rounds.

Column 1: When the last particle of column 0 changes
state to prestop or matrix, the next leader, Px, which



will become M0,1, is the neighbor of Mh−1,0 immediately
counterclockwise from column 0 (Figure 4b.). In this proof
we ignore the time from when the last particle of column
0 was in position until when it changed state since we are
only considering the execution time of particle motions. It
then takes 6 rounds for Ph to reach the position directly
below that which will eventually become Mh−1,1. From
there 2 rounds are required to move each of the h positions,
so in total, Ph takes 2h−6 rounds to reach its final position
and become M0,1. Each subsequent particle in column 1
follows Ph in a connected line, so each additional particle
requires only 1 rounds to finish, so column 1 is constructed
in a total of O(h) rounds.

Column v, 2 ≤ v < w: Each subsequent column
begins to fill when the previous row is completely occupied
with prestop or matrix particles, so the first leader of
these columns is always in the same relative position at the
start of construction (Figure 4c.). It takes 2 rounds for the
particle to reach the relative starting position of the first
leader constructing column 1, and from there each column
construction is the same and requires O(h) parallel rounds.

Proof: [Lemma IV.6] We have shown that setup of
the entire matrix-vector multiplication structure, including
result particles, requires O(n′) rounds, so we now assume
no further particle motion is necessary and consider only
token motion for the actual multiplication. Since a token
moves forward in parallel each round, the vector tokens take
exactly w rounds to move across the matrix from their start
to finish locations. For simplicity, a value z resulting from a
multiplication at a matrix particle is represented as z copies
of a product token, which can be passed individually to
particles with unused storage capacity. Then each product
token originating at Mu,v takes w − v rounds to move
from its creation location to its destination. The product
tokens starting in row h − 1 are created last, and the ones
that start at Mh−1,0 have the farthest distance to reach the
end of the matrix. Since each vector and matrix value is
less than a constant maximum m, the maximum number of
product tokens produced in a row of the matrix is m2w.
Then the farthest possible result particle a sum token may
travel to is log(m2w) = 2 logm + logw = O(logw),
which is in addition to moving across at most w matrix
particles. Then product tokens reach their final position in
O(h+ w + logw) = O(h+ w) rounds.

Proof: [Theorem IV.7] By Lemma IV.2, after any given
number of rounds the asynchronous multiplier will be at
least as close to finished as the parallel multiplier. By Lemma
IV.6 the parallel multiplier finishes in O(h+w) rounds and
so the asynchronous multiplier does as well.
In the asynchronous execution, it is possible that vector
tokens require only one round to go from their start to
finish locations. However, each of the w product tokens for

a matrix row must pass through the first results particle for
that row, and that particle can only process one product token
per round. Thus the overall matrix-vector multiplication is
Ω(h+ w).

Proof: [Theorem IV.8] Consider matrix-matrix multi-
plication as a sequence of y matrix-vector multiplications.
The first matrix-vector multiplication completes in Θ(h+w)
rounds, by Theorem IV.7. Each subsequent vector must be
set up by streaming w vector values into the system and
moving one to each vector particle. This requires O(w)
parallel rounds (and thus O(w) asynchronous rounds) since
each vector value must be passed at most w times. The
seed must be activated at least once for each of the w new
vector values so the asynchronous system requires Θ(w)
rounds to setup the new vector. Thus the total matrix-vector
multiplication is Θ(y(h+ w)).

E. Proofs of Section V

Proof: [Theorem V.1] Assume all particles are holding
their pixel value, meaning setup has finished completely. In
two asynchronous rounds, gathering surrounding raw pixel
data and completing a convolution for noise filtering can be
finished by every particle. In one round each particle will
gather the values of its neighbors and in a second complete
round each particle will gather the values of particles at
a distance of two and complete the convolution operation.
Gathering updated values and performing a second convo-
lution for Sobel filtering (Algorithm 3) similarly requires
only two single asynchronous rounds for the results of the
first operation to propagate a distance of two hops. Finally,
establishing edge certainty can be accomplished in as many
asynchronous rounds as there are certainty levels. In the first
round, very sure particles will establish themselves and in
each subsequent round particles with sure neighbors will
identify themselves.
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