Skip to main content

Phase Transitions in Swarm Optimization Algorithms

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10867))

Abstract

Natural systems often exhibit chaotic behavior in their space-time evolution. Systems transiting between chaos and order manifest a potential to compute, as shown with cellular automata and artificial neural networks. We demonstrate that swarms optimisation algorithms also exhibit transitions from chaos, analogous to motion of gas molecules, when particles explore solution space disorderly, to order, when particles follow a leader, similar to molecules propagating along diffusion gradients in liquid solutions of reagents. We analyse these ‘phase-like’ transitions in swarm optimization algorithms using recurrence quantification analysis and Lempel-Ziv complexity estimation. We demonstrate that converging and non-converging iterations of the optimization algorithms are statistically different in a view of applied chaos, complexity and predictability estimating indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamatzky, A.: Hot ice computer. Phys. Lett. A 374(2), 264–271 (2009)

    Article  Google Scholar 

  2. Adamatzky, A.: Advances in Physarum Machines: Sensing and Computing with Slime Mould., vol. 21. Springer, Switzerland (2016). https://doi.org/10.1007/978-3-319-26662-6

  3. Adamatzky, A., Jones, J.: On using compressibility to detect when slime mould completed computation. Complexity 21(5), 162–175 (2016)

    Article  MathSciNet  Google Scholar 

  4. Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. part i: background and development. Nat. Comput. 6(4), 467–484 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    Google Scholar 

  6. Bertschinger, N., Natschläger, T.: Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 16(7), 1413–1436 (2004)

    Article  Google Scholar 

  7. Boedecker, J., Obst, O., Lizier, J.T., Mayer, N.M., Asada, M.: Information processing in echo state networks at the edge of chaos. Theory Biosci. 131(3), 205–213 (2012)

    Article  Google Scholar 

  8. Burgin, M.: Inductive turing machines with a multiple head and kolmogorov algorithms. Sov. Math. Dokl. 29, 189–193 (1984)

    MATH  Google Scholar 

  9. Burgin, M., Adamatzky, A.: Structural machines and slime mould computation. Int. J. Gen. Syst. 42, 1–24 (2017)

    Google Scholar 

  10. Costello, B.D.L., Adamatzky, A.: Calculating voronoi diagrams using chemical reactions. In: Advances in Unconventional Computing, pp. 167–198. Springer, Switzerland (2017). https://doi.org/10.1007/978-3-319-33921-4

  11. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Hoboken (2012)

    Google Scholar 

  12. Crutchfield, J.P., Young, K.: Computation at the onset of chaos. In: The Santa Fe Institute, Westview, Citeseer (1988)

    Google Scholar 

  13. Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C., Harley, R.G.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)

    Article  Google Scholar 

  14. Detrain, C., Deneubourg, J.L.: Self-organized structures in a superorganism: do ants “behave" like molecules? Phys. Life Rev. 3(3), 162–187 (2006)

    Article  Google Scholar 

  15. Kadmon, J., Sompolinsky, H.: Transition to chaos in random neuronal networks. Phys. Rev. X 5(4), 041030 (2015)

    Google Scholar 

  16. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. University Press, Cambridge (1997)

    MATH  Google Scholar 

  17. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  18. Koebbe, M., Mayer-Kress, G.: Use of recurrence plots in the analysis of time-series data. In: SFI Studies in the Sciences of Complexity, vol. 12, pp. 361–361. Addison-Wesley Publishing (1992)

    Google Scholar 

  19. Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. Physica D 42(1–3), 12–37 (1990)

    Article  MathSciNet  Google Scholar 

  20. Larson, M.G.: Analysis of variance. Circulation 117(1), 115–121 (2008)

    Article  MathSciNet  Google Scholar 

  21. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory 22(1), 75–81 (1976)

    Article  MathSciNet  Google Scholar 

  22. Marwan, N., Kurths, J., Saparin, P.: Generalised recurrence plot analysis for spatial data. Phys. Lett. A 360(4), 545–551 (2007)

    Article  Google Scholar 

  23. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5), 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  24. Mitchell, M., Hraber, P., Crutchfield, J.P.: Revisiting the edge of chaos: evolving cellular automata to perform computations. arXiv preprint adap-org/9303003 (1993)

    Google Scholar 

  25. Ohira, T., Sawatari, R.: Phase transition in a computer network traffic model. Phys. Rev. E 58(1), 193 (1998)

    Article  Google Scholar 

  26. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45(9), 712 (1980)

    Article  Google Scholar 

  27. Schinkel, S., Dimigen, O., Marwan, N.: Selection of recurrence threshold for signal detection. Eur. Phys. J. Spec. Top. 164(1), 45–53 (2008)

    Article  Google Scholar 

  28. Schut, M.C.: On model design for simulation of collective intelligence. Inf. Sci. 180(1), 132–155 (2010)

    Article  Google Scholar 

  29. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  30. Tomaszek, L., Zelinka, I.: On performance improvement of the soma swarm based algorithm and its complex network duality. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4494–4500. IEEE (2016)

    Google Scholar 

  31. Wright, A.H., Agapie, A.: Cyclic and chaotic behavior in genetic algorithms. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, pp. 718–724. Morgan Kaufmann Publishers Inc. (2001)

    Google Scholar 

  32. Zbilut, J.P., Webber, C.L.: Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171(3–4), 199–203 (1992)

    Article  Google Scholar 

  33. Zbilut, J.P., Zaldivar-Comenges, J.M., Strozzi, F.: Recurrence quantification based liapunov exponents for monitoring divergence in experimental data. Phys. Lett. A 297(3), 173–181 (2002)

    Article  Google Scholar 

  34. Zelinka, I.: Soma–self-organizing migrating algorithm. In: New optimization Techniques in Engineering, vol. 141, pp. 167–217. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-39930-8_7

    Chapter  Google Scholar 

  35. Zelinka, I., Tomaszek, L., Vasant, P., Dao, T.T., Hoang, D.V.: A novel approach on evolutionary dynamics analysis-a progress report. J. Comput. Sci. 37(5), 739–749 (2017)

    Google Scholar 

  36. Zenil, H., Gauvrit, N.: Algorithmic cognition and the computational nature of the mind. In: Encyclopedia of Complexity and Systems Science, pp. 1–9 (2017)

    Google Scholar 

  37. Zozor, S., Ravier, P., Buttelli, O.: On lempel-ziv complexity for multidimensional data analysis. Phys. A 345(1), 285–302 (2005)

    Article  Google Scholar 

Download references

Acknowledgment

The following grants are acknowledged for the financial support provided for this research: Grant of SGS No. SGS 2018/177, VSB-Technical University of Ostrava and German Research Foundation (DFG projects no. MA 4759/9-1 and MA4759/8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Vantuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vantuch, T., Zelinka, I., Adamatzky, A., Marwan, N. (2018). Phase Transitions in Swarm Optimization Algorithms. In: Stepney, S., Verlan, S. (eds) Unconventional Computation and Natural Computation. UCNC 2018. Lecture Notes in Computer Science(), vol 10867. Springer, Cham. https://doi.org/10.1007/978-3-319-92435-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92435-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92434-2

  • Online ISBN: 978-3-319-92435-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics