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Abstract. We suppose that a structure working as a quantum switch
will be a significant element of future networks realizing transmissions of
quantum information. In this chapter we analyze a process of switch’s op-
erating – especially in systems with a noise presence. The noise is caused
by a phenomenon of quantum decoherence, i.e. distorting of quantum
states because of an environmental influence, and also by some imper-
fections of quantum gates’ implementation. In the face of mentioned
problems, the possibility of tracing the switch’s behavior during its op-
erating seems very important. To realize that we propose to utilize a
Coherence measure which, as we present in this chapter, is sufficient to
describe operating of the quantum switch and to verify correctness of
this process. It should be also stressed that the value of Coherence mea-
sure may be estimated by a quantum circuit, designed especially for this
purpose.

Keywords: quantum information transfer, quantum switch, quantum
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1 Introduction

A field of quantum computing [23], [24] called quantum communication [12],
[25], [5], [13] is a dynamically growing research area of network science [11], [16].
Quantum communication deals, inter alia, with processing of quantum informa-
tion. The concept of information transmission/switching in a quantum channel
is one of the basic issues connected with quantum communication. In case of
quantum information its transmission and switching are non-trivial problems
because of non-cloning theorem [27], [15] and decoherence [9].
A definition of quantum switch, realizing swapping information between

channels A and B, was presented in [20]. A significant issue is to trace the oper-
ating of quantum switch, especially when distortions (caused by an influence of
external environment) of quantum information occur. Correctness of the process
may be, for example, verified with use of quantum entanglement phenomenon
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– some basic information concerning this method was contained in [4] and [22].
In this chapter we suggest utilizing the Coherence measure [3] to evaluate the
correctness of switch’s operating. Furthermore, following the results described
in [10] we propose of a quantum circuit that estimates of Coherence measure
value for a quantum switch. It should be stressed that estimating the value of
Coherence measure allows to trace the behavior of quantum system and clearly
points out if it works properly.
The chapter is organized as follows. In Sec. 2 the basic information concern-

ing the quantum switch was presented. This section contains description of the
switch as a Hamiltonian and as a time-dependent unitary operation. There is
also an example of distortions modeled with use of Dzyaloshinskii-Moriya inter-
action [7], [19]. Sec. 3 contains definitions of Coherence measure, its properties
and two examples of popular realizations.
A description of measures in context of the switch are presented in Sec. 4. We

showed direct analytical formulas expressing Coherence measure for the switch
during its operating. Conducted numerical experiments demonstrate changes in
value of Coherence measure for systems with and without noise. We calculated
also an analytical formula describing a difference between the values of Coherence
measure for systems without presence of noise and with distortions modeled as
Dzyaloshinskii-Moriya interaction.
The summary and plans for further work are presented in Sec. 5. A list of

references to other works ends this chapter.

2 Quantum Switch

A quantum switch, analyzed in this chapter, is a system of three qubits denoted
as: A, B, C. The states of qubits A and B are unknown:

|A〉 = αA|0〉+ βA|1〉, |B〉 = αB|0〉+ βB|1〉. (1)

The state of C is known and preserves only two possible alternatives: |C〉 = |0〉
or |C〉 = |1〉.
A main task of the quantum switch is swapping an unknown states between

qubits A and B. This operation is performed conditionally: if the state of qubit
|C〉 is |0〉 then there is no action; but if the state of qubit |C〉 is |1〉 then the
values of quantum states are exchanged between qubits A and B:

|AB0〉 → |AB0〉, |AB1〉 → |BA1〉. (2)

The quantum switch may be depict as a circuit built of three quantum gates:
two CNOT gates and one Toffoli gate. The conditional swapping of quantum
states, realized by the mentioned circuit, is presented at Fig. 1.
Utilizing the circuit, shown at Fig. 1, we can denote a matrix form (also

shown at Fig. 1 – case (c)) of an operator realizing the operation performed
by the quantum switch describes the complete process of information switching
without details concerning particular steps of the process. Calculating a time-
dependent unitary operation will allow to present the flow of information through
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Fig. 1. An exemplary circuit presenting the action performed by the quantum switch.
If the state of third qubit is |0〉 (case (a)) the switch does not swap the states of first
two qubits. When the state of the last qubit is expressed as |1〉 (case (b)) the circuit
swaps states |A〉 and |B〉. Case (c) depicts the matrix form of unitary operator which
performs action of quantum switch

the quantum switch during its operating time. To obtain this unitary operation
we need to compute a Hamiltonian describing the dynamics of information flow
in a quantum register:

Hqs = |011〉〈101|+ |101〉〈011| =
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. (3)

The operator Hqs is Hermitian, so introducing a variable t we may obtain
a time-dependent unitary operation:

Uqs(t) = e−itHqs , Ûqs(t) =

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 i cos(t) 0 sin(t) 0 0
0 0 0 0 1 0 0 0
0 0 0 sin(t) 0 i cos(t) 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























. (4)

The operation Uqs(t) causes the change of local phase therefore using the phase-

flip gate allows to obtain operator Ûqs(t) which, naturally, does not introduce
any change of local phase into the system.
Both, shown above, forms of unitary operation Uqs(t) let to trace the process

of switch’s operating according to time t. If the switch acts on a state |AB1〉 and
there is no correction of the local phase then the final state is a pure quantum



state:

Uqs(t)|Ψqs〉 = |Ψ t
qs〉 =
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, (5)

where t ∈ 〈0, π2 〉.
And representation of this operation as a density matrix ρ is also given:

ρ(t) = Uqs(t)|Ψ t
qs〉〈Ψ t

qs|U †
qs(t). (6)

In Sec. 4 we are going to present the values of Coherence measure with the
presence of noise. To do that the following Hamiltonian, describing Dzyaloshinskii-
Moriya (DM) interaction [7], [19], will be used:

HDM = Dz · (σx
A ⊗ σy

B − σy
A ⊗ σx

B) (7)

The notation of operator σx
A informs us that the Pauli operator X is used on

the qubit A and similarly σy
B means that the Pauli operator Y is used on the

qubit B. The symbolDz represents the vector of process intensity. A Hamiltonian
HTOT joins the switch and DM interaction:

HTOT = t ·Hqs +Dz ·HDM, UDM
qs (t,Dz) = e−i(t·Hqs+Dz ·HDM). (8)

where UDM
qs stands for the unitary operation. It should be stressed that for Dz

we obtain the Hamiltonian describing only the quantum switch’s operating.

A state of quantum register including an influence of DM interaction may be
expressed as:

UDM
qs (t)|Ψqs〉 = |ΨUDM

qs (t)
qs 〉 =
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, (9)

and γ =
√

−4D2
z − t2. And also as a density matrix ρ:

ρ(t,Dz) = U(t,Dz)|Ψqs〉〈Ψqs|U †(t,Dz). (10)



3 Quantum Coherence Measures

Introducing the notion of Coherence needs to point the incoherent quantum
states. This approach is similar to the measures of quantum entanglement where
a set of separable states has to be specified. For a d-dimensional Hilbert space H
we have to define a computational basis, for example the standard computational
basis: {|i〉}, for i = 0, 1, 2, 3, . . . , d.. The Coherence measure is basis-dependent,
i.e. we consequently use the standard computational basis in this chapter.
Incoherent states I and maximally coherent state |φd〉 are defined as:

I = {δ|δ =

d−1
∑

d=0

δi|i〉〈i|}, |φd〉 =
1√
d

d−1
∑

i=0

eiφi |i〉, (11)

where φi represents a phase of basis element |i〉.
Operations performed on states described as density matrices ρ are termed

as Incoherent Operations (IO) if for a Complete Positive and Trace Preserving

(CPTP) projection Λ(ρ) =
∑

n KnρK
†
n we observe that

KnδK
†
n

Tr[KnδK
†
n]

∈ I for every
value of n and δ ∈ I. A set of these operations may be denoted as Λ(δ) ∈ I for
each δ ∈ I and it is called Maximal Incoherent Operations (MIO). Naturally:
IO ⊆ MIO.
The Coherence measure for ρ is defined by a real-valued function C(ρ). The

function C(ρ) has to fulfil the following properties:

(P1) C(ρ) ≥ 0, ∀ρ and C(δ) = 0 if and only if δ ∈ I,
(P2) monotonicity – the coherence measure C cannot increase its value if refers

to an operation included in IO or MIO represented by channel Λ: C(Λ(ρ)) ≤
C(ρ),

(P3) strong monotonicity with post-selection – for any channel Λ ∈ IO, with given
set of Kraus operators {Kn}, the coherence measure C cannot increase its
average value under the post-selection:

∑

n

pnC(ρn) ≤ C(ρ), where ρn = KnρK
†
nTr[KnρK

†
n],

(P4) convexity – the value of coherence measure C cannot be increased by mixing
quantum states: C(

∑

n pnρn) ≤
∑

n pnC(ρn).

Generally, if the measure C fulfils the condition P1 and P2 or P3 then it is
a monotone function and in this case the measure is very useful. Nowadays, the
most widely use Coherence measures are: l1-norm coherence (Cl1) and relative
entropy of coherence (Cre). These both measures fulfill the above-mentioned
properties.
A significant advantage of both specified measures is their relative simplicity.

The l1-norm coherence is presented as a sum of all off-diagonal elements of den-
sity matrix and the relative entropy of coherence measure is defined as entropy
difference:

Cl1(ρ) =
∑

i,j
i6=j

|ρi,j |, Cre(ρ) = S(ρdiag)− S(ρ). (12)



where S(·) stands for von Neumann entropy and ρdiag denotes a density matrix
without the off-diagonal elements.

4 Coherence Measures for Quantum Switch

The Coherence measures will be utilized to assess the correctness of quantum
switch operating. To do it we need to calculate values of these measures for two
situations: when analyzed quantum state contains noise and without it.
If a quantum state is free from noise, we examine states of two first qubits

A and B. After a partial trace operation, which aim is to remove a state of
controlling qubit C, we obtain a reduced density matrix:

TrC (ρABC) = ρAB, (13)

where the states |A〉 and |B〉 are unknown. Utilizing measure (12) and carrying
out some necessary transformations allows to calculate the following formula:

Cl1(ρAB) = 2

(

|α0α1β0β1|+ |α0α1 (cos(t)α0β1 − i sin(t)α1β0)|

+ |β0β1 (cos(t)α0β1 − i sin(t)α1β0)|+ (|α0α1|+ |β0β1|

+ |cos(t)α0β1 − i sin(t)α1β0|) |cos(t)α1β0 − i sin(t)α0β1|
)

. (14)

A value of Coherence measure Cl1 depends on time and states of qubits.
However, if the second qubit |B〉 = |0〉, we can use (14) and compute:

Cl1(ρA0) = 2 |sin(t)α0β0|+ 2 |cos(t)α0β0|+ 2
∣

∣cos(t) sin(t)β2
0

∣

∣ (15)

As we can see the value of this measure depends only on time elapsing during
the switch’s operating. Basing on the fact that the quantum state is normalized,
we can directly indicate the constraint concerning the value of Cl1 measure for
the state |A0〉:

Cl1(ρA0) < (ε+ (|sin(t)| + |cos(t)|+ |cos(t) sin(t)|)) , (16)

where the state |A〉 is unknown and the constant ε ∈ R.
Generally, the changes of Cl1 value allow to trace the work of switch because

at the beginning of operating, when t = 0, the value of Cl1 is minimal, then in
the middle of the process, that is when t = π/4, the value of Cl1 is maximal.
When the switch finishes operating in a moment t = π/2 the value of Cl1 is
the same as in the moment t = 0. Fig. 2 depicts the changes of Cl1 measure for
quantum states:

|A〉 = 1√
10

|0〉+
√
9√
10

|1〉, |B〉 =
√
9√
10

|0〉+ 1√
10

|1〉. (17)



and, more generally, for the states described as:

|A〉 = sin(a)|0〉+ cos(a)|1〉, |B〉 = sin(
π

2
− a)|0〉+ cos(

π

2
− a)|1〉 (18)

where a ∈ 〈0, π
2 〉.

Remark 1. If the time of switch’s operating is extended, for example, to t = π
and the value of the parameter a is increased to π, we will observe a periodic
character in changes of Cl1 value.

The Cl1 measure, utilized in quantum systems without presence of noise,
offers also the direct possibility of checking if states A and B are the same –
that is if the switch operates on state |AA1〉.

Theorem 1. For the quantum switch defined as operation Uqs, like in (4), the
value of Cl1 for state |AA1〉 remains unchanged in time t.

Proof. The above theorem may be proofed by calculating the value of Cl1 for
the state |AA1〉. After some transformations of eq. (14) we obtain:

Cl1(ρAA) = 4|α0β0|
(

|α0|2 + |α0β0|+ |β0|2
)

. (19)

A consequence described by Thm. 1 may be observed at Fig. 2 in case (b) where
the top of the chart is flatten for a = π/4.
If the noise modelled by DM interaction is present in the system, the Cl1

measure shows the distortions’ influence on a quantum state:

CDM
l1

(ρAB) = 2 |(ξα1β0 + ηα0β1) (ζα1β0 + ξα0β1)|
+ 2 |α0α1 (ζα1β0 + ξα0β1)|+ 2 |β0β1 (ζα1β0 + ξα0β1)|

+ 2 |α0α1 (ξα1β0 + ηα0β1)|+ 2 |β0β1 (ξα1β0 + ηα0β1)|+ 2 |α0α1β0β1| (20)

where the following denotations were used:

ξ =
1

2
e−

√
−4D2

z−t2 +
1

2
e
√

−4D2
z−t2

η =
e
√

−4D2
z−t2(−2Dz − it)

2
√

−4D2
z − t2

− e−
√

−4D2
z−t2(−2Dz − it)

2
√

−4D2
z − t2

ζ =
e
√

−4D2
z−t2(2Dz − it)

2
√

−4D2
z − t2

− e−
√

−4D2
z−t2(2Dz − it)

2
√

−4D2
z − t2

We can observe that time t and the level of noise Dz directly affect a quantum
state by modelling its amplitudes. Naturally, these modifications cause changes
of the Cl1 measure value.
Utilizing the definitions of states given in (17) and (18) we present an exem-

plary process of Cl1 value’s changes when the noise is generated by DM inter-
action, what is depicted at Fig. 2. The given characteristic was calculated for
Dz = 0.5.
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Fig. 2. The changes in value of Cl1
measure: (a) for some exemplary states A and B

given in (17); (b) for a generalized case given in (18). Plots (c) and (d) present the
changes in value of Coherence measure Cl1

when the noise, generated by DM interaction
with intensity Dz = 0.5, is present: (c) for some exemplary states A and B given in
(17); (d) for a generalized case given in (18). The changes in value of relative entropy
measure Cre: (e) for some particular states; (f) for states A and B given in Eq. (18).
Plots (g) and (h) show the changes in value of Cre measure when the noise, generated
by DM interaction with intensity Dz = 0.5, is present: (g) for states given in (17); (h)
for states A and B given in (18)



The properties (P1)–(P4) indicate that the values of relative entropy of co-
herence measure Cre also correctly depict the differences in a system’s operating
without and with presence of the DM interaction. For quantum states given
in Eq. (17) and Eq. (18) values of relative entropy measure Cre are shown at
Fig. 2. Additionally, Fig. 2 demonstrates values of Cre measure with distortions
generated by DM interaction.
Naturally, the Thm. 1 may be also based on relative entropy measure. It may

be observed that the value of this measure is:

Cre(ρAA) = −2
(

|α0|2 |β0|2
(

log
(

|α0|2 |β0|2
))

+2 |α0|4 (log |α0|) + 2 |β0|4 (log |β0|)
)

, (21)

and again the value of time t is not used.
Regardless the measure, we can observe the difference between values of Cl1

in systems with and without noise. If the difference were always equal zero that
implies the distortions are impossible to detect.

Proposition 1. For the switch’s states ρAB and ρDM
AB we denote the value of

difference based on the Cl1 measure:

C∆
l1
(ρAB, ρ

DM
AB ) = −2 |ζα1β0 + ξα0β1| (|ξα1β0 + ηα0β1|+ |α0α1|+ |β0β1|)

− 2 (|α0α1|+ |β0β1|) |ξα1β0 + ηα0β1|+
1

2

∣

∣(α1β0 + α0β1)
2

−e4it (α1β0 − α0β1)
2
∣

∣+ 2 (|α0α1|+ |β0β1|) (|cos(t)α0β1 − i sin(t)α1β0|
+ |cos(t)α1β0 − i sin(t)α0β1|) , (22)

where ξ, η, ζ are denoted as in Eq. (20).

Utilizing Prop. 1 we can directly present an exemplary values of errors occur-
ring during the switch’s operating what is depict at Fig. 3. It should be stressed
that the value of difference for exemplary plots at Fig. 3 equals zero only for two
points of time t.
An analysis of works [8] and [6] shows that it is possible to design a quantum

circuit for an estimation of Coherence measure value. Fig. 3 depicts a circuit
built to realize this task. The circuit takes an advantage on quantum states
overlapping to estimate a value of Coherence measure – it is approximated with
use of quadratic functional estimation of given density operator.
A significant task is to calculate the values of input states |αpi

〉 and to de-
nominate the form of gate πi, which usually is the SWAP gate. In [10] it was
presented that using the circuit shown at Fig. 3 we can estimate the value of
Coherence measure utilizing the Wigner-Yanase-Dyson skew information [26].
We would like to stress that the estimation of Coherence measure’s value for

states |A〉 and |B〉 may be calculated by a measurement, for example, of state
|αp0

〉, what was shown in [8]. The probability that |αp0
〉 = |0〉 may be estimated

as:
Tr (ρAρB) = π0 = 2P0 − 1 (23)



where ρA = |A〉〈A|, ρB = |B〉〈B| and P0 is measure projector, whereas π0

represents estimated value of coherence. The value of this probability estimates
also functionals values, including the values of Coherence measure. An accuracy
evaluation of the circuit (Fig. 3) is under the analysis in currently prepared paper
[21].
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A quantum circuit (c) for estima-
tion of Coherence measure values
during the operating of quantum
switch. The values of Coherence
measure are calculated for four mo-
ments: before the switch starts op-
erating, in two moments of operat-
ing and at the end of the process.
The controlled πi gate plays a main
role in the estimation process of Co-
herence measure’s value

Fig. 3. The changes in value of absolute difference C∆

l1
: (a) for states given in (17);

(b) for states A and B given in (18). The parameter Dz = 0.5. Figure (c) represents a
quantum circuit for estimation of Coherence measure

5 Conclusions

In this chapter we discussed utilizing the Coherence measure to trace and evalu-
ate the correctness of quantum switch’s operating. First, we described the switch
with use of a Hamiltonian to be able to analyze the evolution of quantum system
processed by the circuit shown at Fig. 1. We chose the Dzyaloshinskii-Moriya
interaction as a source of noise, which was also modeled as a Hamiltonian. Then
the numerical simulations were performed to evaluate a behavior of the circuit.



As a tool to capture the differences between the switch operating, simulated
with noise or without it, two Coherence measures were used: l1-norm coherence
(Cl1) and relative entropy of coherence (Cre).
We can observe the difference of Cl1 and Cre values if the system works

with and without a noise. This shows that the Coherence measures allow to
state if the switch operates properly. In addition, an interesting behavior of the
system was observed when the switch worked on an initial state |AA1〉. The
experiment showed that the value of Cl1 was constant during the simulation –
for other states |AB1〉, where A 6= B, the value of measure evaluates in some
characteristic periodic way. This implies that we can also check if the states are
the same with use of Cl1 measure and quantum switch.
Unfortunately, we also observed that for the systems without and with dis-

tortions, modeled as DM interaction, the differences in Coherence measure value
are significant even if their intensityDz is quite low. It is inconvenient if we would
like to capture the evolution of the system with the different levels of noise.
We presented a quantum circuit which estimates the value of Coherence

measure. Nowadays, technical solutions based on quantum optics [1], [17], [2]
and also physical implementations of qubits allow to build this kind of circuits
with use of beam splitters, phase shifters and mirrors [18], [14].
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