Skip to main content

Online GRNN-Based Ensembles for Regression on Evolving Data Streams

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2018 (ISNN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10878))

Included in the following conference series:

Abstract

In this paper, a novel procedure for regression analysis in the case of non-stationary data streams is presented. Despite numerous applications, the regression task is rarely considered in a scientific literature, e.g. compared to classification task. The proposed method applies an ensemble technique to deal with data streams (especially with concept drift). As weak learners, a nonparametric estimator of regression is used. Every single weak model (weak learner) is able to track a specific type of the non-stationarity. The experimental section demonstrates that the proposed algorithm allows for tracking different types nonstationarities and increases accuracy with respect to a single estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akdeniz, E., Egrioglu, E., Bas, E., Yolcu, U.: An ARMA type Pi-Sigma artificial neural network for nonlinear time series forecasting. J. Artif. Intell. Soft Comput. Res. 8(2), 121–132 (2018)

    Article  Google Scholar 

  2. Chatterjee, S., Hadi, A.S.: Regression Analysis by Example. Wiley, Hoboken (2015)

    MATH  Google Scholar 

  3. Duarte, J., Gama, J., Bifet, A.: Adaptive model rules from high-speed data streams. ACM Trans. Knowl. Discov. Data (TKDD) 10(3), 30 (2016)

    Google Scholar 

  4. Duda, P., Jaworski, M., Rutkowski, L.: Int. J. Neural Syst. 28, 1750048 [23 pages] (2018). https://doi.org/10.1142/S0129065717500484

  5. Fox, J.: Applied Regression Analysis and Generalized Linear Models. Sage Publications, Thousand Oaks (2015)

    Google Scholar 

  6. Greblicki, W., Pawlak, M.: Nonparametric System Identification, vol. 1. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  7. Ikonomovska, E., Gama, J., Dzeroski, S.: Learning model trees from evolving data streams. Data Min. Knowl. Disc. 23(1), 128–168 (2011)

    Article  MathSciNet  Google Scholar 

  8. Ikonomovska, E., et al.: Speeding-up Hoeffding-based regression trees with options. In: Proceedings of 28th International Conference on Machine Learning. Omnipress (2011)

    Google Scholar 

  9. Ikonomovska, E., Gama, J., Dzeroski, S.: Online tree-based ensembles and option trees for regression on evolving data streams. Neurocomputing 150, 458–470 (2015)

    Article  Google Scholar 

  10. Jaworski, M., Duda, P., Rutkowski, L., Najgebauer, P., Pawlak, M.: Heuristic regression function estimation methods for data streams with concept drift. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 726–737. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59060-8_65

    Chapter  Google Scholar 

  11. Kadlec, P., Gabrys, B.: Local learning based adaptive soft sensor for catalyst activation prediction. AIChE J. 57(5), 1288–1301 (2011)

    Article  Google Scholar 

  12. Kolter, J.Z., Maloof, M.A.: Using additive expert ensembles to cope with concept drift. In: Proceedings of 22nd International Conference on Machine Learning. ACM (2005)

    Google Scholar 

  13. Krawczyk, B., et al.: Ensemble learning for data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017)

    Article  Google Scholar 

  14. Pietruczuk, L., Rutkowski, L., Jaworski, M., Duda, P.: How to adjust an ensemble size in stream data mining? Inf. Sci. 381, 46–54 (2017)

    Article  MathSciNet  Google Scholar 

  15. Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2(6), 568–576 (1991)

    Article  Google Scholar 

  16. Susheela, D.V., Meena, L.: Parallel MCNN (PMCNN) with application to prototype selection on large and streaming data. J. Artif. Intell. Soft Comput. Res. 7(3), 155–169 (2017)

    Google Scholar 

  17. Oza, N.C.: Online bagging and boosting. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2340–2345. IEEE (2005)

    Google Scholar 

  18. Xiao, H., Eckert, C.: Lazy Gaussian process committee for real-time online regression. In: AAAI (2013)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Polish National Science Centre under Grant No. 2014/15/B/ST7/05264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Duda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duda, P., Jaworski, M., Rutkowski, L. (2018). Online GRNN-Based Ensembles for Regression on Evolving Data Streams. In: Huang, T., Lv, J., Sun, C., Tuzikov, A. (eds) Advances in Neural Networks – ISNN 2018. ISNN 2018. Lecture Notes in Computer Science(), vol 10878. Springer, Cham. https://doi.org/10.1007/978-3-319-92537-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92537-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92536-3

  • Online ISBN: 978-3-319-92537-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics