Skip to main content

NN - Sliding Mode Control Design for Trajectory Tracking and Roll Reduction of Marine Vessels

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2018 (ISNN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10878))

Included in the following conference series:

  • 3903 Accesses

Abstract

Both trajectory tracking (TT) and fin roll reduction (FRR) are fundamental marine applications, and they are usually studied separately in previous studies. Actually, the roll motion often occurs during the trajectory tracking in waves; therefore, they should be studied together. In this work, we consider the trajectory tracking and fin roll reduction of marine vessel as an integral system. It includes three system inputs, namely, the force in surge, the control moment in roll, and the control torque in yaw, while four degrees of freedom (DoF), i.e., position, roll angle and yaw angle are needed to be controlled. Through combining the hierarchical sliding mode approach and neural network technique, a novel control algorithm is proposed. The neural network is introduced to deal with model uncertainty. Lyapunov stability theorem ensures stability of the close-loop system, and various simulations are provided to validate the effectiveness and performance of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pettersen, K.Y., Egeland, O.: Exponential stabilization of an underactuated surface vessel. In: Proceedings of the 35th Conference on Decision and Control, pp. 967–972. IEEE Press, Japan (1996)

    Google Scholar 

  2. Godhavn, J.M.: Nonlinear tracking of underactuated surface vessels. In: Proceedings of the 35th Conference on Decision and Control, pp. 975–980. IEEE Press, Kobe (1996)

    Google Scholar 

  3. Reyhanoglu, M.: Exponential stabilization of an underactuated autonomous surface vessel. Automatica 33(12), 2249–2254 (1997)

    Article  MathSciNet  Google Scholar 

  4. Pettersen, K.Y., Nijmeijer, H.: Tracking control of an underactuated surface vessel. In: Proceedings of the 37th IEEE Conference on Decision and Control, pp. 4561–4566. IEEE Press, USA (1998)

    Google Scholar 

  5. Indiveri, G., Aicardi, M., Casalino, G.: Nonlinear time-invariant feedback control of an underactuated marine vehicle along a straight course. In: Proceedings of the IFAC Conference on Manoeuvring and Control of Marine Craft, Aalborg, Denmark, pp. 221–226 (2000)

    Article  Google Scholar 

  6. Mazenc, F., Pettersen, K.Y., Nijmeijer, H.: Global uniform asymptotic stabilization of an underactuated surface vessel. IEEE Trans. Autom. Control 47(10), 1759–1762 (2002)

    Article  MathSciNet  Google Scholar 

  7. Jiang, Z.P.: Global tracking control of underactuated ships by Lyapunov’s direct method. Automatica 38(2), 301–309 (2002)

    Article  Google Scholar 

  8. Do, K.D., Jiang, Z.P., Pan, J.: Underactuated ship global tracking under relaxed conditions. IEEE Trans. Autom. Control 47(9), 1529–1536 (2002)

    Article  MathSciNet  Google Scholar 

  9. Do, K.D., Jiang, Z.P., Pan, J.: Universal controllers for stabilization and tracking of underactuated ships. Syst. Control Lett. 47(4), 299–317 (2002)

    Article  MathSciNet  Google Scholar 

  10. Lefeber, E., Pettersen, K.Y., Nijmeijer, H.: Tracking control of an underactuated ship. IEEE Trans. Control Syst. Technol. 11(1), 52–61 (2003)

    Article  Google Scholar 

  11. Do, K.D., Pan, J., Jiang, Z.P.: Robust adaptive control of underactuated ships on a linear course with comfort. Ocean Eng. 30(17), 2201–2225 (2003)

    Article  Google Scholar 

  12. Lee, T.C., Jiang, Z.P.: New cascade approach for global \( \kappa \)-exponential tracking of underactuated ships. IEEE Trans. Automatic Control 49(12), 2297–2303 (2004)

    Google Scholar 

  13. Dong, W., Guo, Y.: Global time-varying stabilization of underactuated surface vessel. IEEE Trans. Autom. Control 50(6), 859–864 (2005)

    Article  MathSciNet  Google Scholar 

  14. Aguiar, A.A., Hespanha, J.P.: Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control 52(8), 1362–1379 (2007)

    Article  MathSciNet  Google Scholar 

  15. Dong, W., Guo, Y.: Nonlinear tracking control of underactuated surface vessel. In: American Control Conference, pp. 4351–4356. IEEE Press, USA (2005)

    Google Scholar 

  16. Cheng, J., Yi, J., Zhao, D.: Design of a sliding mode controller for trajectory tracking problem of marine vessels. IET Control Theory Appl. 1(1), 233–237 (2007)

    Article  MathSciNet  Google Scholar 

  17. Chwa, D.: Global tracking control of underactuated ships with input and velocity constraints using dynamic surface control method. IEEE Trans. Control Syst. Technol. 19(6), 1357–1370 (2011)

    Article  Google Scholar 

  18. Yan, Z., Wang, J.: Model predictive control for tracking of underactuated vessels based on recurrent neural networks. IEEE J. Oceanic Eng. 37(4), 717–726 (2012)

    Article  Google Scholar 

  19. Wang, W., Yi, J., Zhao, D., Liu, D.: Design of a stable sliding-mode controller for a class of second-order underactuated systems. IEE Proc. Control Theory Appl. 151(6), 683–690 (2005)

    Article  Google Scholar 

  20. Ge, S.S., Hang, C.C., Lee, T.H., Zhang, T.: Stable Adaptive Neural Network Control, vol. 13. Springer, New York (2001). https://doi.org/10.1007/978-1-4757-6577-9

    Book  MATH  Google Scholar 

  21. Ge, S.S., Wang, C.: Adaptive NN control of uncertain nonlinear pure-feedback systems. Automatica 38(4), 671–682 (2002)

    Article  MathSciNet  Google Scholar 

  22. Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley, Hoboken (2011)

    Book  Google Scholar 

  23. Perez, T.: Ship Motion Control. Springer, London (2005). https://doi.org/10.1007/1-84628-157-1

    Book  Google Scholar 

  24. Haddad, W.M., Chellaboina, V.: Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (Nos. 51179019, 61374114), the Fundamental Research Program for Key Laboratory of the Education Department of Liaoning Province (LZ2015006), the Natural Science Foundation of Liaoning (20170580081), and the Fundamental Research Funds for the Central Universities under Grants 3132016313, 3132017114 and 3132016311, Postdoctoral innovation talent support plan (BX201700041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingqi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, C., Li, J., Zhao, R., Li, T. (2018). NN - Sliding Mode Control Design for Trajectory Tracking and Roll Reduction of Marine Vessels. In: Huang, T., Lv, J., Sun, C., Tuzikov, A. (eds) Advances in Neural Networks – ISNN 2018. ISNN 2018. Lecture Notes in Computer Science(), vol 10878. Springer, Cham. https://doi.org/10.1007/978-3-319-92537-0_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92537-0_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92536-3

  • Online ISBN: 978-3-319-92537-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics