
ar
X

iv
:1

71
0.

09
20

9v
2

 [
cs

.D
C

]
 2

1
Ju

l 2
01

8

Monotonic Prefix Consistency in Distributed

Systems

Alain Girault1, Gregor Gössler1, Rachid Guerraoui2,
Jad Hamza3, and Dragos-Adrian Seredinschi2

1 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
2 LPD, EPFL

3 LARA, EPFL

Abstract. We study the issue of data consistency in distributed sys-
tems. Specifically, we consider a distributed system that replicates its
data at multiple sites, which is prone to partitions, and which is as-
sumed to be available (in the sense that queries are always eventually
answered). In such a setting, strong consistency, where all replicas of
the system apply synchronously every operation, is not possible to im-
plement. However, many weaker consistency criteria that allow a greater
number of behaviors than strong consistency, are implementable in avail-
able distributed systems.

We focus on determining the strongest consistency criterion that can
be implemented in a convergent and available distributed system that
tolerates partitions. We focus on objects where the set of operations can
be split into updates and queries. We show that no criterion stronger
than Monotonic Prefix Consistency (MPC) can be implemented.

1 Introduction

Replication is a mechanism that enables sites from different geographical loca-
tions to access a shared data type with low latency. It consists of creating copies
of this data type on each site of a distributed system. Ideally, replication should
be transparent, in the sense that the users of the data type should not notice
discrepancies between the different copies of the data type.

An ideal replication scheme could be implemented by keeping all sites syn-
chronized after each update to the data type. This ideal model is called strong
consistency, or linearizability [1]. The disadvantage of this model is that it can
cause large delays for users, and worse the data type might not be available
to use at all times. This may happen, for instance, if some sites of the system
are unreachable, i.e., partitioned from the rest of the network. Briefly, it is not
possible to implement strong consistency in a distributed system while ensuring
high availability [2,3,4]. High availability (hereafter availability for short) means
that sites must answer users’ requests directly, without waiting for outside com-
munication.

Given this impossibility, developers rely on weaker notions of consistency,
such as causal consistency [5]. Weaker consistency criteria do not require sites

http://arxiv.org/abs/1710.09209v2

2

to be exactly synchronized as in strong consistency. For instance, causal consis-
tency allows different sites to apply updates to the data type in different orders,
as long as the updates are not causally related. Informally, a consistency crite-
rion specifies the behaviors that are allowed by a replicated data type. In this
sense, causal consistency is more permissive than strong consistency. We also
say that strong consistency is stronger than causal consistency, as strong consis-
tency allows strictly fewer behaviors than causal consistency. A natural question
is then: What is the strongest consistency criterion that can be implemented by
a replicated data type? We focus in this paper on data types where the set of
operations can be split into two disjoint sets, updates and queries. Updates mod-
ify the state and but do not return values, while queries return values without
modifying the state.

In [4], it was proven that nothing stronger than observable causal consistency
(a variant of causal consistency) can be implemented. It is an open question
whether observable causal consistency itself is actually implementable. More-
over, [4] does not study consistency criteria that are not comparable to observ-
able causal consistency. Indeed, there exist consistency criteria that are neither
stronger than causal consistency, nor weaker, and which can be implemented by
a replicated data type.

In our paper, we explore one such consistency criterion. More precisely, we
prove that, under some conditions which are natural in a large distributed system
(availability and convergence), nothing stronger than monotonic prefix consis-
tency (MPC) [6] can be implemented. This result does not contradict the result
from [4], since MPC and causal consistency are incomparable.

The reason why MPC and observable causal consistency are incomparable
is as follows. MPC requires all sites to apply updates in the same order (but not
necessarily synchronized at the same time, as in strong consistency), while causal
consistency allows non-causally related updates to be applied in different orders.
On the other hand, causal consistency requires all causally-related updates to be
applied in an order respecting causality, while MPC requires no such constraint.

Overall, our contribution is to prove that, for a notion of behaviors where the
time and place of origin of updates do not matter, nothing stronger than MPC

can be implemented in a distributed setting. Moreover, we remark that clients
that only have the observability defined in Section 3 cannot tell the difference
between a strongly consistent implementation and an MPC implementation.

In the rest of this paper, we first give preliminary notions and a formal
definition of the problem we are addressing (Sections 2 and 3). We then turn
our attention to the MPC model by defining it formally and through an imple-
mentation (Section 4). We prove that, given the observability mentioned above,
and under conditions natural in a large-scale network (availability, convergence),
nothing stronger than MPC can be implemented (Section 6). Then we compare
MPC with other consistency models (Section 7), and conclude (Section 8).

To improve the presentation, some proofs are deferred to the appendix.

3

2 Replicated Implementations

An implementation of a replicated data type consists of several sites that com-
municate by sending messages. Messages are delivered asynchronously by the
network, and can be reordered or delayed. To be able to build implementations
that provide liveness guarantees, we assume all messages are eventually delivered
by the network.

Each site of an implementation maintains a local state. This local state re-
flects the view that the site has on the replicated data type, and may contain
arbitrary data. Each site implements the protocol by means of an update handler,
a query handler, and a message handler.

The update handler is used by (hypothetical) clients to submit updates to
the data type. The update handler may modify the local states of the site, and
broadcast a message to the other sites. Later, when another site receives the
message, its message handler is triggered, possibly updating the local state of
the site, and possibly broadcasting a new message.

The query handler is used by clients to make queries on the data type. The
query handler returns an answer to the client, and is a read-only operation that
does not modify the local state or broadcast messages.

Remark 1. Our model only supports broadcast and not general peer-to-peer
communication, but this is without loss of generality. We can simulate send-
ing a message to a particular site by writing the identifier of the receiving site in
the broadcast message. All other sites would then simply ignore messages that
are not addressed to them.

In this paper, we consider implementations of the list data type. The list
supports an update operation of the form write(d), with d ∈ N, which adds the
element d to the end of the list. The list also supports a query operation read

that returns the whole list ℓ ∈ N
∗, which is a sequence of elements in N.

Definition 1. Let Upd = {write(d) | d ∈ N} be the set of updates, and Ans =
{read(ℓ) | ℓ ∈ N

∗} be the set of all possibles answers to queries.

We focus on the list data type because queries return the history of all up-
dates that ever happened. In that regard, lists can encode any other data type
whose operations can be split in updates and queries, by adding a processing
layer after the query operation of the list returns all updates. Data types that
contain operations which are queries and updates at the same time (e.g. the Pop
operation of a stack) are outside the scope of this paper. We now proceed to give
the formal syntax for implementations, and then the corresponding operational
semantics.

Definition 2. An implementation I is a tuple
(Q, ι,P,Msg,msg handler, update handler, query handler) where

– Q is a non-empty set of local states,
– P is a non-empty finite set of process identifiers,

4

– ι : P → Q associates to each process an initial local state,
– Msg is a set of messages,
– msg handler : Q×Msg → Q×Msg⊥ is a total function, called the handler of

incoming messages, which updates the local state of a site when a message
is received, and possibly broadcasts a new message,

– update handler : Q×Upd → Q×Msg
⊥ is a total function, called the handler

of updates, which modifies the local state when an update is submitted, and
possibly broadcasts a message.

– query handler : Q → Ans is a total function, called the handler of client
queries, which returns an answer to client queries.

The set Msg⊥ is defined as Msg⊎ {⊥}, where ⊥ is a special symbol denoting
the fact that no message is sent.

Before defining the semantics of implementations, we introduce a few nota-
tions. We first define the notion of an action, used to denote events that happen
during the execution. Each action contains a unique action identifier aid ∈ N,
and the process identifier pid ∈ P where the action occurs.

Definition 3. A broadcast action is a tuple (aid, pid, broadcast(mid,msg)),
and a receive action is a tuple (aid, pid, receive(mid,msg)), where mid ∈ N

is the message identifier and msg ∈ Msg is the message. An update action or a
write action is a tuple (aid, pid, write(d)) where d ∈ N. Finally, a query action
or a read action is a tuple (aid, pid, read(ℓ)) where ℓ ∈ N

∗.

Executions are then defined as sequences of actions, and are considered up
to action and message identifiers renaming.

Definition 4. An execution e is a sequence of broadcast, receive, query and
update actions where no two actions have the same identifier aid, and no two
broadcast actions have the same message identifier mid.

We now describe how implementations operate on a given site pid ∈ P.

Definition 5. We say that a sequence of actions σ1 . . . σn . . . from site pid fol-
lows I if there exists a sequence of states q0 . . . qn . . . such that q0 = ι(pid), and
for all i ∈ N\{0}, we have:

1. if σi = (aid, pid, write(d)) with d ∈ N, then update handler(qi−1, write(d)) =
(qi,). This means that upon a write action, a site must update its state as
defined by the update handler;

2. if σi = (aid, pid, read(ℓ)) with ℓ ∈ N
∗, then query handler(qi−1) = read(ℓ)

and qi = qi−1. This condition states that query actions do not modify the
state, and that the answer read(ℓ) given to query actions must be as specified
by the query handler, depending on the current state qi−1;

3. if σi = (aid, pid, broadcast(mid,msg)), then qi = qi−1. Broadcast actions do
not modify the local state;

4. if σi = (aid, pid, receive(mid,msg)), then msg handler(qi−1,msg) = (qi,).
The reception of a message modifies the local state as specified by msg handler.

5

Moreover, we require that broadcast actions are performed if and only if they
are triggered by the handler of incoming messages, or the handler of clients
requests. Formally, for all i > 0, σi = (aid, pid, broadcast(mid,msg)) if and
only if either:

5. ∃ write(d) ∈ Upd and aid ′ ∈ N such that σi−1 = (aid ′, pid, write(d)) and
update handler(qi−1, write(d)) = (qi,msg), or

6. ∃ aid ′ ∈ N, mid ∈ N, and msg ′ ∈ Msg such that
σi−1 = (aid ′, pid, receive(mid,msg)) and msg handler(qi−1,msg ′) = (qi,msg).

When all conditions hold, we say that q0 . . . qn . . . is a run for σ1 . . . σn
Note that when a run exists for a sequence of actions, it is unique.

We then define the set of executions generated by I, denoted JIK. In partic-
ular, this definition models the communication between sites, and specifies that
a receive action may happen only if there exists a broadcast action with the
same message identifier preceding the receive action in the execution. Moreover,
a fairness condition ensures that, in an infinite execution, every broadcast action
must have a corresponding receive action on every site.

Definition 6. Let I be an implementation. The set of executions generated by
I is JIK such that e ∈ JIK if and only if the three following conditions hold:

– Projection: for all pid ∈ P, the projection e|pid follows I,
– Causality: for every receive action σ = (aid, pid, receive(mid,msg)), there

exists a broadcast action (aid ′, pid ′, broadcast(mid,msg)) before σ in e,
– Fairness: if e is infinite, then for every site pid ∈ Pid and every broadcast

action (aid ′, pid ′, broadcast(mid,msg)) performed on any site pid ′, there
exists a receive action (aid, pid, receive(mid,msg)) in e,

where e|pid is the subsequence of e of actions performed by process pid:

– ε|pid = ε;
– ((aid, pid, x).e)|pid = (aid, pid, x).(e|pid);
– ((aid, pid ′, x).e)|pid = e|pid whenever pid ′ 6= pid.

Remark 2. The implementations we consider are available by construction, in
the sense that any site allows any updates or queries to be done at any time,
and answers to queries directly. This is ensured by the fact that our update and
query handlers are total functions. More precisely, the item 1 of Definition 5
(together with Definition 6) ensures that updates can be performed at any time
through the update handler (update availability).

The broadcast action that happens right after an update action must be
thought of as happening right after the update. Broadcast actions do not involve
actively waiting for responses, and as such do not prevent availability.

Similarly, the item 2 of Definition 5 ensures that any query of any site is
answered immediately, only using the local state of the site (query availability).
We later formalize this in Lemmas 1 and 2.

6

For the rest of the paper, we consider that updates are unique, in the sense
that an execution may not contain two update actions that write the same value
d ∈ N. This assumption only serves to simplify the presentation of our result,
and can be done without loss of generality, as updates can be made unique by
attaching a unique timestamp to them.

3 Problem Definition

In this section, we explain how we compare implementations using the notion of
a trace. Informally, the trace of an execution corresponds to what is observable
from the point of view of clients using the data type.

Our notion of a trace is based on two assumptions: (1) Clients know the
order of the queries they have done on a site, but not the relative positions of
their queries with respect to other clients’ queries. (2) The origin of updates
is not relevant from a client’s perspective. This models publicly accessible data
structures where any client can disseminate a transaction in the network, and
the place and time where the transaction was created are not relevant for the
protocol execution.

More precisely, a trace records an unordered set of updates (without their
site identifiers), and records for each site the sequence of queries that happened
on this site.

Definition 7. A trace (tr,W) is a pair where tr is a labelled partially ordered
set (see hereafter for more details), and W is a subset of N. The trace (tr,W)
corresponding to an execution e is denoted tr(e), where tr = (A,<, label) is a
labelled partially ordered set such that:

– A is the set of action identifiers of query actions of e;
– < is a transitive and irreflexive relation over A, sometimes called the pro-

gram order, ordering queries performed on the same site; more precisely, we
have aid < aid ′ if aid, aid ′ ∈ A are action identifiers performed by the same
site, and that appear in that order in e;

– label : A → Ans is the labelling function such that for any aid ∈ A, label(aid)
is the answer of the query action corresponding to aid in e;

and W ⊆ N is the set of elements that appear in an update action of e.

Example 1. Consider the execution e in Figure 1, and its corresponding trace
tr(e). (pid1, pid2, pid3 ∈ P are site identifiers, mid1,mid2,mid3 ∈ N are unique
message identifiers, and msg1,msg2,msg3 ∈ Msg are messages.)

Then, we compare implementations by looking at the set of traces they pro-
duce. The fewer traces an implementation produces, the stronger it is, and the
closer it is to strong consistency.

Definition 8. The notation tr() is extended to sets of executions point-wise. An
implementation I1 is stronger than I2, denoted I1 � I2 iff

tr(JI1K) ⊆ tr(JI2K)

7

(188, pid
1
, write(3))·

(3713, pid
1
, broadcast(mid3,msg

3
))·

(152, pid
1
, write(1))·

(16, pid
1
, broadcast(mid1,msg

1
))·

(137, pid
1
, read[])·

(2448, pid
3
, read[])·

(37, pid
2
, write(2))·

(164, pid
2
, broadcast(mid2,msg

2
))·

(189, pid
2
, read[2])·

(733, pid
3
, receive(mid2,msg

2
))·

(133, pid
3
, receive(mid1,msg

1
))·

(111, pid
2
, receive(mid1,msg

1
))·

(17, pid
3
, read[2, 1])·

(12, pid
1
, read[2])·

(15, pid
2
, read[2, 1])·

pid1 :
read[]

137

read[2]

12

pid2 :
read[2]

189

read[2,1]

15

pid3 :
read[]

2448

read[2,1]

17

Fig. 1: An execution e read from top to bottom (188, . . . , 15) and its correspond-
ing trace tr(e) = (tr,W) (right). The bullets represent the action identifiers of tr
(written under the bullet), and the corresponding labels are represented right
above. The arrows represent the program order < of tr. The set of writes is
W = {1, 2, 3} (from actions 152, 37, and 188 respectively).

The implementations I1 and I2 are said to be equivalent, denoted I1 ≈ I2,
iff I1 � I2 and I2 � I1. Moreover, I1 is strictly stronger than I2, denoted
I1 ≺ I2, iff I1 � I2 and I1 6≈ I2.

Our goal is to find an implementation I which is minimal in the � ordering,
i.e., for which there does not exist an implementation I ′ strictly stronger than I.

4 Definition of Monotonic Prefix Consistency (MPC)

Often called consistent prefix [6,7], the MPC model requires that all sites of the
replicated system agree on the order of write operations (i.e., updates on the
state). More precisely, this means that given two read operations (possibly on
two different sites), one read has to return a list of writes which is a prefix of the
other. Moreover, read operations which execute on the same site are monotonic.
This means that subsequent reads at the same site reflect a non-decreasing prefix
of writes, i.e., the prefix must either increase or remain unchanged. The trace
given in Figure 1 satisfies these constraints.

Note that the order on write operations on which the sites agree does not nec-
essarily satisfy causality among these operations nor real-time. In other words,
the order in which clients submit write operations does not translate into any

8

constraints on the order in which these updates apply at all sites. Moreover, MPC
does not guarantee that a read operation will return all of the preceding writes,
only a prefix of these writes. For instance, some sites can be later than other
sites in applying some updates.

Definition 9. Given two lists ℓ1, ℓ2 ∈ N
∗, we say that ℓ1 is a prefix of ℓ2,

denoted ℓ1 ⊑ ℓ2, if there exists ℓ3 ∈ N
∗ such that ℓ2 = ℓ1 · ℓ3. Moreover, ℓ1 is a

strict prefix of ℓ2, denoted ℓ1 ⊏ ℓ2, if ℓ1 ⊑ ℓ2 and ℓ1 6= ℓ2.

By abuse of notation, we extend the prefix order to elements of Ans, which
are of the form read(ℓ) where ℓ is a list (see Def. 1). Moreover, we also use
the prefix notations for other types of sequences, such as executions. We now
formally define MPC.

Definition 10. MPC is the set of traces (tr,W) where tr = (A,<, label) satisfying
the following conditions:

– Monotonicity: A query aid ′ done after aid on the same site cannot return a
smaller list. For all aid, aid ′ ∈ A, if aid < aid ′, then label(aid) ⊑ label(aid ′).

– Prefix: Queries done on different sites are compatible, in the sense that one
is a prefix of the other. For any all aid, aid ′ ∈ A, label(aid) ⊑ label(aid ′) or
label(aid ′) ⊑ label(aid).

– Consistency: Queries only return elements that come from a write. For all
aid ∈ A, and for any element d ∈ N of label(aid), we have d ∈ W .

5 Feasibility of MPC

In this section, we provide a toy implementation (Figure 2) whose traces are all
in MPC, to show that MPC is indeed implementable. The idea is to let Site 1 decide
on the order of all update operations. In general, the consensus mechanism for
implementing MPC can be arbitrary, and symmetric with respect to sites, but we
present this one for its simplicity.

For ease of presentation, we assume here that update and message handlers
can be different depending on the site. This can be simulated in our original
definition by using the ι function (Def. 2, Section 2), which defines a particular
initial state for each site

Each site maintains a local state (in Q) which is the prefix of updates as
decided by Site 1. Upon receiving an update (line 16), Site i with i > 1 forwards
the update to Site 1. When receiving an update (line 12) or when receiving a
forwarded message (line 20), Site 1 updates its local state, and broadcasts an
Apply messages for the other sites. Finally, when receiving an Apply messages
(line 25), Site i with i > 1, updates its local state.

We assume that the Apply messages sent by Site 1 are received in the same
order in which they are sent, which can be implemented by having Site 1 add
a local version number to each broadcast message, and having sites with i > 1
cache messages until all previous messages have been received. Similarly, we

9

1 // Each site stores an element of Q , defined as a list of numbers
2 type Q = Li s t [Nat]
3
4 abstract class Msg
5 // Forwarded messages go from Site i to Site 1, for all i > 1
6 case class Forwarded(d : Nat) extends Msg
7 // Apply messages originate from Site 1 and go to Site i , for i > 1

8 case class Apply(d : Nat) extends Msg
9

10 // The update handler for Site 1 appends element ‘ upd ’ to q ,
11 // and tells the other sites to do the same with Apply (upd)

12 def update hand le r (q : Q, upd : Upd) = (append (q , upd) , Apply(upd))
13
14 // The update handler for Site i > 1 sends a message Forwarded (upd)

15 // which is destined for Site 1, and does not modify the state
16 def update hand le r (q : Q, upd : Upd) = (q , Forwarded(upd))
17
18 // Message handler for Site 1 (ignores Apply messages)
19 def msg handler (msg : Msg) = msg match {
20 case Forwarded(d) => (append (q , d) , Apply (upd))
21 }
22
23 // Message handler for Site i > 1 (ignores Forwarded messages)

24 def msg handler (msg : Msg) = msg match {
25 case Apply(d) => (append (q , d) , ⊥)
26 }
27
28 // The query handler of any site returns the local state

29 def query hand le r (q : Q) = q

Fig. 2: An implementation of MPC which is centralized at Site 1.

assume that each message which is sent by a site is treat at most once by each
of the other sites. We omit these details in Figure 2. Finally, the query handler
of each site (line 29) simply returns the list maintained in the local state.

We now prove that all the traces of the implementation described in Figure 2
satisfy MPC.

Proposition 1. Let I be the implementation of Figure 2. Then I � MPC.

The formal proof is in Appendix A. It relies on the observation that the
implementation maintains the following invariant:

– (Related to Monotonicity) The list maintained in the local state Q of each
site grows over time.

– (Related to Prefix) At any moment, given two lists ℓ1 and ℓ2 of two sites,
ℓ1 is a prefix of ℓ2 or vice versa. Any list is always a prefix of (or equal to)
the list of Site 1.

– (Related to Consistency) The list of a site only contains values that come
from some update.

6 Nothing Stronger Than MPC in a Distributed Setting

We now proceed to our main result, stating that there exists no convergent
implementation stronger than MPC. Convergent in our setting means that every

10

write action performed should eventually be taken into account by all sites. We
formalize this notion in Section 6.1. This convergence assumption prevents trivial
implementations, for instances ones that do not communicate and always return
the empty list for all queries.

In Section 6.2, we prove several lemmas that hold for all implementations.
We make use of these lemmas to prove our main theorem in Section 6.3.

6.1 Convergence Property

Convergence is formalized using the notion of eventual consistency (see e.g. [8,9]
for definitions similar to the one we use there). A trace is eventually consistent if
every write is eventually propagated to all sites. More precisely, for every action
write(d), the number of queries that do not contain d in their list must be finite.
Note that this implies that all finite traces are eventually consistent.

Definition 11. A trace (tr,W) with tr = (A,<, label) is eventually consistent if
for every d ∈ W , the set {aid ∈ A | d 6∈ label(aid)} is finite. An implementation
is convergent if all of its traces are eventually consistent.

6.2 Properties of Implementations

Lemmas 1, 2, and 3 describe basic closure properties of the set of executions
generated by implementations in our setting. The semantics described in Sec-
tion 2 ensures that new updates and queries can always be performed following
an existing execution. Moreover, queries never modify the state, and therefore
removing a read action from an execution does not affect its validity (Lemma 3).

Lemma 1 (Update Availability). Let I be an implementation. Let e be a
finite execution in JIK, and let (tr,W) = tr(e). Let d ∈ N. Then, there exists an
execution e′ ∈ JIK such that e is a prefix of e′ and tr(e′) = (tr,W ∪ {d}).

Proof. Since e ∈ JIK, we know by Definitions 5 and 6 that e|pid follows I and that
there exists a run q0, . . . , qn for e|pid. Let (qn+1,msg) = update handler(qn, write(d)).
We distinguish two cases:

(1) If msg = ⊥, let e′ = e ·(aid, pid, write(d)), where aid ∈ N is a fresh action
identifier that does not appear in e, and pid is any process identifier in P.

(2) Ifmsg ∈ Msg, let e′ = e·(aid1, pid, write(d))·(aid2, broadcast(mid,msg)),
where aid1, aid2 are fresh action identifiers, and mid is a fresh message identifier.

In both cases, we construct a new run by adding the state qn+1 at the end
of the run q0, . . . , qn (once in case 1, and twice in case 2). By Definition 5,
this ensures that e′|pid follows I, and we then obtain e′ ∈ JIK by Definition 6.
Moreover, we have tr(e′) = (tr,W ∪ {d}), which concludes our proof. �

The next lemma shows that the implementation is available for queries. This
means that given a finite execution, we can perform a query on any site and
obtain an answer, as ensured by the definitions given in Section 2. The proof is
in Appendix B.

11

Lemma 2 (Query Availability). Let I be an implementation. Let e ∈ JIK
be a finite execution and pid ∈ P. Then, there exist aid ∈ N and ℓ ∈ N

∗ such
that the execution e′ = e · (aid, pid, read(ℓ)) belongs to JIK.

We then prove it is possible to remove any query action from an execution.

Lemma 3 (Invisible Reads). Let I be an implementation. Let e ∈ JIK be an
execution (finite or infinite) of the form e1 ·(aid, pid, read(ℓ)) ·e2, where aid ∈ N,
pid ∈ P and ℓ ∈ N

∗. Then, e1 · e2 ∈ JIK.

Lemma 4 shows that, given an infinite sequence of increasing finite execu-
tions e1 . . . , en, . . . that satisfy a fairness condition, the limit execution (which
is infinite) also belongs to JIK. The fairness condition states that each broadcast
that appears in an execution ei must have corresponding receive actions for each
of the other sites pid ∈ P in some executions ej .

Definition 12. Given an infinite sequence of finite sequences e1 . . . , en, . . . ,
such that for all i ≥ 1, ei ⊏ ei+1, the limit e∞ of e1 . . . , en, . . . is the (unique)
infinite sequence such that for all i, ei ⊏ e∞.

Lemma 4 (Limit). Let I be an implementation. Let e1 . . . , en, . . . be an infi-
nite sequence of finite executions, such that for all i ≥ 1, ei ∈ JIK, ei ⊏ ei+1,
and such that for all i ≥ 1, for all broadcast actions in ei, and for all pid ∈ P,
there exists j ≥ 1 such that ej contains a corresponding receive action.

Then, the limit e∞ of e1 . . . , en, . . . belongs to JIK.

We finally prove in Lemma 5 that, given any finite execution e, it is possible
to add a query action that returns a list containing all the elements W appearing
in some write action of e. The proof relies on extending e into an infinite exe-
cution e∞ with an infinite number of queries. Our convergence assumption then
ensures that only finitely many of those queries can ignore W (that is, return
a list that does not contain all elements of W). This shows that there exists a
query operation (actually, infinite many) in e∞ that returns a list containing all
elements of W . We can therefore take the finite prefix of e∞ that ends with this
query operation.

Lemma 5 (Convergence). Let I be a convergent implementation. Let e ∈ JIK
be a finite execution and pid ∈ P. Let W ⊆ N be the set of elements appearing
in an update action of e, i.e., W = {d ∈ N | ∃(aid, pid, write(d)) ∈ e}.

Then, e can be extended in an execution e · e′ · (aid, pid, read(ℓ)) ∈ JIK where
ℓ ∈ N

∗ contains every element of W , i.e., W ⊆ {d ∈ N | d ∈ ℓ}. Moreover, we
can define such an extension e′ that does not contain any query or update actions.

Proof. We build an infinite sequence of finite executions e1, . . . , en, . . . , where
for every i ≥ 1, ei ∈ JIK. Moreover, we have e1 = e and for every i ≥ 1, ei ⊑ ei+1,
and ei+1 is obtained from ei as follows.

For every broadcast action (aid1, pid1, broadcast(mid,msg)) in ei, and for
every pid2 ∈ P, if there is no receive action (, pid2, receive(mid,msg)) in ei, then

12

we add one when constructing ei+1. Moreover, if the message handler specifies
that a messagemsg ′ should be sent whenmsg is received, we add a new broadcast
action that sends msg ′, immediately following the receive action. Finally, using
Lemma 2, we add a query action (read) on site pid.

Then, we define e∞ to be the limit of e1, . . . , en, . . . By Lemma 4, we have
e∞ ∈ JIK. Since I is convergent, we know that e∞ is eventually consistent. This
ensures that for every d ∈ W , out of the infinite number of queries that belong
to e∞, only finitely many do not contain d.

Therefore, there exists i ≥ 1 such that ei ends with a query action that con-
tains every element ofW . By construction, ei is of the form e·e′′·(aid, pid, read(ℓ)).
Using Lemma 3, we remove every query action that appears in e′′, and obtain
an execution of the form e · e′ · (aid, pid, read(ℓ)) where ℓ ∈ N

∗ contains every
element of W , and where e′ does not contain any query or update actions. �

6.3 Nothing Is Stronger Than MPC in a Distributed Setting

We now proceed with the proof that no convergent implementation is strictly
stronger than MPC. We start with an implementation I that is strictly stronger
than MPC and derive a contradiction.

More precisely, using the lemmas proved in Section 6.2, we prove that any
trace of MPC belongs to tr(JIK). First, we show in Lemma 6 that this holds for
finite traces, by using an induction on the number of write operations in the
trace. For each write operation w, we apply Lemma 5 in order to force the sites
to take into account w.

Lemma 6. Let I be a convergent implementation such that I ≺ MPC, and let
t be a finite trace of MPC. Then, there is a finite execution e ∈ JIK such that
tr(e) = t.

Proof. Let t = (tr,W). We proceed by induction on the size of W , denoted n.
Case n = 0. In that case, the set W is empty. First, by definition of JIK,

we have ε ∈ JIK where ε is the empty execution. Then, for each read operation
in t, and using Lemma 2, we add a read operation to the execution. We obtain
an execution e ∈ JIK.

We then have to prove that tr(e) = t, meaning that all the read operations
of e return the empty list, as in t. By our assumption that I ≺ MPC, we know
that tr(e) ∈ MPC. By definition of MPC, and since e contains no write operation,
the Consistency property of MPC ensures that all the read actions of e return the
empty list. Therefore, we have tr(e) = t, which concludes our proof.

Case n > 0. We consider two subcases. (1) There exists a write w ∈ W

whose value does not appear in tr. We consider the trace t′ = (tr,W \ {w}). By
definition of MPC, t′ belongs to MPC, and we deduce by induction hypothesis that
there exists an execution e′ ∈ JIK such that tr(e′) = t′. By Lemma 1, we extend
e′ in an execution e ∈ JIK so that tr(e) = t, which is what we wanted to prove.

(2) All the writes of W appear in the reads of tr. By the Consistency and
Prefix properties of MPC, there exists a non-empty sequence ℓ ∈ N

+ of elements

13

from W , such that all read actions return a prefix of ℓ, and there exist read
actions that return the whole list ℓ.

Let ℓ = ℓ′ · d, where d ∈ N is the last element of ℓ. Let t′ be the trace
(t′r,W \ {d}), such that t′r is the trace tr where every query action labelled by
ℓ is replaced by a query action labelled by ℓ′, and implicitly, every query action
labelled by any prefix of ℓ′ is unchanged. Let R the set of the newly added query
actions, and let P ⊆ P be the set of site identifiers that appear in an action of R.

By definition of MPC, we have t′ ∈ MPC. By induction hypothesis, we deduce
that there exists a finite execution e′ ∈ JIK such that tr(e′) = t′.

Then, by Lemma 1, we add at the end of e′ an update action (on some site
pid ∈ P and with some fresh aid ∈ N), which is of the form (aid, pid, write(d)),
so we get an execution e′′ ∈ JIK such that tr(e′′) = (t′r,W \ {d}∪{d}) = (t′r,W).

Using Lemma 5, we extend e′′ in an execution e′′′ by adding queries to the
sites in P , as many as were replaced by queries in R. Since I ≺ MPC, and since
by Lemma 5, the answers to these queries must contain all the elements of ℓ, we
conclude that the only possible answer for all these queries is the entire list ℓ.

Finally, we use Lemma 3 to remove the queries R from e′′′, and we obtain an
execution in JIK whose trace is t. �

We then extend Lemma 6 to infinite executions.

Theorem 1. Let I be a convergent implementation. Then, I is not strictly
stronger than MPC: I 6≺ MPC.

Proof. Assume that I is strictly stronger than MPC i.e. I ≺ MPC. Our goal is to
prove that MPC � I therefore leading to a contradiction. In terms of traces, we
want to prove that MPC ⊆ tr(JIK).

Let t = (tr,W) ∈ MPC. We need to show that t ∈ tr(JIK).
Case where t is finite. Proven in Lemma 6.
Case where t is infinite. Let tr = (A,<, label). We first order all the

query actions in A as a sequence aid1, . . . , aidn, . . . such that for every i ≥ 1,
label(aidi) ⊑ label(aidi+1), and for every i, j ≥ 1, aidi < aidj (in the program
order of tr) implies i < j. Defining such a sequence is possible thanks to the
Monotonicity property of MPC.

For each i ≥ 1, we define a finite trace ti that contains all query actions aidj
with j ≤ i, and the subset Wi of W that contains all elements appearing in these
query actions, i.e. Wi = {d ∈ W | d ∈ label(aidi)}. Our goal is to construct an
execution ei ∈ JIK such that tr(ei) = ti, and such that for all i ≥ 1, ei ⊏ ei+1.
We then define e∞ as the limit of e1, . . . , en, . . . By Lemma 4, we have e∞ ∈ JIK.
Since tr(e∞) = t, we deduce that t ∈ tr(JIK), which concludes the proof.

We now explain how to construct ei, for every i ≥ 1, by induction on i. Let
e0 be the empty execution and t0 = tr(e0). For i ≥ 0, we define ei+1 by starting
from ei, and extending it as follows. By induction, we know that tr(ei) = ti, and
want to extend it into an execution ei+1 such that tr(ei+1) = ti+1.

The next step of the proof is similar to the proof of Lemma 5. For every
broadcast action (aid1, pid1, broadcast(mid,msg)) in ei, and for every pid2 ∈ P,
if there is no receive action (, pid2, receive(mid,msg)) in ei, then we add one

14

when constructing ei+1. Moreover, if the message handler specifies that a message
msg ′ should be sent when msg is received, we add a new broadcast action that
sends msg ′, immediately following the receive action.

Then, similarly to the construction in Lemma 6, we add update and query
actions (using Lemmas 1, 2, and 5) in order to obtain an execution ei+1 such
that tr(ei+1) = ti+1. �

7 Comparison with Other Consistency Criteria

Relation between MPC and other consistency criteria. Consistency criteria are
usually defined in terms of full traces that contain both the read and write op-
erations in the program order (see e.g., [8]). The definition of trace we used in
this paper (Def. 7, Section 3) puts the writes in an unordered set, unrelated
to the read operations. This choice is justified in large-scale, open, implemen-
tations, such as blockchain protocols. Indeed, in these systems, any participant
can perform a write operation (e.g., a blockchain transaction), and the origin of
the write has no relevance for the protocol.

When considering full traces, MPC as a consistency criterion is strictly weaker
than strong consistency. Indeed, MPC allows a trace where a read preceded by a
write on the same site ignores that write.

As explained in the introduction, MPC is not comparable to causal consistency.
MPC allows full traces that causal consistency forbids and vice versa. Therefore,
our result stating that nothing stronger than MPC that can be implemented in a
distributed setting does not contradict earlier results of [10] and [4], which show
that nothing stronger than variants of causal consistency can be implemented.

Relation with other criteria when using our notion of a trace. When using our
notion of a trace, MPC is strictly stronger than causal consistency. First, MPC is
stronger than causal consistency because every trace of MPC can be produced by
a causally consistent system. The main reason is that our notion of a trace does
not capture any causality relation. Moreover, there are some traces that causal
consistency produces and that do not belong to MPC, e.g. a trace where Site 1 has
a read[1, 2] operation, Site 2 has a read[2, 1], and where write(1) and write(2)
are not causally related as they happen at the same time (this explains that MPC
is strictly stronger than causal consistency).

Moreover, it is interesting to note that, for our notion of a trace, the traces
allowed by MPC are exactly the traces allowed by strong consistency. This entails
that, if the replicated data type is used by clients that only have the observability
defined by our traces, then there is no need to implement strong consistency. In
short, MPC and strong consistency are indistinguishable to these clients.

8 Conclusion

We have investigated the question of what is the strongest consistency crite-
rion that can be implemented when replicating a data structure, in distributed

15

systems under availability and partition-tolerance requirements. Earlier work
had established the impossibility of implementing strong consistency in such a
system model, but left open the question of the strongest criteria that can be
implemented. In this paper we have focused on the Monotonic Prefix Consis-
tency (MPC) criterion. We proposed an implementation of MPC and showed that
no criterion stronger than MPC can be implemented.

It is worth noting that blockchain protocols, such as the Bitcoin protocol [11],
implement MPC with high probability: the traces that the protocol produces are
traces that belong to MPC with high probability. This was shown in [12,13]. More
precisely, the authors proved that the blockchains of two honest participants
are compatible, in the sense that one should be a prefix of the other with high
probability, when ignoring the last blocks4. This property is called consistency
in [12], and it corresponds to the Prefix property we give in Section 4. Moreover,
it was shown [12,13] that the blockchain of an honest participant only grows over
time. This property is called future-self consistency in [12], and it corresponds
to the Monotonicity property we give in Section 4.

In future work we plan to investigate how the strongest achievable consis-
tency criterion depends on observability – that is, the information encoded in
a trace – and study conditions for the (non)existence of a strongest consistency
criterion. We are also interested in extending our result to other system models.
Specifically, answering the question of what is the strongest consistency criterion
that can be implemented in systems where the origin of updates do matter for
the protocol. Also, the question whether MPC is the strongest implementable
consistency criterium in a probabilistic setting, remains open.

References

1. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3) (1990)

2. Brewer, E.: CAP twelve years later: How the “rules” have changed. Computer
45(2) (2012)

3. Gilbert, S., Lynch, N.A.: Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News 33(2) (2002) 51–59

4. Attiya, H., Ellen, F., Morrison, A.: Limitations of highly-available eventually-
consistent data stores. IEEE Transactions on Parallel and Distributed Systems
28(1) (2017) 141–155

5. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7) (July 1978) 558–565

6. Terry, D.: Replicated data consistency explained through baseball. Technical
Report MSR-TR-2011-137, Microsoft Research (October 2011)

7. Guerraoui, R., Pavlovic, M., Seredinschi, D.A.: Trade-offs in replicated systems.
IEEE Data Engineering Bulletin 39 (2016) 14–26

8. Burckhardt, S.: Principles of Eventual Consistency. Now Publishers (October
2014)

4 In Bitcoin-like protocols, the most recent blocks are ignored as they are considered
unsafe to use until newer blocks are appended after them.

16

9. Bouajjani, A., Enea, C., Hamza, J.: Verifying eventual consistency of opti-
mistic replication systems. In Jagannathan, S., Sewell, P., eds.: The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL’14, San Diego, CA, USA, January 20-21, 2014, ACM (2014) 285–296

10. Mahajan, P., Alvisi, L., Dahlin, M.: Consistency, availability, convergence. Techni-
cal Report TR-11-22, Computer Science Department, University of Texas at Austin
(May 2011)

11. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
12. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-

chronous networks. In: Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, EUROCRYPT’17. Volume 10211 of Lecture
Notes in Computer Science., Paris, France (April 2017) 643–673

13. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and
applications. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Springer (2015) 281–310

17

A Proof of Feasability of MPC

Proposition 1. Let I be the implementation of Figure 2. Then I � MPC.

Proof. Let e ∈ JIK, we establish an inductive invariant that holds for every
finite prefix e′ of e. Let A be the set of action identifiers of e′. Let ℓ ∈ N

∗ be the
sequence of values that appear in a broadcast message Apply from Site 1, in the
order they appear in e′.

Let P be the set of process identifiers. For each site pid ∈ P, consider the
unique run r for the projection e′|pid, and let ℓpid ∈ N

∗ be the sequence main-
tained in the local state of Site pid at the end of the run r.

Let t′ = tr(e′) be the trace of e′, with t′ = (tr,W).
Then, we have the following properties.

1. For every Apply(d) message with d ∈ N that appears in e′ (from Site 1), we
have d ∈ W .

2. For every Forwarded(d) message with d ∈ N that appears in e′ (from Site i

with i > 1), we have d ∈ W .
3. The elements of ℓ are in W .
4. For every pid ∈ P, lpid ⊑ ℓ.
5. For every query (, pid, read ℓ′) in e with pid ∈ P, we have ℓ′ ⊑ ℓpid.
6. Consistency: For all aid ∈ A, and for any element d ∈ N of label(aid), we

have d ∈ W .
7. Prefix: For any all aid, aid ′ ∈ A, label(aid) ⊑ label(aid ′) or label(aid ′) ⊑

label(aid).
8. Monotonicity: For all aid, aid ′ ∈ A, if aid < aid ′, then label(aid) ⊑

label(aid ′).

We can see that this invariant holds for the empty execution, and that any
action that the implementation can take maintains it.

B Closure Properties of Implementations

Lemma 2 (Query Availability). Let I be an implementation. Let e ∈ JIK be
a finite execution and pid ∈ P. Then, there exist aid ∈ N and ℓ ∈ N

∗ such that
the execution e′ = e · (aid, pid, read(ℓ)) belongs to JIK.

Proof. Similar to the proof of Lemma 1, but using the query handler, instead of
the update handler. This proof is also simpler, as there is no need to consider
messages, since the query handler cannot broadcast any message. Therefore, in
this proof, only case 1 needs to be considered. �

Lemma 3 (Invisible Reads). Let I be an implementation. Let e ∈ JIK be an
execution (finite or infinite) of the form e1 ·(aid, pid, read(ℓ)) ·e2, where aid ∈ N,
pid ∈ P and ℓ ∈ N

∗. Then, e1 · e2 ∈ JIK.

Proof. This is a direct consequence of Definition 5, which specifies that query
actions do not modify the local state of sites, and do not broadcast messages. �

18

Lemma 4 (Limit). Let I be an implementation. Let e1 . . . , en, . . . be an infinite
sequence of finite executions, such that for all i ≥ 1, ei ∈ JIK, ei ⊏ ei+1, and
such that for all i ≥ 1, for all broadcast actions in ei, and for all pid ∈ P, there
exists j ≥ 1 such that ej contains a corresponding receive action.

Then, the limit e∞ of e1 . . . , en, . . . belongs to JIK.

Proof. According to Definition 6, we have three points to prove.
(1) (Projection) First, we want to show that, for all pid ∈ P, the projection

e∞|pid follows I. For all i ≥ 1, we know that ei ∈ JIK, and deduce that ei|pid
follows I. Let ri be the run of ei|pid. Note that for all i ≥ 1, we have ri ⊏ ri+1.
Let r∞pid be the limit of the runs r1, . . . , rn, . . . By construction, r∞pid is a run of
e∞|pid, which shows that e∞|pid follows I.

(2) (Causality) We need to prove that every receive action σ in e∞ has a
corresponding broadcast action σ′ that precedes it in e∞. Let ei be a prefix of
e∞ that contains σ. Since ei ∈ JIK, we know that there exists a broadcast action
σ′ corresponding to σ, and that precedes σ in ei. Finally, since ei ⊏ e∞, σ′

precedes σ in e∞.
(3) (Fairness) We want to prove that for every broadcast action σ of e∞ and

for every site pid ∈ P, there exists a corresponding receive action σ′. Let ei be a
prefix of e∞ that contains σ. By assumption of the current lemma, there exists
j ≥ 1 such that ej contains a receive action σ′ corresponding to σ. Moreover,
since ej ⊏ e∞, σ′ belongs to e∞, which concludes our proof. �

	Monotonic Prefix Consistency in Distributed Systems

