Skip to main content

Optical Coherence Tomography for Fingerprint Presentation Attack Detection

  • Chapter
  • First Online:

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

New research in fingerprint biometrics uses optical coherence tomography (OCT) technology to acquire fingerprints from where they originate below the surface of the skin. The penetrative nature of this technology means that rich information is available regarding the structure of the skin. This access, in turn, enables new techniques in detecting spoofing attacks, and therefore also introduces mitigation steps against current presentation attack methods. These techniques include the ability to detect fake fingers; fake layers applied above the skin; differentiate between fakes and surface skin conditions; and liveness detection based on, among others, the analysis of eccrine glands and capillary blood flow from below the surface of the skin. Through advances in the OCT hardware and processing techniques, one has increased capabilities to capture large fingerprint volumes at a reasonable speed at the relevant necessary resolution to detect current known attempts at spoofing. The nature of OCT and the data it produces means that a truly high-security fingerprint acquisition system may exist in the future. This work serves to detail current research in this domain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Maltoni D, Maio D, Jain AK, Prabhakar S (2009) Handbook of fingerprint recognition. Springer Science & Business Media, New York

    Book  Google Scholar 

  2. Breckenridge K (2005) The biometric state: the promise and peril of digital government in the new South Africa. J S Afr Stud 31(2):267–282

    Article  Google Scholar 

  3. Mthethwa S, Barbour G, Thinyane M (2016) An improved smartcard for the South African social security agency (SASSA): a proof of life based solution. In: 2016 international conference on information science and security (ICISS). IEEE, pp 1–4

    Google Scholar 

  4. Anand A, Labati RD, Genovese A, Munoz E, Piuri V, Scotti F, Sforza G (2016) Enhancing fingerprint biometrics in automated border control with adaptive cohorts. In: 2016 IEEE symposium series on computational intelligence (SSCI). IEEE, pp 1–8

    Google Scholar 

  5. Jain AK, Cao K, Arora SS (2014) Recognizing infants and toddlers using fingerprints: increasing the vaccination coverage. In: 2014 IEEE international joint conference on biometrics (IJCB). IEEE, pp 1–8

    Google Scholar 

  6. Yukawa M (2004) Home security system. US Patent App. 10/909,354

    Google Scholar 

  7. British Broadcasting Corporation (BBC): credit card with a fingerprint sensor revealed by Mastercard (2017). http://www.bbc.com/news/technology-39643453. Accessed 15 August 2017

  8. Sussman A, Cukic B, McKeown P, Becker K, Zektser G, Bataller C (2012) IEEE certified biometrics professional (CBP) learning system. Module 3: biometric system design and evaluation. IEEE

    Google Scholar 

  9. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al (1991) Optical coherence tomography. Science (New York, NY) 254(5035):1178

    Article  Google Scholar 

  10. Fercher AF, Hitzenberger CK, Kamp G, El-Zaiat SY (1995) Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun 117(1–2):43–48

    Article  Google Scholar 

  11. Gabriele ML, Wollstein G, Ishikawa H, Kagemann L, Xu J, Folio LS, Schuman JS (2011) Optical coherence tomography: history, current status, and laboratory work. Investig Ophthalmol Vis Sci 52(5):2425–2436

    Article  Google Scholar 

  12. Verga N, Mirea D, Busca I, Poroschianu M, Zarma S, Grînişteanu L, Gheorghe C, Stan C, Verga M, Vasilache R (2014) Optical coherence tomography in oncological imaging. Romanian Rep Phys 66(1):75–86

    Google Scholar 

  13. Welzel J (2001) Optical coherence tomography in dermatology: a review. Skin Res Technol 7(1):1–9

    Article  Google Scholar 

  14. Hamdan R, Gonzalez RG, Ghostine S, Caussin C (2012) Optical coherence tomography: from physical principles to clinical applications. Arch Cardiovasc Dis 105(10):529–534

    Article  Google Scholar 

  15. Ju MJ, Lee SJ, Min EJ, Kim Y, Kim HY, Lee BH (2010) Evaluating and identifying pearls and their nuclei by using optical coherence tomography. Opt Express 18(13):13,468–13,477

    Article  Google Scholar 

  16. Liang H, Cid MG, Cucu RG, Dobre G, Podoleanu AG, Pedro J, Saunders D (2005) En-face optical coherence tomography-a novel application of non-invasive imaging to art conservation. Opt Express 13(16):6133–6144

    Article  Google Scholar 

  17. Darlow LN, Singh A, Moolla Y (2016) Damage invariant and high security acquisition of the internal fingerprint using optical coherence tomography. In: World congress on internet security

    Google Scholar 

  18. Sharma A, Singh A, Roberts T, Ramokolo R, Strauss H (2016) A high speed OCT system developed at the CSIR national laser centre. In: The 61st annual conference of the South African institute of physics. University of Cape Town

    Google Scholar 

  19. Darlow LN, Connan J, Singh A (2016) Performance analysis of a hybrid fingerprint extracted from optical coherence tomography fingertip scans. In: 2016 international conference on biometrics (ICB). IEEE, pp 1–8

    Google Scholar 

  20. Siddiqui M, Tozburun S, Vakoc BJ (2016) Simultaneous high-speed and long-range imaging with optically subsampled OCT (conference presentation). In: SPIE BiOS, pp 96,970–96,970 (International society for optics and photonics)

    Google Scholar 

  21. Babler WJ (1991) Embryologic development of epidermal ridges and their configurations. Birth Defects Orig Artic Ser 27(2):95–112

    Google Scholar 

  22. Cable News Network (CNN): Hackers recreate fingerprints using public photos (2014). http://money.cnn.com/2014/12/30/technology/security/fingerprint-hack/index.html. Accessed 7 August 2017

  23. Galbally J, Fierrez J, Ortega-Garcia J, Cappelli R (2014) Fingerprint anti-spoofing in biometric systems. Handbook of biometric anti-spoofing. Springer, Berlin, pp 35–64

    Google Scholar 

  24. Cheng Y, Larin KV (2006) Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis. Appl Opt 45(36):9238–9245

    Article  Google Scholar 

  25. Cheng Y, Larin KV (2007) In vivo two- and three-dimensional imaging of artificial and real fingerprints with optical coherence tomography. IEEE Photonics Technol Lett 19(20):1634–1636

    Article  Google Scholar 

  26. Chang S, Cheng Y, Larin KV, Mao Y, Sherif S, Flueraru C (2008) Optical coherence tomography used for security and fingerprint-sensing applications. IET Image Process 2(1):48–58

    Article  Google Scholar 

  27. Bossen A, Lehmann R, Meier C (2010) Internal fingerprint identification with optical coherence tomography. IEEE Photonics Technol Lett 22(7):507–509

    Article  Google Scholar 

  28. Liu M, Buma T (2010) Biometric mapping of fingertip eccrine glands with optical coherence tomography. IEEE Photonics Technol Lett 22(22):1677–1679

    Google Scholar 

  29. Jain AK, Chen Y, Demirkus M (2007) Pores and ridges: high-resolution fingerprint matching using level 3 features. IEEE Trans Pattern Anal Mach Intell 29(1):15–27

    Article  Google Scholar 

  30. Nasiri-Avanaki MR, Meadway A, Bradu A, Khoshki RM, Hojjatoleslami A, Podoleanu AG (2011) Anti-spoof reliable biometry of fingerprints using en-face optical coherence tomography. Opt Photonics J 1(03):91

    Article  Google Scholar 

  31. Liu G, Chen Z (2013) Capturing the vital vascular fingerprint with optical coherence tomography. Appl Opt 52(22):5473–5477

    Article  Google Scholar 

  32. Dsouza RI, Zam A, Subhash HM, Larin KV, Leahy M (2013) In vivo microcirculation imaging of the sub surface fingertip using correlation mapping optical coherence tomography (cmOCT). In: SPIE BiOS, pp 85,800M–1–85,800M–5 (International society for optics and photonics)

    Google Scholar 

  33. Jonathan E, Enfield J, Leahy MJ (2011) Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images. J Biophotonics 4(9):583–587

    Google Scholar 

  34. McNamara PM, Dsouza R, ORiordan C, Collins S, OBrien P, Wilson C, Hogan J, Leahy MJ (2016) Development of a first-generation miniature multiple reference optical coherence tomography imaging device. J Biomed Opt 21(12):126,020–126,020

    Article  Google Scholar 

  35. Ingress: innovative technology for fingerprint live scanners (2017). http://www.ingress-project.eu/. Accessed 27 July 2017

  36. Meissner S, Breithaupt R, Koch E (2013) Defense of fake fingerprint attacks using a swept source laser optical coherence tomography setup. In: SPIE LASE, pp 86,110L–1–86,110L–4 (International society for optics and photonics)

    Google Scholar 

  37. Sousedik C, Breithaupt R, Busch C (2013) Volumetric fingerprint data analysis using optical coherence tomography. In: 2013 international conference of the biometrics special interest group (BIOSIG). IEEE, pp 1–6

    Google Scholar 

  38. Sousedik C, Busch C (2014) Presentation attack detection methods for fingerprint recognition systems: a survey. IET Biom 3(4):219–233

    Article  Google Scholar 

  39. Breithaupt R, Sousedik C, Meissner S (2015) Full fingerprint scanner using optical coherence tomography. In: International workshop on biometrics and forensics. IEEE, pp 1–6

    Google Scholar 

  40. Sousedik C, Busch C (2014) Quality of fingerprint scans captured using optical coherence tomography. In: International joint conference on biometrics. IEEE, pp 1–8

    Google Scholar 

  41. Sousedik C, Breithaupt R (2017) Full-fingerprint volumetric subsurface imaging using Fourier-domain optical coherence tomography. In: 2017 5th international workshop on biometrics and forensics (IWBF). IEEE, pp 1–6

    Google Scholar 

  42. Sousedik C, Breithaupt R, Bours P (2017) Classification of fingerprints captured using optical coherence tomography. In: Scandinavian conference on image analysis. Springer, pp 326–337

    Google Scholar 

  43. Darlow LN, Webb L, Botha N (2016) Automated spoof-detection for fingerprints using optical coherence tomography. Appl Opt 55:3387–3396

    Article  Google Scholar 

  44. Darlow LN, Connan J, Akhoury SS (2015) Internal fingerprint zone detection in optical coherence tomography fingertip scans. J Electron Imaging 24, 24 – 24 – 14 (2015). https://doi.org/10.1117/1.JEI.24.2.023027

    Article  Google Scholar 

  45. Cubo N, Garcia M, del Cañizo JF, Velasco D, Jorcano JL (2016) 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication 9(1), 015,006

    Article  Google Scholar 

  46. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaseen Moolla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moolla, Y., Darlow, L., Sharma, A., Singh, A., van der Merwe, J. (2019). Optical Coherence Tomography for Fingerprint Presentation Attack Detection. In: Marcel, S., Nixon, M., Fierrez, J., Evans, N. (eds) Handbook of Biometric Anti-Spoofing. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-92627-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92627-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92626-1

  • Online ISBN: 978-3-319-92627-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics