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Abstract. In the Web of Data, real-world entities are represented by
means of resources, for instance the southern Spanish city “Seville” that
is represented by means of the resource that is available at http://
es.dbpedia.org/page/Sevilla in the DBpedia dataset. Link rules are
intended to link resources that are different, but represent the same
real-world entities; for instance the resource that is available at https://
www.wikidata.org/wiki/Q8717 represents exactly the same real-world
entity as the resource aforementioned. A link rule may establish that
two resources that represent cities should be linked as long as the GPS
coordinates are the same. Such rules are then paramount to integrating
web data, because otherwise programs would deal with every resource
independently from the other. Knowing that the previous resources rep-
resent the same real-world entity allows them to merge the information
that they provide independently (which is commonly known as integrat-
ing link data). State-of-the-art link rules are learnt by genetic program-
ming systems and build on comparing the values of the attributes of
the resources. Unfortunately, this approach falls short in cases in which
resources have similar values for their attributes, but represent different
real-world entities. In this paper, we present a proposal that hybridises a
genetic programming system that learns link rules and an ad-hoc filter-
ing technique that bootstraps them to decide whether the links that they
produce must be selected or not. Our analysis of the literature reveals
that our approach is novel and our experimental analysis confirms that
it helps improve the F1 score, which is defined in the literature as the
harmonic mean of precision and recall, by increasing precision without a
significant penalty on recall.

1 Introduction

The Web of Data has made it possible for programs to have access to a variety
of data about real-world entities. Furthermore, the Linked-Data principles [4]
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support the idea that resources that are different but represent the same real-
world entities must be linked so as to facilitate data integration. Link rules are
intended to help link resources automatically.

The literature provides several proposals to machine learn link rules by means
of genetic programming systems [2,11,12,19,20]. Such rules build on transfor-
mation and similarity functions that are applied to the values of the attributes
of two resources to check if they can be considered similar enough (by attributes
we mean their datatype properties); if they are, then the input resources are
assumed to represent the same real-world entity and are then linked; if they are
not, then the input resources are kept apart. Our experience confirms that such
link rules fall short because some resources that represent different real-world
entities have attributes with similar values. For instance, think of the many dif-
ferent authors who have the same name or the many different films that have
similar titles.

In this paper, we present a hybrid approach to the problem: first, we use a
state-of-the-art genetic programming system to learn a set of link rules; we then
select a base link rule and apply it in order to obtain a collection of candidate
links; the remaining rules are then bootstrapped to analyse the neighbours of
the resources involved in each candidate link (the neighbours are the resources
that can be reached by means of their object properties); finally, we analyse how
similar they are in order decide which of the candidate links must be selected
as true positives and which must be discarded as false positives. Our analysis
of the related work unveils that this is a novel approach since current state-
of-the-art link rules do no take the neighbours into account. Our experimental
analysis confirms that precision can be improved by 68% in average, with an
average −10% impact on recall; overall, the average improvement regarding the
F1 score is 47%. We also conducted the Iman-Davenport test to check that these
differences are statistically significant regarding precision and the F1 score, but
not regarding recall. Our conclusion is that ours is a very good approach to help
programs integrate the data that they fetch from the Web of Data.

The rest of the article is organised as follows: Sect. 2 reports on the related
work; Sect. 3 provides the details of our proposal; Sect. 4 presents our evaluation
results; finally, Sect. 5 summarises our conclusions.

2 Related Work

The earliest techniques to learn link rules were devised in the field of traditional
databases, namely: de-duplication [7,17], collective matching [1,3,6,14,21], and
entity matching [15]. They set a foundation for the researchers who addressed
the problem in the context of the Web of Data, where data models are much
richer and looser than in traditional databases.

Some of the proposals that are specifically-tailored to web data work on a
single dataset [10,16], which hinders their general applicability; there are a few
that attempt to find links between different datasets [5,8,9,13], but they do not
take the neighbours of the resources being linked into account, only the values of



the attributes; that is, they cannot make resources with similar values for their
attributes apart in cases in which they represent different real-world entities. An
additional problem is that they all assume that data are modelled by means of
OWL ontologies. Unfortunately, many common datasets in the Web of Data do
not rely on OWL ontologies, but on simple RDF vocabularies that consists of
classes and properties whose relationships and constraints are not made explicit.

The previous problems motivated several authors to work on techniques that
are specifically tailored to work with RDF datasets. Most such proposals rely
on genetic programming algorithms [11,12,19,20] in which chromosomes encode
the link rules as trees, which facilitates performing cross-overs and mutations.
They differ regarding the expressivity of the language used to encode the link
rules and the heuristics used to implement the selection, replacement, cross-over,
and mutation operators, as well as the performance measure on which the fitness
function relies. Isele and Bizer [11,12] contributed with a supervised proposal
called Genlink. It is available with the Silk framework [24], which is gaining
impetus thanks to many real-world projects [23]. It uses a tournament selection
operator, a generational replacement operator, custom cross-over and mutation
operators, and its fitness function relies on the Matthews correlation coefficient.
It can use a variety of custom string transformation functions and the Leven-
shtein, Jaccard, Numeric, Geographic, and Date string similarity measures. An
interesting feature is that the size of the link rules must not be pre-established at
design time, but it is dynamically adjusted during the learning process. Ngomo
and Lyko [19] contributed with a supervised proposal called Eagle, which is avail-
able with the LIMES framework [18]. It uses a tournament selection operator,
a μ + β replacement operator, tree cross-over and mutation operators, and its
fitness function relies on the F1 score. It does not use transformation functions,
but the Levenshtein, Jaccard, Cosine, Q-Grams, Overlap, and Trigrams string
similarity functions. The maximum size of the link rules must be pre-established
at design time. Nikolov et al. [20] contributed with an unsupervised proposal.
It uses a roulette-wheel selection operator, an elitist replacement operator, a
tree cross-over operator, a custom mutation operator, and a pseudo F1 fitness
function. Transformations are not taken into account, but the library of similar-
ity functions includes Jaro, Levenshtein, and I-Sub. The maximum size of the
link rules is also set at design time. There is a diverging proposal by Soru and
Ngomo [22]. It supports the idea of using common machine-learning techniques
on a training set that consists in a vectorisation of the Cartesian product of the
resources in terms of the similarity of their attributes. Transformation functions
are not taken into account and the only string similarity functions considered
are Q-Grams, Cosine, and Levenshtein. Whether the size of the rules must be
pre-set or not depends on the underlying machine learning technique. Unfortu-
nately, none of the proposals that work on RDF datasets take the neighbours of
the resources into account.

The previous analysis, makes it clear that the state of the art does not account
for a proposal to link resources in RDF datasets that takes their neighbours into
account. Our proposal is specifically-tailored to work with such datasets and it



is novel in that it is not intended to generate link rules, but leverages the rules
that are learnt with other proposals and bootstraps them in order to analyse the
neighbours, which our experimental analysis confirms that has a positive impact
on precision without degrading recall.

3 Our Proposal

Our proposal consists in two components, namely: the first one learns link rules
and the second one filters out the links that they produce.

The link rule learner is based on Genlink [12], which is a state-of-the-art
genetic programming system that has proven to be able to learn good link rules
for many common datasets. It is well-documented in the literature, so we focus on
describing the second one, which constitutes our original contribution. The filter
is an ad-hoc component that works as follows: it takes a link rule and executes
it to produce a set of candidate links; then, it analyses the neighbours of the
resources involved in each candidate link by bootstrapping the remaining rules;
links in which the corresponding neighbours are similar enough are preserved as
true positive links while the others are discarded as false positive links.

Below, we present the details of the filter, plus an ancillary method that helps
measure how similar the neighbours of two resources are.

Example 1. Figure 1 presents two sample datasets that are based on the DBLP
and the NSF datasets. The resources are depicted in greyed boxes whose shapes
encode their classes (i.e., the value of property rdf :type), the properties are rep-
resented as labelled arrows, and the literals are encoded as strings. The genetic
programming component learns the following link rules in this scenario, which
we represent using a Prolog-like notation for the sake of readability:

r1: link(A,R) if rdf : type(A) = dblp:Author, rdf :type(R) = nsf :Researcher,

NA = dblp:name(A), NR = nsf :name(R),
levenstein(lfname(NA), lfname(NR)) > 0.80.

r2: link(A,P ) if rdf : type(A) = dblp:Article, rdf :type(P ) = nsf :Paper,

TA = dblp:title(A), TP = nsf :title(P ),
jaccard(lowercase(TA), lowercase(TP )) > 0.65.

where levenstein and jaccard denote the well-known string similarity functions
(normalised to interval [0.00, 1.00]), lfname is a function that normalises peo-
ple’s names as “last name, first name”, and lowercase is a function that changes
a string into lowercase.

Intuitively, link rule r1 is applied to a resource A of type dblp:Author and
a resource R of type nsf :Researcher; it computes the normalised Levenshtein
similarity between the normalised names of the author and the researcher; if it
is greater than 0.80, then the corresponding resources are linked. Link rule r2
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Fig. 1. Running example.

should now be easy to interpret: it is applied to a resource A of type dblp:Article
and a resource P of type nsf :Paper and links them if the normalised Jaccard
similarity amongst the lowercase version of the title of article A and the title of
paper P is greater than 0.65.

It is not difficult to realise that link rule r1 links resources dblp:weiwang and
nsf :weiwang1 or dblp:binliu and nsf :binwliu, which are true positive links, but
also dblp:weiwang and nsf :weiwang2, which is a false positive link. In cases like
this, the only way to make a difference between such resources is to analyse their
neighbours, be them direct (e.g., dblp:weiwang and dblp:article2) or transitive
(e.g., nsf :weiwang1 and nsf :paper2). �

3.1 Filtering Links

Figure 2 presents the method to filter links. It works on a base link rule r, a set
of supporting link rules S, a source dataset D1, a companion dataset D2, and
a threshold θ that we explain later. It returns K, which is the subset of links
produced by base link rule r that seem to be true positive links.



Fig. 2. Method to filter links.

The method first initialises K to an empty set, stores the source and the
target classes of the base link rule in sets C1 and C2, respectively, and the links
that result from applying it to the source and the companion datasets in set L1.

The main loop then iterates over the set of supporting link rules using variable
r′. In each iteration, it first computes the sets of source and target classes involved
in link rule r′, which are stored in variables C ′

1 and C ′
2, respectively; next, it finds

the set of paths P1 that connect the source classes in C1 with the source classes
in C ′

1 in dataset D1; similarly, it finds the set of paths P2 that connect the target
classes in C2 with the target classes in C ′

2 in dataset D2. By path between two
sets of classes, we mean a sequence of object properties that connect resources
with the first set of classes to resources with the second set of classes, irrespective
of their direction. Simply put: the idea is to find the way to connect the resources
linked by the base link rule with the resources linked by the supporting link rule,
which is done by the intermediate and the inner loops.

The intermediate loop iterates over the set of pairs of paths (p1, p2) from the
Cartesian product of P1 and P2. If there is at least a pair of such paths, it then
means that the resources involved in the links returned by base link rule r might
have some neighbours that might be linked by supporting link rule r′.

The inner loop iterates over the collection of links (a, b) in set L1. It first finds
the set of resources A that are reachable from resource a using path p1 in source
dataset D1 and the set of resources B that are reachable from resource b using
path p2 in the companion dataset D2. Next, the method applies supporting link
rule r′ to the source and the companion dataset and intersects the resulting links



with A × B so as to keep resources that are not reachable from a or b apart;
the result is stored in set E. It then computes the similarity of sets A and B;
intuitively, the higher the similarity, the more likely that resources a and b refer
to the same real-world entity. If the similarity is equal or greater than threshold
θ, then link (a, b) is added to set K; otherwise, it is filtered out. When the main
loop finishes, set K contains the collection of links that involve neighbours that
are similar enough according to the supporting rules.

We do not provide any additional details regarding the algorithms to find
paths or resources since they can be implemented using Dijkstra’s algorithm to
find the shortest paths in a graph. Computing the similarity coefficient is a bit
more involved, so we devote a subsection to this ancillary method below.

Example 2. In our running example, link rule r1 is the base link rule, i.e., we are
interested in linking authors and researchers, and we use link rule r2 as the sup-
port link rule, i.e., we take their articles and papers into account. Their source
classes are C1 = {dblp:Author} and C ′

1 = {dblp:Article}, respectively, and their
target classes are C2 = {nsf :Researcher} and C ′

2 = {nsf :Paper}, respectively.
Link rule r1 returns the following links: L1 = {(dblp:weiwang, nsf :weiwang1),
(dblp:weiwang, nsf :weiwang2), (dblp:binliu, nsf :binwliu)}; note that the first
and the third links are true positive links, but the second one is a false positive
link. Link rule r2 returns the following links: L2 = {(dblp:article1, nsf :paper3),
(dblp:article2, nsf :paper2), (dblp:article4, nsf :paper2), (dblp:article5,
nsf :paper5)}, which are true positive links.

The sets of paths between the source and target classes of r1 and r2 are
P1 = {〈dblp:writtenBy〉} and P2 = {〈nsf :leads, nsf :supports〉}. Now, the links
in L1 are scanned and the resources that can be reached from the resources
involved in each link using the previous paths are fetched.

Link l1 = (dblp:weiwang, nsf :weiwang1) is analysed first. The method finds
A = {dblp:article1, dblp:article2, dblp:article3, dblp:article4} by following
resource dblp:weiwang through path 〈dblp:writtenBy〉; similarly, it finds B =
{nsf :paper1, nsf :paper2, nsf :paper3} by following resource nsf :weiwang1
through path 〈nsf :leads, nsf :supports〉. Now supporting link rule r2 is applied
and the results are intersected with A×B so as to keep links that are related to
l1 only; the result is E = {(dblp:article1, nsf :paper3), (dblp:article2,
nsf :paper2), (dblp:article4, nsf :paper2)}. Then, the similarity of A and B in
the context of E is computed, which returns 0.67; intuitively, there are chances
that l1 is a true positive link.

Link l2 = (dblp:weiwang, nsf :weiwang2) is analysed next. The method
finds A = {dblp:article1, dblp:article2, dblp:article3, dblp:article4} by following
resource dblp:weiwang through path 〈dblp:writtenBy〉; next, it finds B =
{nsf :paper4} by following resource nsf :weiwang2 through path 〈nsf :leads,
nsf :supports〉. Now supporting link rule r2 is applied and the result is inter-
sected with A × B, which results in E = ∅. In such a case the similarity is zero,
which intuitively indicates that it is very likely that l2 is a false positive link.

Link l3 = (dblp:binliu, nsf :binwliu) is analysed next. The method finds A =
{dblp:article5} by following resource dblp:binliu through path 〈dblp:writtenBy〉;



Fig. 3. Method to compute similarity.

next, it finds B = {nsf :paper5} by following resource nsf :binwliu through path
〈nsf :leads, nsf :supports〉. Now supporting link rule r2 is applied and the result
is intersected with A × B, which results in E = {(dblp:article5, nsf :paper5)}.
The similarity is now 1.00, i.e., it is very likely that link l3 is a true positive link.

Assuming that θ is set to, e.g., 0.50, the filterLinks method would return
K = {(dblp:weiwang, nsf :weiwang1), (dblp:binliu, nsf :binwliu)}. Note that the
previous value of θ is intended for illustration purposes only because the running
example must necessarily have very little data.

3.2 Computing Similarity

Figure 3 shows our method to compute similarities. Its input consists of sets A
and B, which are two sets of resources, and E, which is a set of links between
them. It returns the Szymkiewicz-Simpson overlapping coefficient, namely:

overlap(A,B) =
|A ∩ B|

min{|A|, |B|}
The previous formula assumes that there is an implicit equality relation to

compute A ∩ B, |A|, or |B|. In our context, this relation must be inferred from
the set of links E by means of Warshall’s algorithm to compute the reflexive,
commutative, transitive closure of relation E, which we denote as E�.

The method to compute similarities relies on two ancillary functions, namely:
reduce, which given a set of resources X and a set of links E returns a set whose
elements are subsets of X that are equal according to E�, and intersect, which
given two reduced sets of resources X and Y and a set of links E returns the
intersection of X and Y according to E�. Their definitions are as follows:

reduce(X,E) = {W | W ∝ W ⊆ X ∧ W × W ⊆ E�)}
intersect(X,Y,E) = {W | W ∝ W ⊆ X ∧ ∃W ′ : W ′ ⊆ Y ∧ W × W ′ ∈ E�}

where X ∝ φ denotes the maximal set X that fulfils predicate φ, that is:

X ∝ φ ⇐⇒ φ(X) ∧ ( ∃X ′ : X ⊆ X ′ ∧ φ(X ′))

The method to compute similarities then works as follows: it first reduces the
input sets of resources A and B according to the set of links E; it then computes
the intersection of both reduced sets; finally, it computes the similarity using
Szymkiewicz-Simpson’s formula on the reduced sets.



Example 3. Analysing link l1 = (dblp:weiwang, nsf :weiwang1) results in sets
A = {dblp:article1, dblp:article2, dblp:article3, dblp:article4}, B = {nsf :paper1,
nsf :paper2, nsf :paper3}, and E = {(dblp:article1, nsf :paper3), (dblp:article2,
nsf :paper2), (dblp:article4, nsf :paper2)}. If E is interpreted as an equality
relation by computing its reflexive, symmetric, transitive closure, then it is
not difficult to realise that dblp:article2 and dblp:article4 can be considered
equal, because dblp:article2 is equal to nsf :paper2 and nsf :paper2 is equal to
dblp:article4. Thus, set A is reduced to A′ = {{dblp:article1}, {dblp:article2,
dblp:article4}, {dblp:article3}} and set B is reduced to B′ = {{nsf :paper1},
{nsf :paper2}, {nsf :paper3}}. As a conclusion, |A′ ∩ B′| = |{{dblp:article1,
nsf :paper3}, {dblp:article2, dblp:article4, nsf :paper2}}| = 2, |A′| = 3, and
|B′| = 3; so the similarity is 0.67.

When link l2 = (dblp:weiwang, nsf :weiwang2) is analysed, A =
{dblp:article1, dblp:article2, dblp:article3, dblp:article4}, B = {nsf :paper4}, and
E = ∅. Since the equality relation E� is then empty, the similarity is zero because
the intersection between the reductions of sets A and B is empty.

In the case of link l3 = (dblp:binliu, nsf :binwliu), A = {dblp:article5}, B =
{nsf :paper5}, and E = {(dblp:article5, nsf :paper5)}. As a conclusion, |A′∩B′| =
|{{dblp:article5, nsf :paper5}}| = 1, |A′| = 1, and |B′| = 1, where A′ and B′

denote, respectively, the reductions of sets A and B; so the similarity is 1.00. �

4 Experimental Analysis

In this section, we first describe our experimental environment and then comment
on our results.

Computing facility: We run our experiments on a virtual computer that was
equipped with four Intel Xeon E5-2690 cores at 2.60 GHz and 4 GiB of RAM.
The operating system was CentOS Linux 7.3.

Prototype: We implemented our proposal with Java 1.8 and the following com-
ponents: the Genlink implementation from the Silk Framework 2.6.0 to generate
link rules, Jena TDB 3.2.0 to work with RDF data, ARQ 3.2.0 to work with
SPARQL queries, and Simmetrics 1.6.2, SecondString 2013-05-02, and JavaS-
tringSimilarity 1.0.1 to compute string similarities.

Evaluation datasets:1 We used the following datasets: DBLP, NSF, BBC,
DBpedia, IMDb, RAE, Newcastle, and Rest. We set up the following scenarios:
(1) DBLP–NSF, which focuses on the top 100 DBLP authors and 130 principal
NSF researchers with the same names; (2) DBLP–DBLP, which focuses on the
9 076 DBLP authors with the same names who are known to be different people;
(3) BBC–DBpedia, which focuses on 691 BBC movies and 445 DBpedia films
that have similar titles; (4) DBpedia–IMDb, which focuses on 96 DBpedia movies
and 101 IMDb films that have similar titles; (5) RAE–Newcastle, which focuses

1 The datasets are available at https://goo.gl/asvKQV.
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on 108 RAE publications and 98 Newcastle papers that are similar; and (6) Rest–
Rest, which focuses on 113 and 752 restaurants published by OAEI.

Baseline: Our baseline was the Genlink implementation from the Silk Frame-
work 2.6.0, which is a state-of-the-art genetic programming system to learn link
rules.

Measures: We measured the number of links returned by each proposal (Links),
precision (P ), recall (R), and the F1 score (F1) using 2-fold cross validation. We
also computed the normalised differences in precision (ΔP ), recall (ΔR), and F1

score (ΔF1), which measure the ratio from the difference found between the base-
line and our proposal and the maximum possible difference for each performance
measure. We also applied Iman-Davenport’s test and computed the correspond-
ing p-values to check if the differences found are statistically significant or not
at the standard confidence level (α = 0.05).

Parameters: We set θ = 0.01. We explored a large portion of the parameter
space and our conclusion was that setting θ to this small value helps our proposal
perform the best. Note that it is very small, which means that it generally suffices
to find a single link amongst the neighbours of the resources involved in another
link so that it can be considered a true positive link.

Links P R F1 Links P R F1 Links P R F1

DBLP - NSF 127 0.25 0.97 0.40 52 0.62 0.97 0.75 -75 0.49 0.00 0.41
DBLP - DBLP 78,348 0.12 1.00 0.21 9210 0.98 1.00 0.99 -69,138 0.98 0.00 0.01

BBC - DBpedia 525 0.85 1.00 0.92 461 0.96 1.00 0.98 -64 0.74 0.00 0.24
DBpedia - IMDb 118 0.27 0.55 0.36 42 0.67 0.48 0.56 -76 0.54 -0.13 0.69
RAE-Newcastle 404 0.22 0.82 0.35 68 0.72 0.45 0.56 -336 0.64 -0.45 0.68

Rest - Rest 103 0.90 0.83 0.87 96 0.97 0.83 0.89 -7 0.68 0.00 0.78
0.68 -0.10 0.47
0.00 0.25 0.00Iman-Davenport's test

Average

Scenario

Genlink Our proposal

Fig. 4. Experimental results.

Results: The results are presented in Fig. 4. We analyse them regarding preci-
sion, recall, and the F1 score below.

The results regarding precision clearly show that our technique improves
the precision of the rules learnt by GenLink in every scenario. In average, the
difference in precision is 68%. The worst improvement is 49% in the DBLP–NSF
scenario since these datasets are clearly unbalanced: the top authors in DBLP
have about 500 papers in average, but NSF records an average of 7 papers in
the projects in which they are involved; this obviously makes it difficult for our
proposal to find enough context to make a decision. The best improvement is
98% in the DBLP–DBLP scenario since there are 9 076 authors with very similar
names, which makes it almost impossible for GenLink to generate rules with good
precision building solely on the attributes of the resources. Note that the p-value



computed by Iman-Davenport’s test is 0.00; since it is clearly smaller than the
standard confidence level, we can interpret it as a strong indication that there
is enough evidence in our experimental data to confirm the hypothesis that our
proposal works better than the baseline regarding precision.

The normalised difference of recall ΔR shows that our proposal generally
retains the recall of the link rules learnt by GenLink, except in the DBpedia–
IMDb and the Rae–Newcastle scenarios. The problem with the previous scenarios
was that there are many incomplete resources, that is many resources without
neighbours. For instance, there are 43 papers in the Newcastle dataset that
are not related to any authors. The incompleteness of data has also a negative
impact on the recall of the base link rules. In our prototype, we are planning on
implementing a simple check to identify incomplete resources so that the links
in which they are involved are not discarded as false positives, but identified as
cases on which our proposal cannot make a sensible decision. Note that Iman-
Davenport’s test returns 0.25 as the corresponding p-value; since it is larger than
the standard confidence level, it may be interpreted as a strong indication that
the differences in recall found in our experiments are not statistically significant.
In other words, the cases in which data are that incomplete do not seem to be
common-enough for them to have an overall impact on our proposal.

We also studied ΔF1, which denotes the normalised difference in F1 score.
Note that it is 47% in average and that the corresponding Iman-davenport’s p-
value is 0.00, which can be interpreted as a strong indication that the difference
is significant from a statistical point of view. Overall, this result confirms that
our proposal helps improve precision without degrading recall.

5 Conclusions

Programs need to link the resources that they find on the Web of Data so that
they can enrich the data about a real-world entity that is found in a source
dataset with data that comes from companion datasets. Current link rules take
the values of the attributes of the resources into account, but not their neigh-
bours, which sometimes results in false positives that have a negative impact
on their precision. We have presented a hybrid proposal2 that learns a set of
link rules using a genetic programming approach and then bootstraps them.
Our proposal may be fed with rules generated by any genetic programming app-
roach from the literature, the afterwards bootstrap that performs has proven to
improve the overall F1 score.
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