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Abstract. Fall detection represents an important issue when dealing
with Ambient Assisted Living for the elder. The vast majority of fall
detection approaches have been developed for healthy and relatively
young people. Moreover, plenty of these approaches make use of sensors
placed on the hip. Considering the focused population of elderly people,
there are clear differences and constraints. On the one hand, the pat-
terns and times in the normal activities -and also the falls- are different
from younger people: elders move slowly. On the second hand, solutions
using uncomfortable sensory systems would be rejected by many candi-
dates. In this research, one of the proposed solutions in the literature has
been adapted to use a smartwatch on a wrist, solving some problems and
modifying part of the algorithm. The experimentation includes a pub-
licly available dataset. Results point to several enhancements in order to
be adapted to the focused population.
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1 Introduction

Fall Detection (FD) is a very active research area, with many applications to
healthcare, work safety, etc. Even though there are plenty of commercial prod-
ucts, the best rated products only reach a 80% of success. There are basically
two types of FD systems: context-aware systems and wearable devices[?]. FD
has been widely studied using context-aware systems, i.e. video systems [?]; nev-
ertheless, the use of wearable devices is crucial because the high percentage of
elderly people and their desire to live autonomously in their own house [?].



Wearables-based solutions include, mainly, tri-axial accelerometers (3DACC)
either alone or combined with other sensors. Several solutions incorporate more
than one sensory element; for instance, Sorvala et al [?] proposed two sets of a
3DACC and a gyroscope, one on the wrist and another on the ankle, detecting
the fall events with two defined thresholds. The use of 3DACC and a barometer
in a necklace was also reported in [?]; similar approaches have been developed
in several commercial products.

Several solutions using wearable devices combining 3DACC have been re-
ported, i.e., identifying the fall events using Support Vector Machines [?]. In [?]
several classifiers are compared using the 3DACC and the inertial sensor within
a smartphone to sample the data. A similar solution is proposed in [?], using
some different transformations of the 3DACC signal. The main characteristic
in all these solutions is that the wearable devices are placed on the wrist. The
reason for this location is that it is much easier to detect a fall using the sensory
system in this placement. Nevertheless, this type of devices lacks in usability
and the people tend to dismiss them in the bedside table. Thus, this research
limits itself to use a single sensor -a marketed smartwatch- placed on the wrist
in order to promote its usability.

Interestingly, the previous studies do not focus on the specific dynamics of
a falling event: although some of the proposals report good performances, they
are just machine learning applied to the focused problem. There are studies
concerned with the dynamics in a fall event [?,?], establishing the taxonomy
and the time periods for each sequence. Additionally, Abbate et al proposed the
use of these dynamics as the basis of the FD algorithm [?]. A very interesting
point of this approach is that the computational constraints are kept moderate,
although this solution includes a high number of thresholds to tune. Nevertheless,
we consider this solution as valid, representing the starting point of this research.

2 Adapting Fall detection to a wrist-based solution

Abate et al [?] proposed the following scheme to detect a candidate event as a
fall event (refer to Fig. ??). A time t corresponds to a peak time (point 1) if
the magnitude of the acceleration a is higher than th1 = 3×g, g = 9.8m/s. After
a peak time there must be a period of 2500 ms with relatively calm (no other a
value higher than th1). The impact end (point 2) denotes the end of the fall
event; it is the last time for which the a value is higher than th2 = 1.5 × g.
Finally, the impact start (point 3) denotes the starting time of the fall event,
computed as the time of the first sequence of an a <= th3 (th3 = 0.8 × g)
followed by a value of a >= th2. The impact start must belong to the interval
[impact end− 1200 ms, peak time]. If no impact end is found, then it is fixed to
peak time plus 1000 ms. If no impact start is found, it is fixed to peak time.

Whenever a peak time is found, the following transformations should be
computed:



– Average Absolute Acceleration Magnitude Variation, AAMV =
∑ie

t=is
|at+1−at|

N ,
with is being the impact start, ie the impact end, and N the number of sam-
ples in the interval.

– Impact Duration Index, IDI = impact end− impact start. Alternatively, it
could be computed as the number of samples.

– Maximum Peak Index, MPI = maxt∈[is,ie](at).

– Minimum Valley Index, MV I = mint∈[is−500,ie](at).

– Peak Duration Index, PDI = peak end−peak start, with peak start defined
as the time of the last magnitude sample below thPDI = 1.8 × g occurred
before peak time, and peak end is defined as the time of the first magnitude
sample below thPDI = 1.8 × g occurred after peak time.

– Activity Ratio Index, ARI, measuring the activity level in an interval of 700
ms centered at the middle time between impact start and impact end. The
activity level is calculated as the ratio between the number of samples not
in [thARIlow0.85 × g, thARIIhigh = 1.3 × g] and the total number of samples
in the 700 ms interval.

– Free Fall Index, FFI, computed as follows. Firstly, search for an acceleration
sample below thFFI = 0.8 × g occurring up to 200 ms before peak time; if
found, the sample time represents the end of the interval, otherwise the end
of the interval is set 200 ms before peak time. Secondly, the start of the
interval is simply set to 200 ms before its end. FFI is defined as the average
acceleration magnitude evaluated within the interval.

– Step Count Index, SCI, measured as the number of peaks in the interval
[peak time−2200, peak time]. SCI is the step count evaluated 2200 ms before
peak time. The number of valleys are counted, defining a valley as a region
with acceleration magnitude below thSCIlow = 1 × g for at least 80 ms,
followed by a magnitude higher than thSCIhigh1.6 × g during the next 200
ms. Some ideas on computing the time between peaks [?] were used when
implementing this feature.

Evaluating this approach was proposed as follows. The time series of accel-
eration magnitude values are analyzed searching for peaks that marks where a
fall event candidate appears. When it happens to occur, the impact end and the
impact start are determined, and thus the remaining features. As long as this
fall events are detected when walking or running, for instance, a Neural Network
(NN) model is obtained to classify the set of features extracted.

In order to train the NN, the authors made use of an Activities of Daily Living
(ADL) and FD dataset, where each file contains a Time Series of 3DACC values
corresponding to an activity or to a fall event. Therefore, each dataset including
a fall event or a similar activity -for instance, running can perform similarly to
falling- will generate a set of transformation values. Thus, for a dataset file we
will detect something similar to a falling, producing a row of the transformations
computed for each of the detected events within the file. If nothing is detected
within the file, no row is produced. With this strategy, the Abbate et al obtained
the training and testing dataset to learn the NN.
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Fig. 1. Evolution of the magnitude of the acceleration -y-axis, extracted from [?].
Analyzing at time stamp t , the three conditions described in the text must be found
in order to detect a fall. Graph elaborated from [?].

2.1 The modifications on the algorithm

As stated in [?,?], the solutions to this type of problems must be ergonomic:
the users must feel comfortable using them. We considered that placing a de-
vice on the waist is not comfortable, for instance, it is not valid for women
using dresses. When working with elderly people, this issue is of main relevance.
Therefore, in this study, we placed the wearable device on the wrist. This is
not a simple change: the vast majority of the literature reports solutions for
FD using waist based solutions. Moreover, according to [?,?] the calculations
should be performed on the smartwatches to extend the battery life by reducing
the communications. Therefore, these calculations should be kept as simple as
possible.

A second modification is focused on the training of the NN. The original
strategy for the generation of the training and testing dataset produced a highly
imbalanced dataset: up to 81% of the obtained samples belong to the class FD,
while the remaining belong to the different ADL similar to a fall event.

To solve this problem a normalization stage is applied to the generated imbal-
anced dataset, followed by a SMOTE balancing stage [?]. This balancing stage
will produce a 60%(FALL)-40%(no FALL) dataset, which would allow avoid-
ing the over-fitting of the NN models. As usual, there is a compromise between
the balancing of the dataset and the synthetic data samples introduced in the
dataset.

3 Experiments and results

An ADL and FD dataset is needed to evaluate the adaptation, so it contains
time series sample from ADL and for falls. This research made use of the UMA-



FALL dataset [?] among the publicly available datasets. This dataset includes
data for several participants carrying on with different activities and perform-
ing forward, backward and lateral falls. Actually, these falls are not real falls
-demonstrative videos have been also published-, but they can represent the ini-
tial step for evaluating the adapted solution problem. Interestingly, this dataset
includes multiple sensors; therefore, the researcher can evaluate the approach
using sensors placed on different parts of the body.

The thresholds used in this study are exactly the same as those mentioned in
the original paper. All the code was implemented in R[?] and caret. The param-
eters for SMOTE were perc.over set to 300 and perc.under set to 200 -that is, 3
minority class samples are generated per original sample while keeping 2 sam-
ples from the majority class-. These parameters produce a balanced dataset that
moves from a distribution of 47 samples from the minority class and 200 from
the majority class to a 188 minority class versus 282 majority class (40%/60%
of balance). To obtain the parameters for the NN a grid search was performed
[?,?,?]; the final values were p size set to 11, p decay set to 10−6 and maximum
number of iterations 1000.

Both 5x2 cross validation (cv) and 10-fold cv were performed to analyze
the robustness of the solution. The latter cv would allow us to compare with
existing solutions, while the former shows the performance of the system with
an increase in the number of unseen samples. The results are shown in Table
?? and Table ?? for 10-fold cv and 5x2 cv, respectively. The boxplots for the
statistical measurements Accuracy, Kappa factor, Sensitivity and Specificity are
shown in Fig. ??.

Fold Error % Acc Ka Sens Spec TP FP FN TN

1 0.0426 0.9574 0.9117 0.9474 0.9643 18 1 1 27
2 0.0625 0.9375 0.8681 0.9444 0.9333 17 2 1 28
3 0.0213 0.9787 0.9562 0.9500 1.0000 19 0 1 27
4 0.0417 0.9583 0.9144 0.9048 1.0000 19 0 2 27
5 0.0851 0.9149 0.8203 0.9412 0.9000 16 3 1 27
6 0.0217 0.9783 0.9539 1.0000 0.9655 17 1 0 28
7 0.0638 0.9362 0.8664 0.9444 0.9310 17 2 1 27
8 0.0426 0.9574 0.9131 0.9048 1.0000 19 0 2 26
9 0.0870 0.9130 0.8175 0.8889 0.9286 16 2 2 26

10 0.1489 0.8511 0.6934 0.8000 0.8889 16 3 4 24

Mean 0.0617 0.9383 0.8715 0.9226 0.9512
Median 0.0525 0.9475 0.8899 0.9428 0.9488

Std 0.0382 0.0382 0.0792 0.0532 0.0412
Table 1. 10 fold cv results. From left to right, the columns stand for the fold number,
the classification error, the accuracy, the Kappa factor, the sensitivity, the specificity,
and the True Positive, False Positive, False Negative and True Negative results.



Fold Error % Acc Ka Sens Spec TP FP FN TN

1 0.0723 0.9277 0.8511 0.8812 0.9627 89 5 12 129
2 0.0723 0.9277 0.8511 0.8812 0.9627 89 5 12 129
3 0.0766 0.9234 0.8421 0.8800 0.9556 88 6 12 129
4 0.0766 0.9234 0.8421 0.8800 0.9556 88 6 12 129
5 0.0851 0.9149 0.8252 0.8627 0.9549 88 6 14 127
6 0.0426 0.9574 0.9113 0.9468 0.9645 89 5 5 136
7 0.0638 0.9362 0.8673 0.9158 0.9500 87 7 8 133
8 0.0809 0.9191 0.8348 0.8571 0.9692 90 4 15 126
9 0.07234 0.9277 0.8496 0.9053 0.9429 86 8 9 132

10 0.0340 0.9660 0.9288 0.9674 0.9650 89 5 3 138

Mean 0.0677 0.9323 0.8603 0.89778 0.9583
Median 0.0723 0.9277 0.8503 0.8812 0.9591

Std 0.0166 0.0166 0.0336 0.0360 0.0080
Table 2. 5x2 cv results. From left to right, the columns stand for the fold number, the
classification error, the accuracy, the Kappa factor, the sensitivity, the specificity, and
the True Positive, False Positive, False Negative and True Negative results.

●

A
cc

 1
0F

K
ap

 1
0F

S
en

 1
0F

S
pe

 1
0F

A
cc

 5
x2

F

K
ap

 5
x2

F

S
en

 5
x2

F

S
pe

 5
x2

F

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Boxplot

Fig. 2. Boxplot for the different measurements -Accuracy, Kappa, Sensitivity and
Specificity-, both for 10 fold cv (four boxplots to the left) and 5x2 cv (four boxplots to
the right).



3.1 Discussion on the results

As seen from the previous figures, the classification results after performing the
SMOTE are really impressive, with very reduced miss classified samples. As
expected, the 10-fold cv results are a bit better than those depicted for the 5x2
cv; nevertheless, the robustness of the method seems pretty good.

After these results, can the problem of FD be considered solved after several
minor changes? Answering this question needs discussing some other topics: i)
the nature of the dataset, ii) the basis of the method, and iii) the deployment
issues and the computational requirements.

The UMA-Fall dataset used in this study [?] was generated with young par-
ticipants using a very deterministic protocol of activities. The falls were per-
formed with the participants standing still and letting them fall in the for-
ward/backward/lateral direction. Consequently, there could be severe differences
between the movements and the data gathered from a real unexpected fall. For
instance, after the fall, the participant kept quiet: this is not normal when a
person falls unless he/she faints. There are more publicly available datasets,
the majority of these datasets have been gathered with healthy volunteers [?,?].
However, a real-world fall and activity of daily living dataset is published in [?],
where a comparison of the different methods published so far is also included.
Therefore, the method described in this study needs to be validated with more
datasets, more specifically, with data from real fall events.

Concerning with the basis of the Abbate et al method, the number of prede-
fined thresholds represents its main drawback. These thresholds have been set
for young participants: they might not be valid for a different population. Even
if the thresholds are valid, perhaps the classification models must be specific for
groups of people according to their movement characteristics [?]. Certainly, there
are clear differences in the walking between a young participant and an elder per-
son, even between two elder persons. For instance, using crutches means totally
different dynamics. All of these issues must be analyzed in order to validate the
approach. Determining the thresholds sets needs further research, trying to find
general thresholds -if any-; alternatively, clustering the population according to
a given criteria and then finding specific thresholds -and classification models-
for each group.

Besides, the eHealth and wearable applications deployment issues have been
study in the literature [?]. According to the published results, there is a trade
off between the mobile computation and the communication acts to extend the
battery charge as long as possible. Consequently, it has been found that moving
all the preprocessing and modelling issues to the mobile part could be advan-
tageous provided the computational complexity of the solution is kept low. The
consequences of these findings shall be reflected in the transformations and in
the models, reducing complex floating point operations as much as possible [?].



4 Conclusions

In this study a fall detection method using a wearable device placed on the
wrist is described; the classification method was originally proposed to use a
waist located accelerometer. This original approach has been adapted with minor
enhancements in the computation of some features; the idea underneath is to
detect peaks; for each detected peak a set of 8 features are computed, generating
a sample. This sample is labelled according to what has happened -either a fall
or the corresponding activity-. With the available samples, the classifying feed-
forward Neural Network model can be learned. Nevertheless, this solution clearly
generates imbalanced data, which was not considered. In this study, SMOTE was
used to balance the training/testing dataset.

The good performance of the method on the UMA-Fall dataset shows this
method can represent the basis for a good FD method using wrist-based wear-
ables. However, there are still work to be done, basically, coping with datasets
including real falls time series. Also, new solutions need to be proposed to tackle
with the thresholds tuning. Furthermore, different solutions for the classification
models are needed in order to reduce the floating point operations, so the battery
charging cycles could be elongated.
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