
Chord progressions selection based on song
audio features

Noelia Rico1 and Irene Dı́az1

Computer Science Department at University of Oviedo, Spain
noripa@gmail.com, sirene@uniovi.es

Abstract. A chord progression is an essential building block in music.
In the field of music theory is usually assumed that these progressions
influence the mood, emotion, genre or other critical aspects of the songs,
and also in the perception that they will cause on the listener. Therefore,
it is natural to think that musical and audio features of a track should be
related to its chord progressions. Choosing carefully these progressions
when it comes the time of creating a new song, is a fundamental aspect
depending on the feelings we want to evoke on the listener. Also, two
songs can be considered alike or classified into the same emotions or
genres if they use the same chord progressions. Many music classification
studies are presented nowadays, but none of them take into account chord
progressions, probably due to the lack of this kind of data. In this paper,
classification algorithms are used to illustrate the influence of the songs’
features when it comes to pick up chord progressions to create a new
song.

Keywords: Music Information Retrieval, Chord Progressions, Data Min-
ing, Machine Learning, Classification

1 Introduction

It is generally accepted that music makes us feel a wide range of emotions. The
mechanisms through which music evokes feelings and impacts in our brain is a
vast field of research with a lot of unanswered questions.

On many occasions, the songs can be stirring even though they do not have
any lyrics, and this is why music is considered an international language. In these
cases, the songs’ emotions are purely related to their structure [1]. Structural
features of a song include rhythm, musical nuances, melody and the chords over
which these melodies are settled. The same song can convey entirely different
emotions after changing its chord progressions. Thus, listeners’ feelings after
hearing the modified song could be completely opposite. Those changes might
also modify other aspects of the song such as its energy or popularity.

In the field of music regarding chord progressions, previous work has only
focused on the analysis of music scores (most of the time using a MIDI file) in
order to automatize the process of generating new music. Some of the previous
research in this discipline is based on the identification of the chords and the

progressions themselves [2]. Others, center their efforts in using machine learning
techniques to generate music chords progression, based on songs that are used to
build the model and taking into account only their musical score [3–5]. Related
work in this field of study combines musical features with the song lyrics [6]
to classify the songs or use specific musical features to divide the songs into
emotions [7].

However, there has been little discussion on how the audio features and the
impact of the song on the listener are correlated with the chord progressions
found in the song. One question that needs to be asked is how the chosen pro-
gressions for the composition of each song influence some musical aspects not
directly related to the music score, such as the energy that the songs transmit
or their future popularity.

This paper proposes a methodology to find the audio features of a track
affecting their chord progressions. These audio features can be described as the
musical features of the song in addition to some other attributes about its impact
on the listener.

This paper is divided into five sections. Section 2 describes the dataset, ex-
plaining its creation and describing its features in detail. Section 3 gives an
overview of the methods used to build the models. In section 4 the results of
the machine learning process are analyzed. Finally, the last section discusses the
evaluation and possible application of the classification process and future work
is proposed.

2 Datasets creation

One of the most complex tasks in this work is getting the data set. For this
purpose, data from Hook Theory [8] and Spotify [9] websites are considered. The
information about a song provided by these two different sources is supposed
to be related one to each other. Thus, the two datasets obtained are joined
in order to perform a better prediction. Then, this section first details how to
obtain information from Hook Theory and Spotify websites and how to put them
together.

2.1 Hook Theory

Hook Theory [8] is a popular website in the music field that allows their users
to analyze songs regarding chord progressions and share their analysis. It is
designed to be used by people who are learning how to compose new music,
integrating an interactive interface for people who do not know anything about
music theory. For this purpose, this website includes a section showing the most
popular chord progressions in music of all styles, ages and genres. Those ”most
popular progressions” are grouped into categories, to make easier the learning
process for the amateur composers.

Using the API [10] of the website we have gathered all the songs that contain
a specific song progression. The chord progressions categories that have been

used for this work are shown in Table 1. The second column describes the name
used on the website to identify each progression and the first one indicates the
group where the progression is wrapped, regarding how challenging is to use it
when composing a song. The third column represents the chord progression itself
and the fourth column shows the name that has been given to each progression
in this project, and therefore the one which is used to identify the variable
representing the progression in the final dataset.

The third column represents the chord progression as the succession of mu-
sical chords expressed by Roman numerals, as is common in Classical music
theory. Following the standard, the capital letters are used to express whether
the chord is major or minor. The progressions with lower difficulty are built with
chords corresponding to basic degrees in the scale (I, V , iii...). Whilst difficulty
increases, the chords evolve to more complex constructions, and therefore the
appearance of indexes becomes popular to indicate the inversion of the chord.

Difficulty Name Chord Progression Dataset variable

Beginner

Most popular progression I − V − vi − IV most.popular

Pachelbel’s progression I − V − vi − iii pachelbel

Effective in all genres vi − V − IV − V effective.all.genres

Those magic changes I − vi − IV − V magic.changes

Gaining popularity I − IV − vi − V gaining.popularity

Timeless I − V − IV − V timeless

Intermediate I

The cadential 6
4 I64 − V cadential64

Stepwise bass down I − V 6 − vi stepwise.bass.down

Stepwise bass up I − ii7 − I6 stepwise.bass.up

The newcomer I − iii64 − vi newcomer

I6 as a precadence IV − I6 − V I.as.precadence

Simple yet powerful IV − I6 − ii simple.yet.powerful

Intermediate II

Chord pleased the Lord V − V 6/vi − vi chord.pleased.Lord

Expanding with V/vi I − V/vi expanding.V.vi

vi42 as a passing chord vi − vi42 − IV vi42.passing.chord

Secondary dominant V 7/IV − IV secondary.dominant

Applied vii◦ vii◦/vi − vi applied.vii

Advanced

Cadencing in style IV − iv − I candencing.in.style

A mixolydian cadence [V II − IV − I mixolydian.cadence

Using [VI to set up a V [V I − V bVI.to.V

Cadencing via [VII [V II − I cadencing.bVII

Table 1: Attributes obtained from the Hook Theory API

Once all the songs have been collected, the dataset is build using a row
to represent each song. Songs are identified by two columns, which are title
and artist, and the dataset contains 21 more columns, each one associated to

a different chord progression. If the song of the row i contains the progression
j, the cellij has the value 1, otherwise its value will be 0. The final dataset
extracted from Hook Theory website [8] contains 1990 songs characterized by 23
attributes.

2.2 Spotify

The Spotify API fetches data [9] of all the available songs in the Spotify music
catalog. To construct the second dataset based on Spotify, the songs contained
in HookTheory dataset are considered. For each song in the hooktheory dataset,
a search with the Spotify API is made using the primary key of the songs (artist
and title). If the track is found, their features are extracted and the song is added
to this new dataset. Among all the data available in the Spotify API, only the
attributes that have been considered useful for this research will be included.
Some of these features are strictly pulled out of the song’s musical attributes
like tempo or key, but others are calculated from its audio features like valence,
or based on their reproductions on Spotify like popularity. These features are
used as predictors of the final dataset. A thorough description of the attributes
can be found in Table 2.

2.3 Features and class of the final dataset

Using the data obtained from both Spotify and Hook Theory websites, different
features characterizing 1990 songs have been collected. Features extracted from
Spotify (see 2) represent the attributes associated with each song, while features
obtained from Hook Theory website represent the class to learn. Thus, Features
extracted from Spotify will be used to predict each chord progression as a binary
problem (whether the song contains a chord progression or not).

Note that 21 different datasets will be created, each one linked with a different
chord prediction 1. To sum up, 21 binary classification problems will be solved,
taking into account the Spotify features as predictor variables. All the problems
are independent one to each other, but they have the same structure. For each
problem, a different binary class variable will be considered. The aim of each
problem is to classify the songs into two possible categories, 0 or 1. The value
will be 1 if the song uses the chord considered as the class variable for that
concrete problem and 0 otherwise.

3 Learning Procedure

3.1 Methods

The classification will be made using R, and more precisely the caret [11] pack-
age. Six different algorithms will be used to build the models. This will allow us
to make a comparison about the performance and the final results:

– rpart: PART tree

feature type description

artist chr used as id of the song together with title

title chr used as id of the song together with artist

popularity int The value will be between 0 and 100 expressing the pop-
ularity of the track, with 100 being the most popular.
Songs that are being played a lot now will have a higher
popularity than songs that were played a lot in the past

explicit Factor Two possible levels: TRUE/FALSE. Whether or not the
track has explicit lyrics

danceability num Value between 0.0 and 1.0 describing how suitable a track
is for dancing based on a combination of musical elements
(tempo, rhythm stability, beat strength, overall regular-
ity). A value of 0.0 is least danceable and 1.0 is most
danceable

energy num Value between 0.0 to 1.0 that represents a perceptual
measure of intensity and activity. Perceptual features
contributing to this attribute include dynamic range, per-
ceived loudness, timbre, onset rate, and general entropy

key Factor 12 possible levels. The key track is in. Integers map to
pitches using standard Pitch Class notation

loudness num The overall loudness of a track in decibels (dB). Loudness
values are averaged across the entire track. Values typical
range between -60 and 0 db

speechiness num Value between 0.0 to 1.0. Detects the presence of spoken
words in a track. The more exclusively speech-like the
recording the closer to 1.0 the attribute value

acousticness num A confidence measure from 0.0 to 1.0 of whether the track
is acoustic. 1.0 represents high confidence the track is
acoustic

instrumentalness num Value between 0.0 and 1.0. The closer the instrumental
ness value is to 1.0, the greater likelihood that the track
contains no vocal content. Vocals like ”Ooh” and ”aah”
are treated as instrumental in this context

valence num A measure from 0.0 to 1.0 describing the musical posi-
tiveness conveyed by a track. Tracks with high valence
sound more positive while tracks with low valence sound
more negative

tempo num The overall estimated tempo of a track in beats per
minute (BPM). In musical terminology, tempo is the
speed or pace of a given piece and derives directly from
the average beat duration.

duration ms int The duration of the track in milliseconds

time signature int An estimated overall time signature of a track. The time
signature (meter) is a notational convention to specify
how many beats are in each bar (or measure)

mode Factor Mode indicate the modality (major or minor) of a track,
the type of scale from which its melodic content is de-
rived. Major is represented by 1 and minor is 0

Table 2: Features fetched from the Spotify API

– glm: Generalized Linear Model
– nb: Naive Bayes
– svmLinear: Support Vector Machines with Linear Kernel
– svmRadial: Support Vector Machines with Radial Basis Function Kernel
– ranger: Random Forest

The performance and utility of the above-detailed Machine Learning methods
in different domains ([12], [13], [14], [15], [16]) allows us to use them for predict-
ing chord progressions. Different methods have been selected to cover different
learning paradigms.

Method glm [?] fits generalized linear models, specified by giving a symbolic
description of the linear predictor and a description of the error distribution. It
is suitable for binary classification problems.

Tree modeling is performed through rpart [17] and ranger [18] (upgrade
of the classical randomForest). rpart carries out a CART (Classification and
regression trees) modeling. First of all, it grows the (classification in this case)
tree until one of the possible stop conditions are reached: the number of ob-
servations in a node is under a threshold, the minimum cost complexity factor
cannot be reached when attempting to do a split or the tree has reached the
maximum depth allowed. Once the tree has been grown, the method examines
the results and if over fitting is detected, the tree is pruned to find an optimal
point between over fitting and under fitting. These methods split the data based
on how the creation of sub-nodes increases the homogeneity of those resultant
sub-nodes. Random forests technique is based on trees too but it improves pre-
dictive accuracy by generating not one but a large number of bootstrapped trees
using random samples of variables for each iteration, classifying a case using
each tree in this newest created forest, and deciding the final predicted outcome
by combining the results across all of the trees.

Naive Bayes is based on the Bayes Theorem and although all the predictors
are assumed to be independent within each class label, it gives excellent results
for many real problems. The predictor variables are handled by assuming that
they follow a Gaussian distribution, given the class label. The outcome variable
is predicted using the probabilities of each attribute when nb [19] is applied.
Support Vector Machines [20] performs classification looking for the hyperplane
that maximizes the margin between the classes closest points. When a linear
separator cannot be found, data points are projected into a higher dimensional
space where the data become linearly separable. This projection is made by
kernel techniques. Two different methods with linear svmLinear and non-linear
svmRadial kernel have been chosen

The above introduced methods have been applied considering the following
settings:

– Method configuration: Default parameter settings provided by caret package
in order to perform a first approach of how the datasets behave with each
algorithm.

– Validation: Stratified split into training (80%) and test (20%). The training
set will be used to build the model and the test set to evaluate it.

– Training: 10 fold cross validation with 3 repetitions has been used for training
the models. In this 10 fold cross validation, all the samples in the dataset
were grouped in 10 different sets, using one of them for testing while keeping
the remaining for training. This process is repeated three times.

Note that most of the datasets are imbalanced (30%(1)/70%(0)). Thus, differ-
ent sampling strategies are tested and the resulting datasets represent the input
to each one of the learning methods. For each of the six algorithms, four different
models have been built according to a different sampling strategy (over, down,
ROSE and SMOTE [11]). For each algorithm, the model yielding the best results on
the test set will be selected as the best model. The evaluation of this previously
unseen instances of the test set let us compare the real performance of the final
models. Algorithm 1 shows the whole procedure.

algorithms = {glm, rpart, randomForest, nb, svmLinear, svmRadial};
foreach dataset do

foreach alg in algorithms do

; /* train the models */

modOver = train(alg, data = train, sampling = over);
modDown = train(alg, data = train, sampling = down);
modROSE = train(alg, data = train, sampling = ROSE);
modSMOTE = train(alg, data = train, sampling = SMOTE);

; /* predict the class: test set */

predOver = predict(modOver, data = test);
predDown = predict(modDown, data = test);
predROSE = predict(modROSE, data = test);
predSMOTE = predict(modSMOTE, data = test);

; /* evaluate the models */

resOver = logLoss(confMatrix(test$class, predOver));
resDown = logLoss(confMatrix(test$class, predDown));
resROSE = logLoss(confMatrix(test$class, predROSE));
resSMOTE = logLoss(confMatrix(test$class, predSMOTE));

best = maxMicroF1(resOver, resDown, resROSE, resSMOTE);

end

end
Algorithm 1: Build and select the best model for each dataset

3.2 Metrics

As explained before, some of the datasets’ class are imbalanced. In addition to
Accuracy (A), the micro averaged version of the well known metrics Precision
(P), Recall (R) and F1 [11] is selected together with logLoss [21]. Considering
that TP is the number of examples correctly classified as the positive class, TN
is the number of examples correctly classified as the negative class, FP is the

number of examples wrongly classified as the positive class and FN the number
of examples wrongly classified as the negative class, A, P, R and F1 are defined
as follows.

A =
TP + TN

TP + TN + FP + FN
P =

TP

TP + FP

R =
TP

TP + FN
F1 = 2× P ×R

P + R

LogLoss quantifies the accuracy of a classifier by penalizing wrong classifica-
tions. Minimizing the Log Loss is equivalent to maximizing the accuracy of the
classifier, but there is a subtle difference. In order to calculate the Log Loss, the
classifier must assign a probability (pi) to each class rather than simply yielding
the most likely class. It is defined below.

LogLoss = − 1

N

N∑
i=1

[yilogpi + (1− yi)log(1− pi)]

4 Results

progression rpart glm nb svmL svmR rf

effective.all.genres 0.74825 0.69578 0.73521 0.69849 0.74934 0.79193
gaining.popularity 0.84074 0.72467 0.83956 0.75179 0.82217 0.80793

magic.changes 0.86839 0.76379 0.29982 0.72214 0.82843 0.86310
most.popular 0.67680 0.65479 0.65490 0.67097 0.69075 0.68522

pachelbel 0.74137 0.86923 0.83064 0.87494 0.90270 0.75444
timeless 0.73474 0.75117 0.41014 0.68525 0.82318 0.56898

cadential64 0.83682 0.81701 0.62892 0.82006 0.88455 0.89908
I.as.precadence 0.95234 0.79190 0.83517 0.75889 0.81397 0.76771

newcomer 0.77865 0.81385 0.68669 0.82314 0.74944 0.91111
simple.yet.powerful 0.94063 0.76104 0.51293 0.80395 0.91206 0.92766
stepwise.bass.down 0.71599 0.69285 0.76457 0.70821 0.72704 0.78109

stepwise.bass.up 0.48695 0.84957 0.63792 0.89845 0.92008 0.82191
applied.vii 0.82918 0.80775 0.81376 0.83822 0.88389 0.74348

chord.pleased.Lord 0.88399 0.85250 0.41050 0.82230 0.78972 0.63735
expanding.V.vi 0.81187 0.70590 0.84821 0.72716 0.81105 0.80814

secondary.dominant 0.90437 0.88067 0.85573 0.88628 0.94234 0.91330
vi42.passing.chord 0.89668 0.82953 0.86953 0.83557 0.91233 0.82343

bVI.to.V 0.84705 0.85576 0.81376 0.83221 0.90814 0.66306
cadencing.bVII 0.80866 0.73626 0.83309 0.75970 0.82873 0.82798

candencing.in.style 0.84614 0.78441 0.93802 0.82860 0.88073 0.93221
mixolydian.cadence 0.90957 0.79328 0.49135 0.76125 0.84047 0.90957

Table 3: F1 for each model on test set

progression rpart glm nb svmL svmR rF

effective.all.genres 2.29080 0.61709 1.06604 0.64638 0.54090 0.50819
gaining.popularity 2.29586 0.59268 0.68104 0.55032 0.56741 0.53052

magic.changes 0.45711 0.88835 5.69869 0.58640 0.45529 0.41536
most.popular 0.63065 0.61723 0.92931 0.61045 0.61680 0.59226

pachelbel 0.73712 0.57187 2.20434 0.49506 0.42239 0.66887
timeless 1.95744 0.85849 4.27938 0.64156 0.45389 0.74188

cadential64 0.55121 0.66113 3.76041 0.51237 0.36370 0.39110
I.as.precadence 0.76120 0.63053 1.47563 0.56608 0.61571 0.62741

newcomer 0.67570 1.00073 2.20718 0.49264 0.80781 0.39696
simple.yet.powerful 1.38791 0.73773 2.11598 0.60028 0.32238 0.39084
stepwise.bass.down 2.03425 0.64715 0.96973 0.64085 0.61982 0.60725

stepwise.bass.up 1.14947 0.50541 1.76185 0.51010 0.34447 0.60753
applied.vii 0.69399 0.61890 1.22321 0.58839 0.40091 0.66001

chord.pleased.Lord 0.39493 2.57653 10.74308 0.46906 0.85578 1.33383
expanding.V.vi 0.55673 0.66775 0.47183 0.65301 0.49104 0.59195

secondary.dominant 0.36368 0.39952 0.77317 0.35223 0.17554 0.26221
vi42.passing.chord 0.66081 0.62432 0.88796 0.50365 0.34007 0.58048

bVI.to.V 1.78251 0.51041 3.98525 0.47484 0.32722 0.72091
cadencing.bVII 0.78476 0.60006 0.72928 0.56762 0.49911 0.45051

candencing.in.style 0.58210 0.61831 0.53075 0.44616 0.38625 0.38411
mixolydian.cadence 1.59762 0.63714 3.21393 0.53388 0.52423 0.40109

Table 4: LogLoss of each model on the test set

In this section, the aforementioned experiments are analyzed. Table 3 shows
the F1 obtained for each binary problem and each different machine learning
method. Table 4 contains the LogLoss value for the experiments whose F1 is
shown in Table 3.

Note that F1 is often high. However, the highest F1 is obtained with the com-
bination of SMOTE resampling method and svmRadial. In particular, the results
with highest F1 and lowest logLoss are obtained when model is trained with
svmRadial, being this the best for the 38% of the progressions, followed by the
method ranger, which achieves the best results for the 33% of the progressions.
We recommend the use of svmRadial because it has lower computational cost,
and therefore it is quicker building the model. Table 5 shows the most important
variables used for building the models. It should be noticed how the valence ap-
pears in the top four important variables for most of the models. Other features
such as danceability, valence, loudness or popularity together with other strictly
musical related like instrumentalness or key, stand out from the list of important
variables used to build the models.

The evidence from this study points towards the idea that information gath-
ered from Spotify could be useful for helping us decide which chord progressions
should be used when a new song is being created.

progression first second third fourth

effective.all.genres duration ms acousticness energy instrumentalness
gaining.popularity duration ms loudness valence speechiness

magic.changes tempo acousticness danceability valence
most.popular loudness duration ms valence popularity

pachelbel key8 valence mode1 instrumentalness
timeless mode1 valence acousticness key1

cadential64 acousticness speechiness valence duration ms
I.as.precadence valence acousticness danceability duration ms

newcomer acousticness mode1 valence danceability
simple.yet.powerful valence danceability popularity instrumentalness
stepwise.bass.down valence popularity acousticness duration ms

stepwise.bass.up acousticness energy loudness key10
applied.vii acousticness instrumentalness energy valence

chord.pleased.Lord loudness speechiness popularity energy
expanding.V.vi speechiness valence loudness instrumentalness

secondary.dominant energy loudness acousticness valence
vi42.passing.chord key6 acousticness loudness valence

bVI.to.V loudness valence energy danceability
cadencing.bVII popularity loudness instrumentalness acousticness

candencing.in.style acousticness loudness popularity instrumentalness
mixolydian.cadence loudness instrumentalness acousticness valence

Table 5: Most important variables of each model

5 Conclusions and Future Work

This paper presents a method to improve knowledge about how useful chord
progressions can be in other music classification problems, which aims to classify
songs into emotions or genres.

The method presented in this work has many interesting applications in the
composition of new music. If done manually, the work of analyzing all the chord
progressions in a music score is not an easy task. It requires time and a great
knowledge of music theory. Automating this process is not trivial either, it has
a high computing cost, and the results are not always satisfactory.

These results represent an excellent initial step toward a new field of ap-
plication. The principal advantages are the creation of new songs based on the
features of similar and already existing songs, without the need to analyze their
structure and taking into account not only their musical features but aspects of
the tracks as their energy or valence.

We are currently working on the multi-label version of this problem, that can
address the issue of creating a new track based on a bunch of songs we want it to
be similar to. Given as input existing songs, the classification model will return
the list of chord progressions that should and should not be used to create the
new composition.

Further work will look into the lyrics of the songs, in order to perform a
sentiment analysis process to explore the correlation between the Spotify musical

features, the chord progressions and the emotions the song intends to cause on
the listener, based on the vocabulary they are using.

Acknowledgments

This research has been funded by the Spanish MINECO project TIN2017-87600-
P.

References

1. Juslin, P.N., Sloboda, J.: Handbook of Music and Emotion: Theory, Research,
Applications. Oxford University Press (2011)

2. Cho, Y.H., Lim, H., Kim, D.W., Lee, I.K.: Music emotion recognition using chord
progressions. In: Systems, Man, and Cybernetics (SMC), 2016 IEEE International
Conference on, IEEE (2016) 002588–002593

3. Stamatatos, E., Widmer, G.: Automatic identification of music performers with
learning ensembles. Artificial Intelligence 165(1) (2005) 37 – 56

4. Arutyunov, V., Averkin, A.: Genetic algorithms for music variation on genom
platform. Procedia Computer Science 120 (2017) 317 – 324 9th International
Conference on Theory and Application of Soft Computing, Computing with Words
and Perception, ICSCCW 2017, 22-23 August 2017, Budapest, Hungary.

5. Costa, Y.M., Oliveira, L.S., Silla, C.N.: An evaluation of convolutional neural
networks for music classification using spectrograms. Applied Soft Computing 52
(2017) 28 – 38

6. Hu, X., Downie, J.S.: Improving mood classification in music digital libraries by
combining lyrics and audio. In: Proceedings of the 10th Annual Joint Conference
on Digital Libraries. JCDL ’10, New York, NY, USA, ACM (2010) 159–168

7. Martin-Gómez, L., Navarro-Cáceres, M.: Applying data mining for sentiment anal-
ysis in music. In De la Prieta, F., Vale, Z., Antunes, L., Pinto, T., Campbell, A.T.,
Julián, V., Neves, A.J., Moreno, M.N., eds.: Trends in Cyber-Physical Multi-Agent
Systems. The PAAMS Collection - 15th International Conference, PAAMS 2017,
Cham, Springer International Publishing (2018) 198–205

8. Famous-Chord-Progressions: https://www.hooktheory.com/theorytab/common-
chord-progressions (January 2018)

9. Spotify: https://developer.spotify.com/web-api/get-audio-features/ (January
2018)

10. HookTheory-API: https://www.hooktheory.com/api/trends/docs (January 2018)
11. Kuhn, M.: Building predictive models in R using the caret package. Journal of

Statistical Software 28(5) (11 2008) 1–26
12. Villar, J.R., Chira, C., Sedano, J., González, S., Trejo, J.M.: A hybrid intelligent

recognition system for the early detection of strokes. Integrated Computer-Aided
Engineering 22(3) (2015) 215–227

13. Herrero, Á., Sedano, J., Baruque, B., Quintián, H., Corchado, E., eds.: 10th Inter-
national Conference on Soft Computing Models in Industrial and Environmental
Applications, SOCO 2015, Burgos, Spain, June 2015. Volume 368 of Advances in
Intelligent Systems and Computing., Springer (2015)

14. Troiano, L., Rodŕıguez-Muñiz, L.J., Ranilla, J., Dı́az, I.: Interpretability of fuzzy
association rules as means of discovering threats to privacy. Int. J. Comput. Math.
89(3) (2012) 325–333

15. Gil-Pita, R., Ayllón, D., Ranilla, J., Llerena-Aguilar, C., Dı́az, I.: A computation-
ally efficient sound environment classifier for hearing aids. IEEE Trans. Biomed.
Engineering 62(10) (2015) 2358–2368

16. Montañés, E., Quevedo, J.R., Dı́az, I., Ranilla, J.: Collaborative tag recommen-
dation system based on logistic regression. In: Proceedings of ECML PKDD (The
European Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases) Discovery Challenge 2009, Bled, Slovenia, September
7, 2009. (2009)

17. Chambers, J.M.: Statistical Models in S. CRC Press, Inc., Boca Raton, FL, USA
(1991)

18. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth and Brooks, Monterey, CA (1984)

19. Wright, M.N., Ziegler, A.: ranger: A fast implementation of random forests for
high dimensional data in C++ and R. Journal of Statistical Software 77(1) (2017)
1–17

20. Rish, I.: An empirical study of the naive bayes classifier. In: IJCAI 2001 workshop
on empirical methods in artificial intelligence. Volume 3., IBM New York (2001)
41–46

21. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3) (Sep
1995) 273–297

22. Masnadi-shirazi, H., Vasconcelos, N.: On the design of loss functions for classifica-
tion: theory, robustness to outliers, and savageboost. In Koller, D., Schuurmans, D.,
Bengio, Y., Bottou, L., eds.: Advances in Neural Information Processing Systems
21. Curran Associates, Inc. (2009) 1049–1056

