Skip to main content

Learning Logical Definitions of n-Ary Relations in Graph Databases

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10870))

Included in the following conference series:

  • 2427 Accesses

Abstract

Given a set of facts and related background knowledge, it has always been a challenging task to learn theories that define the facts in terms of background knowledge. In this study, we focus on graph databases and propose a method to learn definitions of n-ary relations stored in such mediums. The proposed method distinguishes from state-of-the-art methods as it employs hypergraphs to represent relational data and follows substructure matching approach to discover concept descriptors. Moreover, the proposed method provides mechanisms to handle inexact substructure matching, incorporate numerical attributes into concept discovery process, avoid target instance ordering problem and concept descriptors suppress each other. Experiments conducted on two benchmark biochemical datasets show that the proposed method is capable of inducing concept descriptors that cover all the target instances and are similar to those induced by state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dzeroski, S.: Multi-relational data mining: an introduction. SIGKDD Explor. 5(1), 1–16 (2003)

    Article  MathSciNet  Google Scholar 

  2. Muggleton, S.: Inductive logic programming. New Gener. Comput. 8(4), 295–318 (1991)

    Article  Google Scholar 

  3. Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM 2002), 9–12 December 2002, Maebashi City, Japan, pp. 721–724 (2002)

    Google Scholar 

  4. Richards, B.L., Mooney, R.J.: Learning relations by pathfinding. In: Proceedings of the 10th National Conference on Artificial Intelligence, San Jose, 12–16 July 1992, pp. 50–55 (1992)

    Google Scholar 

  5. De Raedt, L.: Inductive logic programming. In: Encyclopedia of Machine Learning, pp. 529–537. Springer (2011)

    Google Scholar 

  6. Zeng, Q., Patel, J.M., Page, D.: QuickFOIL: scalable inductive logic programming. Proc. VLDB Endow. 8(3), 197–208 (2014)

    Article  Google Scholar 

  7. Gao, Z., Zhang, Z., Huang, Z.: Learning relations by path finding and simultaneous covering. In: WRI World Congress on Computer Science and Information Engineering, CSIE 2009, 31 March–2 April 2009, Los Angeles, vol. 7, pp. 539–543 (2009)

    Google Scholar 

  8. Gao, Z., Zhang, Z., Huang, Z.: Extensions to the relational paths based learning approach RPBL. In: ACIIDS, pp. 214–219. IEEE Computer Society (2009)

    Google Scholar 

  9. Gonzalez, J.A., Holder, L.B., Cook, D.J.: Graph based concept learning. AAAI/IAAI 1072 (2000)

    Google Scholar 

  10. Goz, F., Mutlu, A.: Concept discovery in graph databases. In: Martínez de Pisón, F.J., Urraca, R., Quintián, H., Corchado, E. (eds.) HAIS 2017. LNCS (LNAI), vol. 10334, pp. 63–74. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59650-1_6

    Chapter  Google Scholar 

  11. Abay, N.C., Mutlu, A., Karagoz, P.: A path-finding based method for concept discovery in graphs. In: 6th International Conference on Information, Intelligence, Systems and Applications, IISA 2015, Corfu, 6–8 July 2015, pp. 1–6 (2015)

    Google Scholar 

  12. Abay, N.C., Mutlu, A., Karagoz, P.: A graph-based concept discovery method for n-ary relations. In: Madria, S., Hara, T. (eds.) DaWaK 2015. LNCS, vol. 9263, pp. 391–402. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22729-0_30

    Chapter  Google Scholar 

  13. Li, L., Li, T.: News recommendation via hypergraph learning: encapsulation of user behavior and news content. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 305–314. ACM (2013)

    Google Scholar 

  14. Blockeel, H., Witsenburg, T., Kok, J.: Graphs, hypergraphs and inductive logic programming. In: Proceedings of the 5th International Workshop on Mining and Learning with Graphs, pp. 93–96 (2007)

    Google Scholar 

  15. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applications. Discrete Appl. Math. 42(2), 177–201 (1993)

    Article  MathSciNet  Google Scholar 

  16. Zien, J.Y., Schlag, M.D., Chan, P.K.: Multilevel spectral hypergraph partitioning with arbitrary vertex sizes. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 18(9), 1389–1399 (1999)

    Article  Google Scholar 

  17. Muggleton, S.: Inverse entailment and Progol. New Gener. Comput. 13(3–4), 245–286 (1995)

    Article  Google Scholar 

  18. Ketkar, N.S., Holder, L.B., Cook, D.J.: Subdue: compression-based frequent pattern discovery in graph data. In: Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, pp. 71–76. ACM (2005)

    Google Scholar 

  19. Srinivasan, A., King, R.D., Muggleton, S.H., Sternberg, M.J.: The predictive toxicology evaluation challenge. In: IJCAI, vol. 1, pp. 4–9. Citeseer (1997)

    Google Scholar 

  20. Kavurucu, Y., Senkul, P., Toroslu, I.H.: Concept discovery on relational databases: new techniques for search space pruning and rule quality improvement. Knowl. Based Syst. 23(8), 743–756 (2010)

    Article  Google Scholar 

  21. Srinivasan, A., King, R.D., Bristol, D.W.: An assessment of submissions made to the predictive toxicology evaluation challenge (1999)

    Google Scholar 

  22. Lodhi, H., Muggleton, S.: Is mutagenesis still challenging. In: Proceedings of the 15th International Conference on Inductive Logic Programming, ILP, pp. 35–40. Citeseer (2005)

    Google Scholar 

  23. Neo4j: The Neo4j Graph Platform. https://neo4j.com. Accessed 5 Feb 2018

  24. Srinivasan, A., Muggleton, S., King, R.D., Sternberg, M.J.: Mutagenesis: ILP experiments in a non-determinate biological domain. In: Proceedings of the 4th International Workshop on Inductive Logic Programming, vol. 237, pp. 217–232. Citeseer (1994)

    Google Scholar 

  25. Gonzalez, J., Holder, L., Cook, D.J.: Application of graph-based concept learning to the predictive toxicology domain. In: Proceedings of the Predictive Toxicology Challenge Workshop (2001)

    Google Scholar 

  26. Chittimoori, R.N., Holder, L.B., Cook, D.J.: Applying the subdue substructure discovery system to the chemical toxicity domain. In: FLAIRS Conference, pp. 90–94 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alev Mutlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goz, F., Mutlu, A. (2018). Learning Logical Definitions of n-Ary Relations in Graph Databases. In: de Cos Juez, F., et al. Hybrid Artificial Intelligent Systems. HAIS 2018. Lecture Notes in Computer Science(), vol 10870. Springer, Cham. https://doi.org/10.1007/978-3-319-92639-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92639-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92638-4

  • Online ISBN: 978-3-319-92639-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics