Skip to main content

On Road Vehicle Detection Using an Improved Faster RCNN Framework with Small-Size Region Up-Scaling Strategy

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10799))

Abstract

Vehicle active safety technology (VAST) is the precondition of intelligent vehicle. VAST is useful to reduce traffic accidents, as well as to guarantee the personal and property security of the drivers. Vehicle detection plays as the foundation of VAST, however, it suffers from many challenges, e.g. partial occlusion, severe weather conditions, and perspective distortion. We employ the faster region convolution neural network (Faster RCNN) model in this work. We specialize it to vehicle detection through fine-tuning the model with vehicle samples. Full convolution layers and region proposal network are improved to enhance the detection performance of small-size vehicles. A small region up-sampling strategy is proposed to further improve the detection performance if the image is captured by a camera mounted on a vehicle. The effectiveness of the proposed approach is demonstrated through experiments in our own dataset and two benchmarking ones. Comparisons with baseline Faster RCNN indicate the superiority of our approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. National Transportation Safety Board: Special investigation report-highway vehicle and infrastructure-based technology for the prevention of rear-end collisions. NTSB Number SIR-OI/(II) (2001)

    Google Scholar 

  2. Chang, W.C., Cho, C.W.: Online boosting for vehicle detection. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 40(3), 892–902 (2010)

    Google Scholar 

  3. Sun, Z., Bebis, G., Miller, R.: On-road vehicle detection using Gabor filters and support vector machines. In: 2002 14th International Conference on Digital Signal Processing (DSP 2002), vol. 2, pp. 1019–1022. IEEE (2002)

    Google Scholar 

  4. Yuan, Q., Thangali, A., Ablavsky, V., et al.: Learning a family of detectors via multiplicative kernels. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 514–530 (2011)

    Article  Google Scholar 

  5. Zhang, J., Huang, K., Yu, Y., et al.: Boosted local structured HOG-LBP for object localization. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1393–1400 (2011)

    Google Scholar 

  6. Kim, J., Baek, J., Kim, E.: A novel on-road vehicle detection method using \(\pi \) HOG. IEEE Trans. Intell. Transp. Syst. 16(6), 3414–3429 (2015)

    Google Scholar 

  7. Sun, Z., Bebis, G., Miller, R.: Improving the performance of on-road vehicle detection by combining gabor and wavelet features. In: The IEEE 5th International Conference on Intelligent Transportation Systems, Proceedings, pp. 130–135 (2002)

    Google Scholar 

  8. Haselhoff, A., Kummert, A.: A vehicle detection system based on haar and triangle features. In: Intelligent Vehicles Symposium, pp. 261–266. IEEE (2009)

    Google Scholar 

  9. Sudowe, P., Leibe, B.: Efficient use of geometric constraints for sliding-window object detection in video. In: Crowley, J.L., Draper, B.A., Thonnat, M. (eds.) ICVS 2011. LNCS, vol. 6962, pp. 11–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23968-7_2

    Chapter  Google Scholar 

  10. Carreira, J., Sminchisescu, C.: CPMC: automatic object segmentation using constrained parametric min-cuts. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1312–1328 (2012)

    Article  Google Scholar 

  11. Endres, I., Hoiem, D.: Category independent object proposals. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 575–588. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_42

    Chapter  Google Scholar 

  12. Wang, Y., Gao, X., Li, J.: A feature analysis approach to mass detection in mammography based on RF-SVM. In: IEEE International Conference on Image Processing, ICIP, pp. V-9–V-12 (2007)

    Google Scholar 

  13. Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 27, 809–821 (2016)

    Article  MathSciNet  Google Scholar 

  14. Okuma, K., Taleghani, A., de Freitas, N., Little, J.J., Lowe, D.G.: A boosted particle filter: multitarget detection and tracking. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 28–39. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24670-1_3

    Chapter  Google Scholar 

  15. Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  16. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (1988)

    Google Scholar 

  17. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  18. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. arXiv preprint arXiv:1612.08242 (to appear)

  19. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  20. Gao, Y., Guo, S., Huang, K., et al.: Scale optimization for full-image-CNN vehicle detection. In: Intelligent Vehicles Symposium (IV), pp. 785–791 (2017)

    Google Scholar 

  21. Huang, G., Liu, Z., Weinberger, K.Q., et al.: Densely connected convolutional networks. arXiv preprint arXiv:1608.06993 (2016)

Download references

Acknowledgment

This work has been supported by the National Natural Science Foundation of China under Grant No. 61501060, the Natural Science Foundation of Jiangsu Province under Grant No. BK20150271, Key Laboratory for New Technology Application of Road Conveyance of Jiangsu Province under Grant BM20082061708.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, B., Zhang, Y., Cao, J., Zou, L. (2018). On Road Vehicle Detection Using an Improved Faster RCNN Framework with Small-Size Region Up-Scaling Strategy. In: Satoh, S. (eds) Image and Video Technology. PSIVT 2017. Lecture Notes in Computer Science(), vol 10799. Springer, Cham. https://doi.org/10.1007/978-3-319-92753-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92753-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92752-7

  • Online ISBN: 978-3-319-92753-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics